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Abstract: This paper addresses diagnosis and prognosis problems for an electric scooter subjected
to parameter uncertainties and compound faults (i.e., permanent fault and intermittent fault with
non-monotonic degradation). First, the diagnostic bond graph in linear fractional transformation
form is used to model the uncertain electric scooter and derive the analytical redundancy relations
incorporating the nominal part and uncertain part, based on which the adaptive thresholds for robust
fault detection and the fault signature matrix for fault isolation can be obtained. Second, an adaptive
enhanced unscented Kalman filter is proposed to identify the fault magnitudes and distinguish the
fault types where an auxiliary detector is introduced to capture the appearing and disappearing
moments of intermittent fault. Third, a dynamic model with usage dependent degradation coefficient
is developed to describe the degradation process of intermittent fault under various usage conditions.
Due to the variation of degradation coefficient and the presence of non-monotonic degradation
characteristic under some usage conditions, a sequential prognosis method is proposed where the
reactivation of the prognoser is governed by the reactivation events. Finally, the proposed methods
are validated by experiment results.

Keywords: uncertain electric scooter; intermittent fault; non-monotonic degradation; adaptive
enhanced unscented Kalman filter; sequential prognosis

1. Introduction

The electric scooter, also known as mobility scooter, promises to enhance the mobility of older and
disabled people. It offers convenience on people’s work and life, but at the same time, brings a security
risk, or can even lead to a serious consequence. Therefore, it is imperative to develop a fault diagnosis
and prognosis approach to ensure system safety and reliability [1]. Fault diagnosis is an important
element of condition-based maintenance and mainly includes fault detection, fault isolation and fault
identification [2].

Generally speaking, the faults in monitored systems can be divided into permanent faults and
intermittent faults [3]. Abrupt fault and incipient fault are two kinds of well-known permanent faults.
To date, fault diagnosis of permanent faults has gained significant attentions and many achievements
have been obtained [4]. In [5], a signal-based health monitoring method for gear fault in rotational
machine through acoustic emission feature quantification using empirical mode decomposition is
proposed. The advantage of this method is that it does not need to build an accurate model for the
system under monitoring. One of the problems related to this approach is that some signals in the
monitored system cannot be readily obtained. In [6], a bond graph (BG) model-based method is
developed for structural component fault detection and isolation (FDI) in intelligent autonomous
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vehicle using the properties of the bicausality and the causal path. The major advantage of BG
is that it can clearly represent causal relations between model variables to deduce the analytical
redundancy relations (ARRs) which function as fault indicators. A robust FDI method based on
uncertain bond graph (UBG), i.e., diagnostic bond graph in linear fractional transformation (DBG-LFT)
form, is proposed in [7] for uncertain systems, where the adaptive threshold is generated to achieve
reliable fault detection in the presence of parameter uncertainty. In [8], a robust FDI method for both
abrupt and incipient faults in nonlinear uncertain dynamic systems is developed where rigorous
analytical results related to the fault isolation time are provided. In [9], a FDI aided fault-tolerant control
is introduced for uncertain systems. The controller is reconfigured after FDI to improve the control
performance. The main strength of model-based method lies in the fact that it incorporates physical
understanding for diagnosis. As a result, this method can achieve better diagnosis performance due
to the employment of accurate mathematical model. However, building an accurate mathematical
model for complex nonlinear system may not always be a trivial task. In this case, system methods
which enable to identify the fault without detailed knowledge of the object under consideration are
proposed as alternatives. In [10], a new convolutional neural network based fault diagnosis technique
is introduced for fault diagnosis of rotary machines, where the need for manual extraction of features is
omitted. Without requirements of fault feature frequency calculations, an identification method using
fuzzy clustering for rotational system non-coaxiality is developed in [11].

On the other hand, prognosis of permanent faults aims to predict the end of life (EOL) or remaining
useful life (RUL) of a faulty component [12]. Compared with the diagnosis, the prognosis is more
efficient in achieving fault prevention, thus prolonging the system lifetime [13]. Due to this property,
many works have been done recently in prognosis for a variety of systems [14–20]. In [14], an artificial
intelligence (AI) based method utilizing the fuzzy identification technique is developed. Pająk proposes
a model of the operational potential consumption process which uses AI techniques to calculate the
change of the operational potential [15]. In [17], a battery health prognosis method for electric vehicles
using sample entropy and sparse Bayesian predictive modeling is proposed. The prediction of RUL is
realized by integrating sparse Bayesian predictive modeling and bootstrap sampling concepts. In [20],
an automatic transmission clutches prognostic scheme is addressed by combining the degradation
model with the measurable pre-lockup feature. Note that the above-mentioned prognosis methods are
mainly geared towards incipient faults which exhibit degradation trend over time.

