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Abstract: Living systems have evolved to survive in a wide range of environments and safely interact
with other objects and organisms. Thus, living systems have been the source of inspiration for many
researchers looking to apply their mechanics and unique characteristics in engineering robotics.
Moving beyond bioinspiration, biohybrid actuators, with compliance and self-healing capabilities
enabled by living cells or tissue interfaced with artificial structures, have drawn great interest as
ways to address challenges in soft robotics, and in particular have seen success in small-scale robotic
actuation. However, macro-scale biohybrid actuators beyond the centimeter scale currently face many
practical obstacles. In this perspective, we discuss the challenges in scaling up biohybrid actuators
and the path to realize large-scale biohybrid soft robotics.
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1. Introduction

Soft robotics, which has emerged as a rapidly growing research field in robotics in the last
decade, now seeks to explore more organism-like characteristics beyond mimicking mechanics of
natural locomotion by also capturing life-like properties in designing actuators [1,2]. Soft actuation
may be the simplest but most critical function that drives soft-bodied robots to safely interact with
other objects. To capture the soft actuation capabilities seen in animals, the majority of research in
the soft robotics community employs synthetic-compliant materials for bioinspired and biomedical
applications [1,3–5]. Soft actuators have been developed using a wide range of materials and
techniques including pneumatics [6], shape-memory alloys [7] and shape-memory polymers [8],
dielectric elastomers [9]. Although a complete review of soft actuator technologies is beyond the
scope of this perspective, recent reviews on this subject are available [5,10,11]. Using these approaches,
great advances have been made in the field of soft actuation. However, synthetic soft actuators fail to
capture all the capabilities of living muscle in a single platform. Whereas each mode of soft actuation
has its advantages [12], each similarly has its drawbacks. For example, there is the need for peripheral
components or geometric limitations due to pressures in pneumatics; shape-memory materials require
high temperatures, voltages, or currents; and thermo-responsive materials have slow actuation cycles.
In contrast, living muscle, while not exceptional at any specific actuator metric, provides effective
capabilities across all metrics [12]. To harness these abilities, such as self-healing, energy extraction
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from the environment, compliance, and differential force production, the field of biohybrid robotics
seeks to use living muscle directly as an actuator in robotic systems [13–15].

By merging soft robotics and tissue engineering, technical challenges in actuation have been
addressed across different length scales [2]. Progress towards living biohybrid actuators as an emerging
class of alternative soft actuation have been conceptually demonstrated by recent works from biohybrid
robotics at small-scales. Such small-scale robots, some as small as single-cell scale like bacteria,
have been shown to be capable of manipulating micro-particles or structures for applications in
targeted drug delivery [14]. Furthermore, biohybrid robots from the millimeter to centimeter scale
have been demonstrated capable of crawling, rolling, swimming, and even simple object manipulation.
These proof of concepts in small-scale robotics show promise for the field of biohybrid robotics [16–18].
However, although living tissue provides a renewable, environmentally friendly actuation solution,
macro-scale biohybrid actuators beyond the centimeter scale have not been extensively explored by
researchers due to many challenges in fabrication, vascularization, tissue maintenance, and tissue
mechanical properties.

Even though many actuation approaches exist to drive robotic structures over the centimeter scale,
such methods, including pneumatic, thermal and dielectric elastomer actuator (DEA) technologies,
each face their own technical drawbacks in power consumption, response time, and output force [3].
Nevertheless, efforts in scaling up biohybrid actuators to build macroscopic biohybrid soft robots
could transform soft robotics by providing actuation approaches that are renewable, environmentally
friendly, adaptable, self-healing, and compliant (Figure 1A). Scaling up biohybrid actuators will
allow expansion of the technology to macro-scale robotic applications and enable new design and
control approaches for soft robotics. While most actuators rely on external power sources, biohybrid
actuators could potentially extract energy from their environment, allowing tether-free devices to be
designed without the need for heavy battery packs. The ability of biohybrid actuators to adapt to
mechanical loading and self-heal will allow robotic devices to adjust to their environment and restore
function after damage [1,2,19]. The ability to modulate actuator force through recruitment of additional
muscle fibers will allow control approaches to tune the force of individual actuators in a compact
package. By leveraging these capabilities, macro-scale biohybrid robots will enable safe interaction
with a wide range of organisms, adaptation to mechanical loading and environmental conditions,
and the possibility of energy extraction directly from the environment. By addressing the challenges
highlighted here, biohybrid actuators will become another tool in the soft robotic toolkit. Addressing
the current challenges in vascularization, interfaces, and activation will improve the accessibility of
biohybrid technologies to roboticists across scales.

