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Abstract: Insects and fungi represent two of the most widespread groupings of organisms in nature,
occurring in every kind of ecological context and impacting agriculture and other human activities in
various ways. Moreover, they can be observed to reciprocally interact, establishing a wide range of
symbiotic relationships, from mutualism to antagonism. The outcome of these relationships can in
turn affect the extent at which species of both organisms can exert their noxious effects, as well as the
management practices which are to be adopted to counter them. In conjunction with the launch of
a Special Issue of Microorganisms with the same title, this article offers a general overview of the
manifold aspects related to such interactions from the perspective of implementing our capacity to
regulate them in a direction more favorable for the environment, crop production and human health.

Keywords: entomopathogens; mycophagy; mutualistic symbioses; mycobiome; insect immunity;
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1. Introduction

Fungi and insects share common traits: they both possess chitin-based exteriors,
both are heterotrophic and both can be detrimental to plants, representing the biological
adversities with the highest impact on crops, in terms of both damage and necessity to
use chemicals. Many cases of direct trophic relationships are known where fungi are
exploited as a feeding resource by mycophagous insects, while in turn many fungi are
entomopathogenic and make use of insects as a nutrient substrate. However, coevolution
led to a continuum of interactions between these organisms which, far from being merely
antagonistic, may also involve mutualistic relationships. The increasing awareness of the
existence of direct and indirect ecological interactions has stimulated the consideration
of insects and fungi associated with crops following the paradigm of integrated pest
management, not only in view of combining control practices to contrast their noxious
effects but also, and especially, to exploit their symbiotic relationships in such a way
that they can result in a beneficial outcome for plants. Studies displaying how fungi
can play a positive role, by directly affecting insect pest development or inducing plant
resistance and defense reactions, have in turn stimulated insights on interactions going
beyond these basic effects, which involve more strict developmental relationships requiring
further elucidation.

2. Mutualistic Interactions

Insects and fungi are widespread in many environments where they have had the
opportunity to interact for million years, reciprocally influencing in various ways. Ex-
traordinary proof of this long coevolution is the lateral transfer of genes from fungi which
underlies carotenoid production in aphids [1]. Further striking evidence of these ancient
connections is represented by the capacity of many species of ants, termites and some
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Coleoptera, such as the ambrosia beetles and the ship-timber beetles, to cultivate fungi
in their nests as the main food source [2]. As a result of these mutualistic interactions, in
many insect groups external cuticular modifications have arisen to house fungal symbionts,
such as mycangia in beetle—fungus symbioses [3]. With reference to nutritional aspects,
fungivory is considered as the ancestral feeding habit of gall midges (Diptera, Cecidomyi-
dae) for over 100 million years. In fact, most of the species in this family are believed to
introduce a fungal symbiont providing support in both nutritional and protective terms in
the larval chamber which is established within hypertrophic or modified plant tissues [4,5].

Besides cases where fungi directly represent the food source, many associations are
known where fungi are hosted inside the insect’s gut, being essential for the digestion of
nutritional challenging substrates, with reference to either a dominant cellulose content, or
the need to neutralize toxic allelochemicals accumulated by plants in their tissues [6,7]. In
other cases, the function of fungi is fundamental to help insects assuming some essential
substances which they are unable to obtain from their specialized feeding source. Yeasts
are particularly known to be involved in symbioses established in the digestive trait [8].
A unique kind of mutualism characterizes the association between Yarrowia yeasts (Sac-
charomycotina, Dipodascaceae) and the carrion burying beetles (Coleoptera, Silphidae,
Nicrophorinae), where the yeasts from the beetle’s gut microbiota spread in the form of
a biofilm over the carcass, protecting it from the proliferation of other microbial decom-
posers and promoting optimal larval growth [9]. Besides ‘true’ yeasts, these microfungal
associates are taxonomically heterogeneous, including species in the Pezizomycotina, such
as Symbiotaphrina spp. known as anobiid beetle symbionts [10], and the Basidiomycetes,
such as Rhodotorula and Cryptococcus spp. reported in association with Dactylopius scales
(Heteroptera, Coccidae) [11]. Quite interestingly, some species, such as the endosymbionts
of planthoppers (Heteroptera, Delphacidae), are phylogenetically related to the Cordycip-
itaceae, a Sordariomycetes family including some of the best known entomopathogenic
fungi [12]. Again, these ‘digestive’ associations are presumed to be ancestral, and in the
case of the trichomycetes symbionts (Smittium spp.) (Harpellomycetes, Legeriomycetaceae)
inhabiting the guts of many species of aquatic Diptera, it has been estimated that they
were established during the origin of complete metamorphosis in these insects, around
300 million years ago [13]. In all these examples of mutualism, the fungal symbiont in
turn has the evident advantage of being able to dwell in a specific micro-habitat and of
increased dispersion opportunities, which eventually help it to colonize the surrounding
environment and to spread over higher distances.

3. Host–Pathogen Interactions

On the other hand, most, if not all, insect species can be infected by obligate or
facultative entomopathogenic fungi which exploit them as the only or prevalent nutrient
source. The coevolutionary arms race between fungal entomopathogens and their hosts led
to the diversification of sophisticated strategies to counter insect immune and behavioral
defenses. Proteolytic enzymes and toxins produced by parasitic fungi during infection
interfere with the host immune system by altering the cellular and humoral immune
response [14,15], while the export of small silencing RNAs interferes with the expression
of the host’s immune genes [16]. Rather than merely being opportunistic pathogens,
Aspergillus spp. (Eurotiomycetes, Aspergillaceae) could have a regulatory impact on the
immune system of honeybees through the production of phenoloxidase inhibitors, which
interfere with the melanization response of insects [17,18]. Oosporein, a dibenzoquinone
toxin secreted by Beauveria bassiana (Sordariomycetes, Cordycipitaceae), down-regulates
the immune responses in mosquitoes’ midgut, causing dysbiosis and then septicemia after
translocation of bacteria from the gut to the hemocoel [19]. However, only few studies
have examined the effects of insect microbiota on host fitness and immunity in response to
fungal pathogens.