Intermittent faults occur randomly with short duration and non-periodically repeated appearance.
Since permanent faults will not disappear once they occur, they will not give intermittent symptoms.
Intermittent faults are common problems in electronics interconnection systems (wires and connectors),
especially for autonomous vehicles, aircrafts, and satellites [21]. Detecting intermittent fault is
challenging and frustrating due to its random and unpredictable nature [22]. If these intermittent
faults are not handled properly in time, they will degrade over time with increasing frequency,
eventually develop into permanent faults. Therefore, it is critical to detect, isolate, and estimate the
intermittent faults soon enough such that preventive maintenance can be taken in a timely manner,
which ultimately improves the system reliability [23]. In recent years, fault diagnoses of intermittent
faults have been widely investigated [21–26]. In [24], a chaotic spread spectrum sequence based
method is developed for synchronous online diagnosis of intermittent faults in power cables. In this
work, the poignant self-correlation characteristic of the chaotic sequences and the cross-correlation
characteristics of the chaotic sequences are used to detect single cable intermittent fault and multiple
cable intermittent faults, respectively. In [25], a real-time FDI method concerning microsecond
intermittent fault based on continuous chaos time-domain reflectometry is proposed for an electrical
network. This method not only locates the intermittent fault but also estimates its time of appearance
and duration. In [26], an intermittent fault detection method is developed for electronic interconnections
by sending a sine wave and decoding the received signal for intermittent information from the channel.

Unlike diagnosis of intermittent fault which is currently an active research field, prognosis of
intermittent fault is a new topic where many difficulties are involved. For example, the intermittent
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fault is discontinuous and non-persistent, existing prognosis methods developed for permanent
fault (e.g., incipient fault) with continuous degradation cannot be directly applied. In addition,
intermittent faults appear randomly with limited duration, the employed FDI and fault estimation
methods (which usually provide valuable information for prognosis, such as true fault and degradation
model coefficients [20]) should be able to reliably diagnose the fault as soon as possible. Last but not
the least, the degradation trend representing evolution of intermittent fault values at appearing time
intervals may be non-monotonic which adds to the difficulty of prognosis algorithm design.

According to aforementioned discussions and findings, it is found that prognosis of intermittent
fault is challenging due to its inherent nature (discontinuity, random appearance and disappearance,
limited appearing duration, and so on). The situation is further complicated if there is no prior
knowledge about fault type (which is the case for practical systems) and the intermittent fault may
exhibit non-monotonic characteristic for some usage conditions. This paper attempts to deal with
the above difficult issues by developing a BG model-based approach for online fault diagnosis and
prognosis of an uncertain electric scooter subjected to compound faults. The main contributions of this
work can be summarized as follows:

(1) A single framework, concerning fault diagnosis of both permanent fault and intermittent fault
as well as prognosis of intermittent fault in the presence of non-monotonic degradation, is developed
for uncertain nonlinear electric scooter system.

(2) An adaptive enhanced unscented Kalman filter (AEUKF) is proposed to distinguish the fault
types, track the appearing and disappearing moments of intermittent fault, and adaptively estimate
the unknown process noise and measurement noise covariances.

(3) The concept of usage dependent degradation process is developed to describe the degradation
trend of intermittent fault, which allows the development of event based sequential prognosis algorithm
for intermittent fault in the presence of non-monotonic degradation for certain usage conditions.

This paper is organized as follows: Section 2 describes the detailed UBG model of the electric
scooter and introduces the developed FDI approach. In Section 3, the AEUKF-based fault estimation
and event based sequential prognosis are presented. In Section 4, experiment results are analyzed in
details. Finally, Section 5 concludes the paper.

2. UBG Model and FDI of Electric Scooter

2.1. Electric Scooter System Model

The electric scooter system, as shown in Figure 1, is mainly composed of body, DC motor, motor
drive, reducer, and four wheels. There are three sensors, i.e., two incremental encoders and a body
speed sensor, mounted on the system. Two incremental encoders are installed on the front and rear
wheels to record the angular velocity of wheels. The body speed sensor is used to measure the line
speed of the scooter.
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To model the electric scooter with parameter uncertainty, the UBG model in DBG-LFT form is
employed [27]. The list of the used variables in the model is summarized in Table 1. The UBG of
the electric scooter system is given in Figure 2. In the figure, MS f : uin models the input signal of
motor driver. The GY : N2 represents the power transfer from the electrical part to mechanical part of
DC motor. The mechanical part of the DC motor is modeled by the motor inertia Jm and mechanical
friction Rm with coefficients Rmv and Rmc. The reducer is modeled by TF : N3. The rear wheel is
modeled by the inertial Jr and the friction Rr between road and tire including coefficients Rrv and Rrc.
An incremental encoder, modeled by flow sensor D f1 :