Although most biohybrid robot research has focuses on small length scales, biohybrid actuator-based
soft robots have been developed across different length scales from microorganisms to microbots and
millibots (Figure 1B). Key challenges that currently hinder scaling biohybrid actuators beyond these size
ranges include (1) vascularization, (2) biotic/abiotic interfacial interactions, and (3) innervation and control
methods [1,21,22]. The purpose of this perspective article is to highlight these challenges and discuss recent
scientific and technological efforts that may enable scaling up biohybrid actuators. By addressing these
challenges, biohybrid robotics researchers will take significant steps towards the creation of macro-scale
biohybrid actuators for use in soft robotic devices with the goal of eventually matching the performance
of natural muscles.
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Figure 1. (A) Illustration of a biohybrid soft robot safely interacting with a living organism in an 
ecosystem (left) and a list of advantages of biohybrid soft robotics (right). (B) Increasing sizes for 
biohybrid soft robots from sub-micron scale to centimeter scale (top) and corresponding inspired real-
life organisms (bottom). Biohybrid Soft Robotics: sperm-bot, [14] © Copyright 2017, ACS. 
Neuromuscular motile-bot, [16] © Copyright 2019, PNAS. Bio-bot, [17] © Copyright 2016, PNAS. Bat-
ray inspired soft robot, [13] © Copyright 2018, Wiley. Living-machine with ganglia [20] © Copyright 
2016, Springer Nature. Photo by Dr. Andrew Horchler. Real-life Organisms: sperm cell, sperm and 
egg fusing, public domain. Tiny snail on a finger-tip, “Tiny snail.” by yomo_13 is licensed under CC 
BY 2.0. Bat-ray, “File:Bat Ray—Aquarium of the Pacific.jpg” by Nandaro is licensed under CC BY-SA 
3.0. 
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biohybrid robotics, we believe that addressing these key areas will substantially advance biohybrid 
actuation. This section discusses the state of the art in biohybrid actuation, current limitations in 
scaling up biohybrid actuators and possible solutions to these challenges from tissue engineering, 
advanced manufacturing, materials engineering and biology. 

2.1. Vascularization 

Vascularization is critical for keeping tissue alive; in native tissues, three dimensional (3D) 
networks of vessels within the tissue are necessary to supply nutrients and oxygen to the component 
cells (Figure 2A). Since living muscle cells form the functional elements of biohybrid actuators, it is 

Figure 1. (A) Illustration of a biohybrid soft robot safely interacting with a living organism in an
ecosystem (left) and a list of advantages of biohybrid soft robotics (right). (B) Increasing sizes for
biohybrid soft robots from sub-micron scale to centimeter scale (top) and corresponding inspired
real-life organisms (bottom). Biohybrid Soft Robotics: sperm-bot, [14] © Copyright 2017, ACS.
Neuromuscular motile-bot, [16] © Copyright 2019, PNAS. Bio-bot, [17] © Copyright 2016, PNAS.
Bat-ray inspired soft robot, [13]©Copyright 2018, Wiley. Living-machine with ganglia [20]©Copyright
2016, Springer Nature. Photo by Dr. Andrew Horchler. Real-life Organisms: sperm cell, sperm and egg
fusing, public domain. Tiny snail on a finger-tip, “Tiny snail.” by yomo_13 is licensed under CC BY 2.0.
Bat-ray, “File:Bat Ray—Aquarium of the Pacific.jpg” by Nandaro is licensed under CC BY-SA 3.0.

