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Abstract: There is a prominent circadian rhythm of bioluminescence in many species of 

light-emitting dinoflagellates. In Lingulodinium polyedrum a daily synthesis and 

destruction of proteins is used to regulate activity. Experiments indicate that the amino 

acids from the degradation are conserved and incorporated into the resynthesized protein in 

the subsequent cycle. A different species, Pyrocystis lunula, also exhibits a rhythm of 

bioluminescence, but the luciferase is not destroyed and resynthesized each cycle. This 

paper posits that synthesis and destruction constitutes a cellular mechanism to conserve 

nitrogen in an environment where the resource is limiting. 
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1. Introduction 

In many organisms, ranging from bacteria to mammals, biological processes are regulated on a 

daily basis, such that maximum activity occurs at one time of the day. Such rhythms continue to occur 

after the organism is placed in constant conditions (e.g., light and temperature), but the length of the 

cycle is typically not exactly 24 h. This indicates the rhythmic mechanism is endogenous, and is 

referred to as the circadian clock (circa, about; dian, one day). In a 24 h cycle of light and dark, 

rhythms are said to be entrained, so exhibit exact 24 h periods. 

Photosynthetic dinoflagellates figured prominently in early studies of circadian rhythms; the 

photosynthetic capacity peaks during subjective day while bioluminescence is greatest during night 

phases. Early studies of the circadian clock in dinoflagellates were greatly facilitated by the light 

emission, as it provides a built-in reporter. 
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It seems biologically reasonable to regulate bioluminescence, since it would be of no value during 

the day in the many species living near the surface. However, many other processes and proteins are 

similarly regulated, some with no evident functional importance.  

Bioluminescence is a feature of many but not all dinoflagellates, including both photosynthetic and 

heterotrophic species. A comprehensive and authoritative review of the many aspects of dinoflagellate 

bioluminescence is provided in this issue [1]. Many different organisms are luminous, from bacteria to 

fish, but with different genes and proteins; bioluminescence is thus a result of convergent evolution [2–4]. 

2. Many Quasi-Independent Oscillators in Single Cells 

Circadian control in dinoflagellates is different from that in most other organisms, in that the 

rhythms are regulated at the translational level [5]. Bioluminescence itself exhibits two different 

rhythms, spontaneous flashing and a constant glow, the two having different times at which their peaks 

(acrophases) occur. Other rhythms, such as photosynthetic capacity and the time of day at which cells 

divide, have still other acrophases. Rhythms in the synthesis rates of several different enzymes have 

also been reported [6]. 

It has been postulated that each different rhythm has its own quasi-independent oscillator [7]; this is 

based upon the observation that the acrophase relationships of these can differ under different 

entraining conditions, such as the photo-fraction in a light-dark (LD) 24-h cycle (e.g., LD6:18 or 

LD18:6), or the length of the entraining period (referred to as T; e.g., 23, 24 or 25 h). Even more 

persuasive is the fact that in constant conditions the different rhythms may have different free-running 

periods [8], which cannot be readily accommodated in a single oscillator model. The different rhythms 

appear to be coupled, albeit more or less loosely, but the coupling mechanism is not known. 

3. Protein Synthesis and Destruction 

Reflecting the in vivo rhythm in L. polyedrum, both the luciferase (LCF) and the luciferin binding 

protein (LBP) are destroyed at the end of each subjective night and synthesized anew before 

subsequent activity peaks [9,10]. Why is such a mechanism used to regulate activity? On the face of it, 

one might expect a more conservative method, such as phosphorylation and dephosphorylation.  

Regulation of expression is usually associated with new transcription, but this was not observed; for 

LBP an approximately 5-h bout of synthesis occurred each cycle while the mRNA abundance for that 

protein remained constant (Figure 1; [5,11]). 

While also rhythmic, the enzyme glyceraldehyde dehydrogenase (GAPDH) illustrates an additional 

point of interest in circadian biology [12]. The amplitude of its abundance rhythm is not as great as it is 

with LBP or LCF (Figure 2), meaning that not all of the GAPDH is destroyed in a single cycle. Thus, 

synthesis might be strongly circadian (i.e., synthesis occurs only during a short time-window), but if 

the protein has a long lifetime (many days), the synthesis burst would be only a small fraction of the 

total cellular amount of that protein, so its abundance would not exhibit a high amplitude rhythm. 
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Figure 1. Measurements over time of the synthesis rate of luciferin binding protein (LBP) 

(squares, first peak), its abundance (diamonds) and the abundance of lbp mRNA (circles, 

dotted line), with cultures maintained in constant conditions. 

 

Figure 2. Measurements (ordinate) over time in constant conditions of the enzyme activity, 

abundance (Western blots) and synthesis rate of the enzyme glyceraldehyde dehydrogenase 

(GAPDH). 

 

Many other proteins in L. polyedrum exhibit circadian changes in abundance, circadian-controlled 

at the translational level [13]. However, equal amounts of those proteins were found to be synthesized 

by in vitro translation from poly(A)+ RNA extracted from cells at day and night phases, indicating that 

the message itself is not only present, but fully capable transcriptionally at all times of the cycle. 