.
θr, is used to measure the angular velocity

of rear wheel. The C : 1/K1 and C : 1/K2 model the transmission axis. The element TF : N4 is the
transformation of wheel angular velocity to the body line speed. The scooter body is modeled by
inertia I with mass m. The longitudinal speed sensor is modeled by D f2 :

.
sm. The front wheel consists

of friction R f with coefficients R f v and R f c, and inertia J f . The D f3 :
.
θ f models the angular velocity

sensor mounted on front wheel. In this work, the scooter trajectory is considered to be longitudinal
and linear and thus the steering part is not taken into account.

Table 1. Nomenclatures.

Variable Nomenclature Variable Nomenclature

uin Input signal Rmv Motor viscous friction
R1 Electrical resistance of the motor Rmc Motor Coulomb friction
N1 Voltage-to-current constant Rrv Rear wheel viscous friction
N2 Current-to-torque ratio Rrc Rear wheel Coulomb friction
N3 Reduction ratio R f v Front wheel viscous friction
N4 Wheel radius R f c Front wheel Coulomb friction
Jm Motor inertia sm Longitudinal displacement
Rm Motor mechanical friction θ f Angular position of front wheel
R f Front wheel friction θr Angular position of rear wheel
Rr Rear wheel friction a Adaptive threshold

K1; K2 Transmission axis rigidity r Analytical redundancy relation
.
sm Longitudinal speed J f Front wheel inertial
.
θ f Angular velocity of front wheel δ Multiplicative uncertainty
.
θr Angular velocity of rear wheel β Efficiency factor
Jr Rear wheel inertial w Additional effort sourceActuators 2020, 9, x FOR PEER REVIEW 5 of 21 
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Figure 2. Uncertain bond graph (UBG) of the electric scooter.

The multiplicative uncertainty of 1-port element (i.e., I,C and R) is represented by δi, i ∈ {I, R, C}.
The fictive effort input source MSe denotes the additional effort modulated by the parameter uncertainty.
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The symbol De* (i.e., the De with superscript “*”) represents the virtual sensor (functions as an auxiliary
output variable to represent the information transfer) instead of real measurement.

Three independent ARRs (i.e., r1, r2 and r3) are derived in (1) from three sensors with causalities
inverted. Each ARR consists of two perfectly separated parts, as given in (2)–(4), where nominal parts
r1n, r2n, and r3n represent the operating states, and uncertain parts a1, a2, and a3 denote the adaptive
thresholds under normal condition.

r1 : r1n + wJr + wRrc + wRrv +
wRmc

N3
+

wRmv
N3

+
wJm
N3

+ wK1 = 0

r2 : r2n −
wK1
N4

+ wm +
wK2
N4

= 0
r3 : r3n −wK2 + wR f c + wR f v + wJ f = 0

(1)



r1n = N1N2
N3

uin − Jr
d2

dt2 (
θr
βθr

) −Rrcsign( d
dt (

θr
βθr

))

−Rrv
d
dt (

θr
βθr

) − Rmc
N3

sign( d
dt (

θr
βθr

)) − Rmv
N2

3

d
dt (

θr
βθr

)

−
Jm
N2

3

d2

dt2 (
θr
βθr

) −K1(
θr
βθr
−

1
N4

( sm
βsm

))

a1 =
∣∣∣wJr

∣∣∣+ ∣∣∣wRrc

∣∣∣+ ∣∣∣wRrv

∣∣∣+ |wRmc |
N3

+
|wRmv |

N3
+
|wJm |

N3
+

∣∣∣wK1

∣∣∣
(2)


r2n = K1

1
N4

( θr
βθr
−

1
N4

( sm
βsm

)) −m d2

dt2 (
sm
βsm

)

−K2
1

N4
( 1

N4
( sm
βsm

) −
θ f
βθ f

)

a2 = 1
N4

∣∣∣wK1

∣∣∣+ |wm|+
1

N4

∣∣∣wK2

∣∣∣
(3)



r3n= K2(
1

N4
(

sm

βsm

) −
θ f

βθ f

) −R f csign(
d
dt
(
θ f

βθ f

))