2. Challenges in Scaling Up Biohybrid Actuators

Throughout this perspective article, we will discuss three key challenges for scaling up biohybrid
actuators for future robotic applications. Although these are not the only challenges facing biohybrid
robotics, we believe that addressing these key areas will substantially advance biohybrid actuation.
This section discusses the state of the art in biohybrid actuation, current limitations in scaling up biohybrid
actuators and possible solutions to these challenges from tissue engineering, advanced manufacturing,
materials engineering and biology.

2.1. Vascularization

Vascularization is critical for keeping tissue alive; in native tissues, three dimensional (3D)
networks of vessels within the tissue are necessary to supply nutrients and oxygen to the component
cells (Figure 2A). Since living muscle cells form the functional elements of biohybrid actuators, it is
critical to develop such a vascular network in engineered tissues, where oxygen, nutrient and waste can
circulate and exchange [21]. However, a major limitation in achieving in vitro vasculature functionality
in larger-scale tissues has been the lack of multi-scale 3D fabrication approaches needed to guide
vascular patterning and self-assembly. Without this structural organization, achievable tissue sizes
are limited. Many approaches from conventional tissue engineering may be adapted to vascularize
biohybrid actuators on larger scales by guiding tissue organization and geometry.
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Figure 2. (A) Schematic illustration of vascularized network for efficient oxygenation and nutrient
supply and removal of metabolic waste. (B) Fabrication-based approaches to engineering vascularized
network: (B,i) bio-printing [23]© Copyright 2018, MDPI. (B,ii) subtractive patterning by laser ablation
and (B,iii) sacrificial patterning using pre-defined dissolvable material.

Spontaneous growth of vasculature in co-cultured tissues has been found to effectively generate
small vascular networks in millimeter-scale tissues [24]. However, fabrication techniques must also
be developed for scalable engineering of large vascularized networks in macro-scale tissues that
will be required to power large soft robotic devices with living cells [21]. Such techniques include
bio-printing, subtractive patterning and sacrificial patterning, which primarily rely on cell and scaffold
patterning techniques [21,25,26]. In bio-printing, extrusion or droplet deposition of a variety of bio-inks
using a bio-printer enables patterning of biomaterials to form the desired living tissue structure
(Figure 2B(i)) [25,26]. In combination with bio-printing or as a separate process, laser ablation can be
used to subtractively pattern pre-formed cell-laden gels to guide the growth of endothelial cells to
generate functional vascularized vessels (Figure 2B(ii)) [27]. In addition to additive bio-printing and
subtractive laser-based patterning, sacrificial patterning, where a biocompatible water-dissolvable
material is extruded in a filamentary lattice structure along with cell-laden bio-inks, can be used to
create an internal network of voids that can be populated with endothelial cells after dissolution of the
sacrificial material (Figure 2B(iii)) [28]. Such patterning pathways offer a route to scaling up biohybrid
structures in three dimensions by allowing nutrients and oxygen to penetrate into the tissue interior.

Each of the classes of techniques presented here have pros and cons for the creation of vascularized
macroscale biohybrid actuators. Extrusion of biomaterials in bio-printing allows a wide range of
extracellular matrix bio-inks to be deposited in 3D with or without cells [25,28]. However, these extrusion
processes require precise control of ink viscosity, are time-intensive, and may result in shear and pressure
on embedded cells which may trigger biological processes or differentiation changes. Alternatively,
subtractive patterning enables relatively high-resolution patterning of channels, but is confined to the
creation of 2D vasculature [28,29]. Lastly, sacrificial patterning can create the vasculature both in 2D
and 3D within relatively faster time, but the resolution of the structure would be critically dependent
with dissolvability of materials that requires capillary forces [30]. Moreover, as an alternative, biohybrid
actuators can be fabricated to minimize the need for direct vascular patterning. For example, by stacking
thin films seeded with the cells, a 3D laminar structure can be assembled to construct a bulk muscle [31].
This technique combines the ease of thin film manufacturing with 3D muscle culture techniques to
create biohybrid actuators with increased contractile force. However, there is still an inherent size
limitation with tissues produced with this approach.