Markovic et al. [6] tracked the in vivo synthesis rates of several of these circadian-controlled 

proteins, later identifying several of them, and found that they fell into three acrophases, the first 

occurring during the late day/early night phase, the second during the middle of the night phase, and 

the third during the late night/early day phase (Table 1). All have high synthesis-rate amplitudes. 
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Table 1. Identities and acrophases of proteins exhibiting circadian controlled rates of synthesis. 
Protein MW Acrophase ID 

75 kDa Early night LBP 
135 kDa Early night Luciferase 
21 kD Late night Unidentified dinoflagellate protein 
55 kDa Late night Rubisco 
32 kD Early day PCP 
33 kDa Early day Oxygen evolving enzyme 1 
45 kDa Early day GAPDH 

4. Why Protein Synthesis and Destruction? 

What might be the selective advantage for daily synthesis and destruction of protein, which is 

surely expensive energetically? The proteins involved are not only those responsible for 

bioluminescence, so there should be some ecological explanation for the phenomenon common to all.  

L. polyedrum is a red tide organism responsible for massive blooms in surface water that commonly 

occur off the southern coast of California and Baja. A first consideration is that energy is probably not 

a limiting factor in growth; photosynthesis probably provides more energy than can be utilized in the 

relatively slow growing organism. So if excess energy expenditure provides a selective advantage, 

there is no need to conserve an abundant resource. 

However, nitrogen and phosphate are often in short supply, as has been determined from 

measurements of the sea-water in such blooms. If a protein is functionally important for only a part of 

the day and another protein is used at a different time, might the amino acids from the degradation of 

the first be conserved and used for the synthesis of the second? And so forth. 

Such an explanation emerged in retrospect from experiments originally carried out by Laura 

McMurry to test the hypothesis of synthesis and destruction [14]. Cells were grown in a medium with 

heavy isotopes of carbon and nitrogen for several generations; the luciferase activity in extracts was 

shown to sediment in a sucrose density gradient at a faster rate, corresponding to the heavier density 

protein molecules. To determine if the 10-fold increase in activity that occurred in the first cycle after 

transfer to a normal medium was due to new synthesis of luciferase, the sedimentation velocity of the 

new activity in extracts was determined by ultracentrifugation. 

The results were interpreted as not supporting the hypothesis of synthesis and destruction. More 

than 50% of the luciferase activity retained the heavy isotope label, more than expected if synthesis 

and destruction occurred, but less than expected if the luciferase molecules were, for example, 

reversibly inactivated by an inhibitor of some sort. The results were therefore considered inconclusive 

and are described only in her Ph.D. thesis [14]. 

As already noted, subsequent experiments based on antibody measurements established that 

synthesis and destruction does indeed occur [9,10]. The curious result obtained by heavy isotope 

labeling might very well be explained by the cellular conservation of amino acids; that is, they are not 

degraded or lost to the medium, but conserved by the cells for synthesis of new protein in the next 

cycle. Thus after transfer from a medium with heavy isotopes into one with carbon-12 and nitrogen 14, 

the amino acids with heavy isotopes derived from the protein degradation would still be available for 

new protein synthesis. 
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A later and very tantalizing finding is that two species of a different bioluminescent dinoflagellate 

genus, Pyrocystis, were found to exhibit circadian control of luminescence but not a synthesis and 

destruction of luciferase; its amount is the same in extracts made during the day and night phases [15]. 

How the circadian regulation of the bioluminescence in P. lunula is accomplished is not known, but it 

is known that the localization of the luminous organelles (scintillons) from which light is emitted 

differs from day to night phase [16–18]. 

As an explanation, though not a mechanism, we can speculate that the life styles and ecologies of 

these two genera differ in a way that gives rise to their differences in the circadian regulation of 

enzyme activity. For example, bioluminescent members of the genus Pyrocystis have been reported to 

have maximal population densities at depths of 60–100 m, where nitrogen is more abundant than in 

surface waters, and to undergo diel vertical migration [19].  

Vertical migrations in a stratified ocean may allow the dinoflagellates to balance cellular energy 

and nutrient requirements by taking up nutrients (primarily nitrate and ammonium) in deeper waters 

and migrating to regions with higher photon flux during the day [20]. The vertical migration and 

nitrogen acquisition by Pyrocystis may be a strategy to reduce nitrogen limitation in nature and as a 

result reduce the selective pressure to recycle nitrogen within the cells through the daily synthesis and 

degradation of luciferase. The relative contribution of these different strategies of bioluminescence to 

increased fitness merits further investigation.  

5. Conclusions 

The fact that many circadian-regulated proteins in the dinoflagellate Lingulodinium polyedrum are 

synthesized and destroyed daily may represent a mechanism to conserve nitrogen. Amino acids 

released from the hydrolysis of one protein could be available for synthesis of different proteins over 

the course of the circadian cycle. That cells of a different species, Pyrocystis lunula, which also  

exhibit a circadian rhythm of bioluminescence, do not destroy and resynthesize luciferase, may be 

related to their ecology; they exhibit a daily vertical migration to deeper water where nitrogen may be 

readily available. 
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