−R f v
d
dt
(
θ f

βθ f

) − J f
d2

dt2 (
θ f

βθ f

)

a3 =
∣∣∣wK2

∣∣∣+ ∣∣∣∣wR f c

∣∣∣∣+ ∣∣∣∣wR f v

∣∣∣∣+ ∣∣∣∣wJ f

∣∣∣∣
(4)

with
wJr = −δJr Jr

d2

dt2 (
θr
βθr

), wRrc = −δRrc Rrcsign( d
dt (

θr
βθr

))

wRrv = −δRrvRrv
d
dt (

θr
βθr

), wRmc = −δRmcRmcsign( d
dt (

θr
βθr

))

wRmv = −δRmv
Rmv
N3

d
dt (

θr
βθr

), wJm = −δJm
Jm
N3

d2

dt2 (
θr
βθr

)

wm = −δmm d2

dt2 (
sm
βsm

), wK1 = −δK1K1(
θr
βθr
−

1
N4

( sm
βsm

))

wK2 = −δK2K2(
1

N4
( sm
βsm

) −
θ f
βθ f

), wJ f = −δJ f J f
d2

dt2 (
θ f
βθ f

)

wR f v = −δR f vR f v
d
dt (

θ f
βθ f

), wR f c = −δR f c R f csign( d
dt (

θ f
βθ f

))

where δθ and wθ denote, respectively, the multiplicative uncertainty and the associated additional
effort source MSe on θ,θ ∈

{
Jr, Rrc, Rrv, Rmc, Rmv, Jm, m, K1, K2, J f , R f v, R f c

}
; βθr , βsm and βθ f represent,

respectively, the efficiency factors of sensors θr, sm and θ f [11].

2.2. FDI Method

The FDI process consists of two steps: fault detection and fault isolation. Fault detection is
implemented by online evaluating the residuals (i.e., the numerical values of ARRs) and a faulty
condition is declared if any of the residuals surpasses the corresponding adaptive threshold. Note that
the residuals can fluctuate in the both positive and negative directions under parameter uncertainties;
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thus, the adaptive thresholds including upper and lower bounds can be defined as [−ai, ai], i = 1,2,3
CV = [cv1 cv2 cv3] to represent the consistency of ARRs, in which cvi = 1, i = 1,2,3, if the ith ARR is
inconsistent (its residual exceeds the adaptive threshold), and cvi = 0 otherwise. When the system is
fault free, the CV is a zero vector. On the contrary, the CV is nonzero in the presence of a fault.

Once a nonzero CV is detected, the fault isolation module is invoked to find a set of fault candidates
(SFC) that could explain the observed fault symptom. For this purpose, the fault signature matrix (FSM)
representing the cause-effect relations between component faults (parametric and nonparametric) and
residuals is established based on the nominal parts of ARRs. The FSM of the electric scooter system is
given in Table 2 where the column headers represent the ARRs and fault detectability (Db). In the
tables, each entry takes a Boolean value. A “1” in an entry suggests that the ARR in the column header
is sensitive to the component fault in the matching row. On the other hand, a “0” in an entry indicates
that the corresponding ARR is insensitive to the component fault in the matching row. For each row,
the entries beneath the ARR columns form the expected fault signature due to a certain fault. If at least
a “1” appears in the expected fault signature of the component, the component fault is said to be fault
detectable, which is represented by Db = 1.

Table 2. Fault signature matrix (FSM) of the electric scooter.

ARR1 ARR2 ARR3 Db

Rrv 1 0 0 1
βθr 1 1 0 1
K1 1 1 0 1
N4 1 1 1 1
βsm 1 1 1 1
βθ f 0 1 1 1
β fv 0 0 1 1

3. Fault Estimation and Sequential Prognosis

3.1. Fault Estimation Scheme

Once the SFC is obtained after FDI, the next step is to determine the fault severity and its type.
In this paper, the un-scented Kalman filtering (UKF) is adopted for the joint estimation of state and fault
(parametric and nonparametric) in the nonlinear scooter system. The UKF is a stochastic nonlinear
filtering method which inherits the well-known features of Kalman filter. Unlike the extended Kalman
filter (EKF), which needs the linearization of nonlinear models, UKF uses the unscented transform
(UT) to select the finite set of sigma points, and then propagates these sigma points directly through
the nonlinear models to approximate the state mean and covariance estimates. More details of UKF
can be found in [28].