Having artery and venous walls with capillary channels in between in 3-dimensional shapes
would be an ideal structure of vasculature [32]. In the future, the combination of required resolution and
3D patterning suggests that fabrication approaches should be developed to combine the approaches
currently reported in the literature. For example, systems capable of additive and subtractive patterning
could be used for layer-by-layer patterning of multi-scale structures ranging from fine capillaries to
larger vascular channels. Where the resolution limits of the fabrication approaches prevent scaling to
sufficiently fine capillaries, vascular precursor cells could be patterned to promote vascularization
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during maturation. These approaches will need to balance the fabrication time with the loads
experienced by the cells.

2.2. Interfacial Interaction

Living organisms have evolved and adapted to their environments. As a result of this adaptation,
their structures have developed to withstand specific forces and loads, and these adaptations are
clearly observed in how the musculature interfaces with the organism’s structure. The musculature
and skeletal system (or lack thereof) of organisms varies dramatically at different scales and speeds
of behavior (Figure 3A). For example, the body structure of small-scale, relatively slow moving
organisms such as sea-slugs and earth-worms consists of a muscular hydrostatic skeleton composed of
only soft muscles with no skeletal support [33]. Conversely, humans or large animals are driven by
forces transmitted from muscle to tendon and tendon to bone so that their hierarchically organized
muscular and skeletal structures are engaged to produce macroscopic contractile forces by muscle
tissues. Thus, the combination of physical, chemical and biological interactions in multi-scale schemes
with components that have different moduli form a frame of the body that enables scalable control
over a large-bodied organism’s force and movements.
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Figure 3. (A) Schematics of how the sizes matter interfacial interaction in living organisms. (B) Synthetic
multi-scale structure for alleviating physical stress concentration due to mechanical mismatch.
(B,i) Approach to bridging functional nanocomposites for constructing robust inorganic macroscale
devices. [34]© Copyright 2019, AAAS. (B,ii) Stress gradient of materials for successful integration in
hard to soft interfaces. [35]© Copyright 2017, Wiley. (C) Multi-scale interactions that take chemical
and biological contributions inside tissue cells. [22]© Copyright 2016, Elsevier Inc.

Although when building small-scale biohybrid robots, multi-scale interaction between muscles
and structure is less critical, when scaling up biohybrid actuators interfacial interactions and hierarchy
become critically important to prevent tissue failure due to stress concentration. Hierarchical fabrication
methods to produce patterned features of nanocomposites and micro- patterns in different moduli
have been previously used to fabricate complex electronic devices (Figure 3B) [34,35], and such
techniques could be translated to biohybrid actuator fabrication or used to inspire novel fabrication
approaches. Hierarchical interfaces would enable the development of the bio-mechanical structures
required for integration of biological tissues and inorganic heterogeneous structures with many
mechanical mismatches.

Moreover, unlike traditional actuators, cells experience a multitude of multi-scale interactions with
their environment through physical, chemical, and biological cues (Figure 3C). At the nanoscale
to microscale, chemical and protein interactions play a crucial role in tissue organization and
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behavior. At slightly larger micro to macroscales, substrate mechanics, cell-to-cell communication and
extracellular matrix composition determine tissue alignment, cellular differentiation, and systematic
force generation [22]. Selection of the appropriate biomaterials and media to induce these multi-scale
interactions will be crucial in realizing the biological and chemical functionality observed in native
tissues. In addition, there are significant differences in the impact and types of multi-scale interaction on
and experienced by cells, like muscle, in 2D vs. 3D culture [36]. Flat (2D) substrates have historically been
used in cell culture to investigate the effect of biochemical factors, topography, stiffness, and mechanical
load on cells in vitro [36,37]. However, these 2D environments do not capture the microenvironment
that cells experience in vivo [37]. Even in in vitro cultures, marked differences between 2D and
3D culture have been observed in spatiotemporal distributions of oxygen, nutrients, and metabolic
wastes thereby altering proliferation, migration, matrix production, and cell differentiation [37,38].
For biohybrid actuators, the creation of appropriate 3D scaffolds and culture conditions is critical
as cultured muscle currently produces a fraction of the forces seen in vivo [39,40], and the use
of 3D conditions is necessary for proper reproduction of neuromuscular junctions in vitro [41,42].
Although biohybrid roboticists can adapt the state-of-the-art in tissue engineering to biohybrid actuator
fabrication, fundamental research on interfacial interactions is needed to identify effective synthetic
compositions, integration techniques, and fabrication approaches for macro-scale biohybrid actuator
production and integration with robotic structures.