The intimate interaction continuing through the ages has shaped entomopathogen fitness
in such a way that they are sometimes able to induce behavioral responses by the susceptible
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insects [20,21]. In this respect, a nice example is represented by Ophiocordyceps unilateralis
(Sordariomycetes, Ophiocordycipitaceae), a specialized parasite of ants in the tribe Campono-
tini (Hymenoptera, Formicidae), which just before killing its hosts, induces them to bite
the underside of leaves close to the soil. Fixed in this position, corpses remain exposed
to temperature and humidity conditions which are more favorable for the formation of
larger fruiting bodies, consequently allowing the spread of a higher number of spores [22].
Behavioral response to fungal entomopathogens is also an important part of the defense
strategies adopted by social insects, which are vigilant to rapidly detect cues of fungal
pathogens, avoid direct contact with contaminated individuals, clean the body surface of
nestmates by allogrooming, sanitize the nest with antimicrobials and remove dead individ-
uals, reducing the probability of epizootic spread [23]. Volatile organic compounds (VOCs)
produced by social insects and fungi are important communication cues which influence in-
sect behavior and pathogen proliferation. For example, the volatile (2)-b-elemene produced
by soldiers of the Japanese termite Reticulitermes speratus (Blattodea, Rhinotermitidae) is
active as a pheromone and a fungistatic agent against B. bassiana and Metarhizium anisopliae
(Sordariomycetes, Clavicipitaceae) [24]. Considering that fungal volatiles also influence the
metabolic activity of bacteria [25,26], their effects on gut microbiota in insects, following the
holobiont concept, deserve further investigations. VOCs play an even more important role
in multitrophic interactions, allowing inter-kingdom communication between indirectly
related communities.

4. Plant-Mediated Interactions

The role of fungi is essential in controlling insect populations and preserving homeosta-
sis in the ecosystems, in such a way that they tend to establish mutualistic associations with
the host plants by colonizing their tissues as endophytes [27,28]. In the context of the actions
addressed at reducing the use of pesticides in agriculture, these properties are increasingly
considered for their applicative perspectives in integrated crop management [29].

Plants can be considered as an active bridge between below and above ground bio-
coenoses. Root-colonizing and endophytic fungi interact with herbivore insects by modu-
lating plant defense and by stimulating the production of plant VOCs which attract the
natural antagonists of pests [30–32]. Colonization by Trichoderma spp. (Sordariomycetes,
Hypocreaceae) induces the systemic defense response of plants against aphids [30,32,33]
and Lepidoptera [32,34], and attracts both parasitoids [35] and predators [36]. Endophytic
B. bassiana can control different species of aphids on a series of crops [37–39] and negatively
affects the fitness of several Lepidoptera species [40–44], even if further investigations are
required for more thoroughly understanding the mechanism of action. While many studies
focus on herbaceous plants, little is known about multitrophic interactions which occur in
and around the tree holobiont, including the endophytic and epiphytic mycobiota and how
these can impact populations of forest pests [45].

Plant-mediated interactions between fungi and insects can also be mutualistic. Indeed,
flower organs and nectar are commonly inhabited by yeasts (e.g., Metschnikowia spp.,
Cryptococcus spp., Aureobasidium pullulans) which have a significant impact on nectar scent,
the foraging behavior of pollinators and parasitoid attraction [46,47]. The consumption
of nectar colonized by yeasts has been shown to improve bee fitness, probably due to the
increase in prebiotic hetero-oligosaccharides; however, the effects largely depend on the
yeast species [47]. Analogously to their role as plant pollinators, insects may favor fungal
sexual reproduction by carrying spermatia (gametes). The rust fungus Puccinia monoica
(Pucciniomycetes, Pucciniaceae) produces spermatogonia in brilliant yellow pseudoflowers
on its host plants (Arabis species) mimicking true flowers of unrelated species in shape,
size, color and nectar production; these pseudoflowers attract insects which fertilize the
receptive hyphae to form aecia [48].
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5. Conclusions

As concisely outlined in the previous sections, the available literature provides valu-
able examples of how interactions between fungi and insects can shape rich and strikingly
complex multitrophic systems in both natural and agricultural contexts. Many recent
omics studies are focused on insect mycobiota, revealing an astonishing diversity of species
and metabolic potentials, and introducing the opportunity for a practical exploitation in
pest management. New methods to be adopted in this never-ending struggle may be
conceived, based on the disruption of mycobiota associated with digestive functions or
interferences in the completion of the pests’ life cycle. From an applicative perspective,
suppressing the insect immune response using targeted gene silencing technologies, such
as RNA interference, seems a promising way to enhance the efficacy of entomopathogenic
fungi as biocontrol agents. Moreover, promising applications can be realized through
the modulation of the tritrophic interaction with plants, particularly with reference to all
aspects mediated by the various kinds of chemical messages encoded by fungal VOCs.
Finally, possible applications in human medicine of the valuable results achieved in the
study of insect–fungi relationships and the intimate processes underlying infection and
immunity in insects can be expected based on the appreciation that defense mechanisms
of these arthropods share many fundamental characteristics with the immune system
of vertebrates.
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