To implement the UKF for the joint estimation of state and fault, the scooter state

xk =
[
θr,k

.
θr,k sm,k

.
sm,k θ f ,k

.
θ f ,k

]T
(k is the discrete time index) needs to be augmented as xaug,k = [xk φ]

T,
where φ denotes the vector which includes all fault parameters in the SFC. Based on xaug,k, the nonlinear
discrete stochastic model of the electric scooter can be given as follows xaug,k = f

(
xaug,k−1, wk

)
yk = h(xaug,k, vk)

(5)

where f (·) is the nonlinear state transition function, h(·) is the measurement function,

yk =
[ .
θr,k

.
sm,k

.
θ f ,k

]T
is the vector of measured velocities, wk is the process noise with covariance Qk, vk

is the measurement noise with covariance Rk.
The generic UKF cannot be directly applied to the nonlinear electric scooter system due to the

following two reasons: (1) the generic UKF is not geared towards tracking sudden parameter changes
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of intermittent fault parameter. This is because that the diagonal terms of the posteriori state error
covariance, denoted by Pk|k, automatically decrease to show more confidence in the estimation as the
filter attempts to converge to the true parameter value. When a sudden parameter change occurs,
the filter does follow the change, but its convergence is slow due to the small Pk|k. This leads to
a problem that if the next sudden change happens before the filter converges to the true fault value,
the fault estimator cannot finish its task; (2) the sensors used for measuring the angular velocities and
longitudinal speed are susceptible to the stochastic vibration when the scooter runs, and the modeling
errors due to modelling simplifications and assumptions are inevitable. Therefore, the process noise
and measurement noise covariances are time-varying and unknown.

To remedy the aforementioned two problems, the AEUKF, which can simultaneously expedite
the tracking of sudden changes and estimate the unknown process noise and measurement noise
covariances, is proposed. To achieve AEUKF, two major modifications are made on the generic UKF.
The first modification lies in the enhancement of Pk|k to restore the filter ability to track the sudden
change. This enhancement can be implemented as follows{

Ψ ≥ Ψ0 ⇒ Pk|k = τ · Pk|k
Ψ < Ψ0 ⇒ Pk|k = Pk|k

(6)

with

Ψ =
∑3

i=1
ηi

∣∣∣∣∣∣d2ri,n

dt2

∣∣∣∣∣∣
where Ψ is the auxiliary detector, Ψ0 is the threshold of the auxiliary detector, τ is the enhancement
factor, ηi = 1 if ith ARR is inconsistent, and ηi = 0 otherwise.

In (6), the auxiliary detector Ψ is used to detect the sudden changes. The choice of Ψ stems from
the fact that the sudden changes can be captured by the sum of absolute values of second derivative of
inconsistent ARRs due to the use of integral to obtain position from velocity in (2)–(4). Once a sudden
change is detected by auxiliary detector, the covariance Pk|k is enhanced to compensate for the generic
UKF latency.

The second modification aims to adaptively estimate the process noise covariance Qk and
measurement noise covariance Rk using the output velocity residual sequence of the scooter model.
This method is known as covariance matching which can be represented as follows [29]

Qk = KkCkKT
k

Rk =
2n∑

i=0
Wi

c(yi
k|k−1 − yk + Ck)(yi

k|k−1 − yk + Ck)
T (7)

with

Ck =

∑k
i=k−L+1 eiei

T

L
where ei is the velocity residual, Ck is the covariance of the velocity residual, n is the dimension of
xaug,k, yi

k|k−1 is the ith predicted (a priori) velocity in sigma points, Kk is the Kalman gain, Wi
c is the ith

covariance weight, and L is window size for covariance matching. In the nonlinear discrete stochastic
model, all fault parameters in the set of fault candidates are augmented into the system original state.
Thus, the model can replicate the system behavior after fault occurrence because the fault parameters
embedded into the model can be estimated by using the augmented model. Therefore, the estimation of
the process noise covariance and measurement noise covariance is not affected by the fault occurrence.

3.2. Sequential Prognosis

After fault estimation, the fault type and its magnitude can be obtained. Given the estimated fault
trajectory, one may treat this fault as abrupt fault if the estimated value almost keeps constant. On the
other hand, the fault can be considered as intermittent fault if the estimated fault trajectory exhibits
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obviously sudden increasing (or decreasing) trend. To predict the possible future trajectories of the
intermittent fault for RUL prediction, a certain degradation model is required to describe its degradation
trend. Note that the degradation is usually dependent on the operating conditions. For instance,
the degradation rate of bearing in electric fan is different at different speed levels. Motivated by this
observation, the following usage dependent degradation model is developed F = Fe[d

usaj
F (t−t)],

d
usa j
F = λ

usa j
F (t− t),

t = ta1 , F = Fnom

t = tsi
dk

, F = Ft
si
dk

if Y f

if Yr
(8)

where Fnom is the parameter nominal value, ta1 is the first fault appearing time, tsi
dk

is the smallest tdk

satisfying tdk
> tsi where tdk

, k = 1, 2, · · · , is the fault disappearing time, tsi , i = 1, 2, · · · , is the usage
change time and Ft