2.3. Innervation: Control Methods

In native muscle tissues, neural innervation of muscle cells over a large area from a network of
motor neurons provides a scalable control scheme for force generation. The ability to differentially
activate and control engineered tissues will be critical in macro-scale biohybrid actuators (Figure 4A).
This section addresses many proposed control methods that have been used to stimulate muscle cells
in biohybrid robotics to date and the limitations thereof.
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2.3.1. Electrical Stimulation

Electrical stimulation is the most common control method found in the biohybrid robotics
literature [2,13,44,45]. This method is generally applied as either field or targeted stimulations. In field
stimulation, electrical current is applied to the aqueous bath housing the robot (field, Figure 4B(i))
whereas in targeted stimulation, electrical current is selectively delivered through integrated electrodes
embedded within a biohybrid robot (targeted stimulation, Figure 4B(ii)). Field stimulation is the
most widely used electrical stimulation method to control biohybrid robots [1,2,46]. However,
in direct comparison between field stimulation and targeted stimulation, integration of flexible
electrodes with conductive gels and myotubes resulted in improved stimulation efficiency and
controllability [13,47]. While field stimulation requires the presence of a bath and is essentially
tethered to a dish, soft-electrode integration may also enable circuits to wirelessly control the robot
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and allow communication. However, electrical stimulation uses fundamentally different mechanisms
of stimulation than natural neuromuscular control and may result in muscle fatigue when skeletal
muscle cells are employed [48,49].

2.3.2. Optical Stimulation

Whereas current targeted electrical stimulation requires the biohybrid robot be tethered,
optical stimulation allows control of a robot without direct physical contact [15–17]. As such,
optical stimulation via distributed optical electrodes may be an alternative solution for controlling
macro-scale biohybrid soft robots. To implement the optical stimulation of biohybrid actuators,
tissues must be fabricated using optogenetically modified muscle cells that respond to light. To do
this, channel rhodopsins or other light-gated ion channels are used to transgenically modify the
cells and enable light to control membrane depolarization. The use of targeted and field optical
stimulation has been shown to enable phototactic guidance, steering, and turning maneuvers in small
scale biohybrid robots [15]. In this example, optical stimulation induced real-time sequential muscle
activation via serpentine-patterned muscle circuits, leading to coordinated undulatory swimming.
Optical stimulation shows significant potential for tether-free biohybrid robot control; however,
the dependence on genetically modified cells that respond to light limits the types of tissue that can
be used.

2.3.3. Neuromuscular Co-Culture

In native tissues, muscle is stimulated by the nervous system through neuromuscular junctions.
Webster et al. have demonstrated that stimulation via the natural neural circuitry improves biohybrid
actuation force and reduces fatigue in comparison to electrical stimulation in neuromuscular tissue
circuits isolated from Aplysia californica [43]. Additionally, the use of such intact tissue circuits allows
the modulatory capabilities of the neuromuscular system to be leveraged. Recently, biohybrid robots
with innervation from cultured neurospheres have shown the potential for neuromuscular co-culture in
biohybrid actuator stimulation [16]. These neurospheres could be optically stimulated to induce muscle
contraction. The use of neuromuscular circuits, whether explanted or cultured may allow the muscle to
exert higher forces than electrical stimulation when the muscle is stimulated in macro-scale. However,
to truly harness these capabilities, techniques are needed to controllably fabricate neuromuscular
circuits for biohybrid robot control.