si
dk

is the fault value at tsi
dk

, d
usa j
F is the degradation rate, λ

usa j
F is the usage dependent

degradation coefficient, Y f denotes ta1 < t < tsi
dk

, Yr represents tsi
dk
< t < tsi+1

dk
, j = 1 in Y f , and j = i + 1

in Yr.
The proposed usage dependent degradation profile is illustrated in Figure 3. In F axis, F denotes

the parameter value or efficiency factor value in both normal and faulty conditions by which the
evolution of the value over time can be demonstrated. In the figure, the usage is changed at ts1 from
condition 1 to condition 2 (indicates a severer operating condition). As a result, the degradation
coefficient increases which causes the fault progression to follow another trajectory (i.e., from trajectory
A to trajectory B) as shown in Figure 3. Therefore, the EOL time EOLusa2 (its related RUL is RULusa2

td3
) at

which the failure threshold Fend is reached under usage condition 2 is shorter than the EOL time EOLusa1

(its related RUL is RULusa1
td1

) under usage condition 1. Note that in Figure 3, the fault values at the
disappearing moments constitute the degradation curve and the fault value at each appearing intervals
is considered to be constant. In this way, the degradation process of intermittent fault occurring in
random discontinuous intervals can be established which in turn allows the development of RUL
prediction algorithm under changing usage conditions.
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The AEUKF-based fault estimator constantly and recursively updates the unknown fault values
after FDI, but the prognoser is only reactivated at time t

si
dk

(denotes the second smallest tdk
satisfying

tdk
> tsi since two detected instants and two estimated fault values are required to identify the

degradation model parameters under Yr) if some prescribed events are detected. Note that if the
estimated intermittent fault evolution is found to be non-monotonic due to the usage condition change,
the prognoser will not be reactivated even if the usage change is observed. Moreover, other factors
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(e.g., the relation between the fault value at t
si
dk

and Fend, and the minimum number of estimates
required to identify the degradation model under Yr) also determine the reactivation of prognoser.
Thus, under Yr, the following logic is defined to describe the reactivation of the prognoser at t

si
dk

Ωp =

{
1,
0,

if EV1 = 1∧ EV2 = 1∧ EV3 = 1∧ EV4 = 1
otherwise

(9)

with

EV1 =

 1, if sign(Ft
si
dk

− Ft
si
dk

) = sign(Ftd1
− Fnom)

0, otherwise

EV2 =

 1, if Ft
si
dk

does not exceed Fend

0, otherwise

EV3 =

 1, if Ntdk
≥ 2 for t ∈ (tsi , tsi+1)

0, otherwise

EV4 =

{
1, if usage change occurs at tsi

0, otherwise

where ∧ represents logic AND, Ωp ∈ {0, 1} is a binary variable denoting the reactivation state of
prognoser, where Ωp = 1 denotes that prognoser is reactivated, and Ωp = 0 otherwise.

The degradation process is generally irreversible and degradation cannot decrease. In this paper,
what increases or decreases is the value of fault parameter in different components. For example,
the resistance value in the circuit may increase or decrease abnormally due to fault but the
degradation of the resistance increases. In (9), EV1 = 1 indicates that the degradation characteristic
(i.e., monotonic increase or monotonic decrease of value of fault parameter) after the usage change
occurs is consistent with the one before the usage change occurs. Otherwise, the degradation is treated
as a non-monotonic process and the prognoser will not be reactivated. As a result, the RUL under
the new usage condition cannot be predicted. The event EV2 = 1 describes that the fault value at t

si
dk

(denoted by Ft
si
dk

) does not hit Fend. The event EV3 = 1 suggests that at least two fault estimates are

required to identify the degradation model parameters under Yr, where Ntdk
denotes the number of

disappearing instants within time interval (tsi , tsi+1). The event EV4 = 1 indicates that a change of
usage condition is observed. It is obvious that the prognoser can be reactivated provided that the four
events are detected.

Under Y f , the prognoser is enabled at td1 that is captured by the auxiliary detector. There are two
unknown parameters (ta1 and λusa1

F ) in (8). Since the fault detection module can detect ta1 , the unknown
parameter λusa1

F can be solved as

λusa1
F = ln

(
F̂td1

/Fnom
)/(

td1 − ta1

)2
(10)

where F̂td1
is the estimated fault value at td1 .

Thus, the EOLusa1 can be computed from (8) and (10) as

EOLusa1 =
√

ln(Fend/Fnom)/λ
usa1
F + ta1 (11)

Based on (11), the RUL under Y f can be calculated as

RULusa1
td1

= EOLusa1 − td1 (12)
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Under Yr, if the prognoser is reactivated (i.e., Ωp = 1) at t
si
dk

, three unknown parameters (λ
usa j
F , tsi

dk

and Ft
si
dk

) exist in (8). Here tsi
dk

can be detected by the auxiliary detector, and Ft
si
dk

can be obtained by the

fault estimator. Therefore, the unknown parameter λ
usa j
F can be computed as

λ
usa j
F = ln

(
F̂t

si
dk

/F̂t
si
dk

)/(
t
si
dk
− tsi

dk

)2
(13)

where F̂t
si
dk

and F̂t
si
dk

are the fault estimates at t
si
dk

and tsi
dk

, respectively.

Thus, the EOLusa j can be derived as

EOLusa j =

√
ln

(
Fend/F̂t

si
dk

)
/λ

usa j
F + tsi

dk
(14)

The RUL under Yr can be formulated as

RUL
usa j

t
si
dk

= EOLusa j − t
si
dk

(15)

In order to recovery the predicted RUL distribution and thus estimate the RUL uncertainty,
the Monte Carlo simulation (MCS) approach is utilized to draw M samples to generate all possible
future trajectories as follows [16]:

Fi
∼ N

(
F̂, PF̂

)
, i = 1, 2, · · · , M (16)

where F̂ = F̂td1
under Y f and F̂ =

[
F̂t

si
dk

, F̂t
si
dk

]
under Y f , and PF̂ represents the diagonal terms of the

state error covariance related to the estimated fault values.
According to (10)–(16), M possible RUL predictions are

RULi =

 EOLi
usa1
− td1 if Y f

EOLi
usa j
− t

si
dk

if Yr
, i = 1, 2, · · · , M (17)

where EOLi
usa1

is the EOL of ith sample under Y f , and EOLi
usa j

is the EOL of ith sample under Yr.
From (17), the predicted mean RUL can be computed as

RULmean =
1
M

M∑
i=1

RULi (18)

The complete flow chart of the proposed method is presented in Figure 4. In the FDI step,
the adaptive threshold is adopted to detect the fault under parameter uncertainties and then SFC
is obtained by comparing the nonzero CV with the FSM. The SFC includes the possible faults with
unknown types. During fault estimation, the AEUKF-based estimator identifies the fault values
and distinguishes the fault types with the aid of auxiliary detector. If the fault type is intermittent,
degradation model identification is carried out using the information from the fault estimation and
auxiliary detector. Given the predefined failure threshold, the probability distribution function (PDF)
of RUL under Y f can be predicted. In order to reactivate the prognoser, four associated events are
judged. If the prognoser is reactivated, the fault estimation results and the information from the
auxiliary detector are again used for the identification of degradation model under Yr, where the
degradation coefficient under the new usage condition can be calculated. With the newly calculated
degradation coefficient and failure threshold, the PDF of RUL under Yr can be computed statistically
by the MCS method.
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4. Experiment Results

4.1. Parameter Identification and Model Validation

In order to evaluate the performance of the proposed fault diagnosis and prognosis method,
the nominal parameter values and the respective multiplicative uncertainty values should be properly
identified so that the developed model can capture the dynamic behavior of the monitored electric
scooter system. Some parameter values are taken from the manufacture specifications, so that no
uncertainties are defined for these parameters. It is more meaningful to consider uncertainties for
other parameters (e.g., friction) because they are more prone to be affected by the usage conditions.
Other parameter values are identified by the genetic algorithm (GA) [30]. In this paper, the two-point
crossover operator and the single-point mutation operator are used in GA, where the values of the
crossover probability and the mutation probability are 0.8 and 0.07, respectively. The fitness function
for parameter identification is defined as

F f itness = 1/(
∑l

j=1
(
∣∣∣∣r j

1n

∣∣∣∣+ ∣∣∣∣r j
2n

∣∣∣∣+ ∣∣∣∣r j
3n

∣∣∣∣) + ε) (19)

where l is the number of the collected data and ε is a small positive constant to avoid division by zero
during the optimization process.

Ten sets of input–output data using the same command input signal 1 V are obtained from the
actual electric scooter system. Each set is used for parameter identification based on GA with the fitness
function in (19). For each parameter, the mean calculated from the ten sets of identified parameters is
treated as the nominal value, and the maximum deviation from the mean value divided by the mean
value is considered as the multiplicative uncertainty value [7].

The identification results are given in Table 3. In order to validate the developed model using
the identified parameters, the same input signal 1 V is applied to the model and the real system.
The comparison between the model and the system outputs is given in Figure 5. From the figure, it is
observed that the model outputs show agreement with the actual outputs of the electric scooter system.
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Table 3. Nominal parameter and multiplicative uncertainty values.