In translation of biohybrid actuators to the broader field of actuation, it will be important for
future biohybrid actuator researchers to begin to report comparable metrics to those already reported
in the soft actuator community. Such metrics include maximum strain, stress, work density, peak strain
rate, life (cycles) at a given strain, efficiency, modulus, environmental operation range, fuel or energy
source [12]. Although many biohybrid actuator papers report some of these metrics, none report
all, making it difficult to position biohybrid actuators to engineering material. Although we cannot
directly compare the actuation performance with quantitative measures to that of traditional actuators,
the control methods presented here have clear advantages and disadvantages. Electrical stimulation
utilizes applied voltages to actuate the cells either directly through patterned electrodes or indirectly
through a bath providing direct control of muscle contraction. Both approaches require a tether or onsite
power source, with indirect electrical stimulation further requiring a conductive liquid medium external
electrical field which could damage or affect other robots or organisms in the environment [13,44].
Optical stimulation has great potential for untethered operation with the capability to shine the light
over a wide area, but it is limited to applications with optically clear or shallow media with low
refractive index such that light can reach the cells [15]. Neuromuscular stimulation is an emerging
mode of biohybrid actuator control which may address challenges found in both electrical and optical
stimulation by improving force, lowering fatigue, and enabling ‘programming’ of basic behaviors or
control patterns by training the neural cultures [50–53]. However, direct head-to-head comparisons of
these stimulation approaches are needed.
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3. Perspectives and Future Directions

Biohybrid actuators have many desirable characteristics for soft actuation. However, to translate
this technique from proof-of-concept small-scale robots to robotics at large, key challenges as presented
here must be addressed. To address these challenges, a multidisciplinary approach bringing together
collaborators from manufacturing, materials science, biology, tissue engineering, and robotics is
needed. Future efforts towards macro-scale biohybrid actuators will need to focus initially on scalable
fabrication approaches. Integrated multi-material fabrication approaches must be able to pattern muscle
cells, guide the development of vascular networks, construct hierarchical interfacial structures and
direct the organization of control circuits. Fabrication approaches should integrate micro-fabrication
techniques to capture the small-scale architectures of the native muscle extracellular matrix with
macroscale bio-patterning approaches for the extrusion of cellular bio-inks, composite reinforcements,
and additive/subtractive patterning of vascular channels. Such fabrication approaches need to be
broadly accessible for adoption by the larger robotics community. In parallel with development of
fabrication approaches, direct comparisons of control approaches are needed to establish the impact
of each approach on maximum actuation frequency, actuation force, life, and rate of fatigue across a
wide range of biohybrid actuator cell sources to develop an engineering database for these systems.
Furthermore, control approaches that improve actuator performance should be integrated into the
multi-scale fabrication pipeline described above to ensure that distributed stimulation of macro-scale
biohybrid actuators is possible. Control approaches can be further refined through collaboration with
material scientists and neurobiologists to identify techniques to minimize cell fatigue while maximizing
actuation force controllability. Ultimately, these approaches will need to be packaged in a tether-free
system to allow autonomous or independent operation of the device.

Beyond the technical concerns of macro-scale biohybrid actuator fabrication and control,
the development of these systems should be undertaken in partnership with bio- and robo-ethicists.
Biohybrid robotics brings together ethical concerns from both biology and robotics. It will be important
for the community of researchers to identify and adhere to ethical standards for this emerging
field mirroring those of animal research. Where possible, bioactuators should be fabricated using
commercially available, renewable cell lines, or using primary cells from invertebrates. For future
applications where biohybrid robots will be deployed in the field, they should be developed from
materials native to the local ecosystem and be biodegradable to minimize hazards to the environment.

Biohybrid actuators provide another material option to the soft robotics community that is
self-healing, reasonably efficient, adaptive, and renewable. These actuators have broad potential for
applications in medicine, agriculture, environmental monitoring, or anywhere that biodegradable
devices are needed. Of course, biohybrid actuators require long-term maintenance, may have limited
environmental conditions under which they can operate, and likely will result in more stochastic
performance than traditional actuators. However, animals clearly demonstrate the ability of these
actuators to enable meaningful behaviors. By developing the fabrication and control approaches
outlined here, we will move towards capturing these capabilities for robotic systems and as platforms
for testing theories in tissue engineering and neuromuscular control. Finally the characteristics,
mechanics, and performance of the biohybrid actuators of the future must be reported using metrics
common to soft robotics. This will help ensure that biohybrid actuators can transition to being seen as
engineering materials.
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