Nominal Value Uncertainty Value Nominal Value Uncertainty Value

N1 3 A/V / Jr 4.87 ×10−3 kgm2 2.84%
N2 0.0666 Nm/A / J f 6.97 ×10−3 kgm2 2.76%
N3 1/18 / Rrv 3.545 ×10−2 Nms/rad 5.12%
N4 0.115 m / Rrc 5.955 ×10−2 Nm 1.89%
R1 1.03 Ω 2.61% R f v 1.02 ×10−3 Nms/rad 2.79%
Rmv 1.725 ×10−3 Nms/rad 2.98% R f c 1.857 ×10−3 Nm 2.91%
Rmc 5.635 ×10−2 Nm 5.86% K1 10.02 Nm/rad 2.29%
Jm 5.03 ×10−4kgm2 8.12% K2 10.07 Nm/rad 1.13%
m 20.7 kg 2.06%
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4.2. Experimental Results

For the experimental setup in Figure 1, three sensors and motor are powered by two 12 V batteries.
The sensors and associated hardware measures the scooter velocities and then send them to the onboard
laptop via USB data acquisition card (Advantech USB 4711A) and LabVIEW software. The onboard
laptop also provides power to the USB data acquisition card and sends command input signal to the
motor driver. FDI is implemented by the standard LabVIEW module, while fault estimation and RUL
prediction are conducted by utilizing the MATLAB script node in LabVIEW environment where the
co-simulation between MATLAB and LabVIEW can be implemented online.

Two experiments under compound faults are conducted. The first one concerns an abrupt friction
fault in Rrv on the rear wheel and a monotonic intermittent sensor fault in βθr . A special mechanical
arrangement in Figure 1 is fabricated to introduce the friction fault in Rrv. The mechanism consists of
rotary disc, steel wire, and rubber sheet. The rotary disc can be manually rotated to drive the steel wire
connected with the rubber sheet. The steel wire can control the distance between rubber sheet and
the rear wheel. Under normal condition, the rubber sheet and the rear wheel are totally separated.
When the rubber sheet is engaged with the rear wheel, the rear wheel friction is increased and the
fault severity is determined by the rotation angle of the rotary disc. When the abrupt friction fault
is injected, the rotation angle of the rotary disc under this fault condition is marked. For reference
purpose, the abrupt fault value of Rrv is needed and thus, the GA based fault identification (only
suitable for the case of abrupt fault) is adopted, where only Rrv is the unknown parameter and other
parameter values are taken from Table 3. Figure 6 shows the identification result where the identified
Rrv = 0.469 Nms/rad.
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The intermittent fault profile is given in Figure 7. The designed fault appearing and disappearing
moments are ta1 = 10 s, td1 = 15.56 s, ta2 = 18 s, td2 = 21.16 s, ta3 = 24 s, td3 = 27.08 s, ta4 = 28.5 s,
td4 = 30.94 s, and the fault values at the appearing interval are 0.94, 0.78, 0.55 and 0.3. The failure
threshold βθr,end = 0.3. The input representing the usage condition is changed from 1 V to 1.2 V at
ts1 = 19.8 s. The degradation coefficient λusa1

βθr
= −0.002 under Y f and λusa2

βθr
= −0.01 under Yr.

The designed RUL is 18.98 s under Y f and 3.86 s under Yr.
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The residual responses are shown in Figure 8. The nonlinear discrete model in (5) is obtained by
discretizing the continuous model in (2)–(4) using Euler’s backward difference method. To guarantee
the discrete model accuracy, the sampling time should be short enough. On the other hand, the sampling
time must be long enough to assure the real time computation of the developed method. Thus, a tradeoff

is made where the sampling time is chosen as 0.02 s. From Figure 8, a CV = [1 1 0] is detected after 10 s and
the SFC is

{
βθr , K1, βθr &Rrv, βθr&K1, βθr&Rrv&K1, Rrv&K1

}
. After that, the fault estimation is activated

where AEUKF, AUKF and UKF are employed for comparison purpose [29]. The initial parameters
for all filters are selected as P0 = diag(0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.5, 0.3, 20), Q0 = diag(0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01), and R0 = diag(0.2, 0.2, 0.2). Figure 9a shows the estimate of βθr

and Figure 9b illustrates the response of Ψ where the dashed line is the threshold of the auxiliary
detector Ψ0 = 760. The Ψ is calculated by the derivative function in LabVIEW. Since the choice of τ
in (6) is critical for the AEUKF, a set of experiments are conducted to choose τ properly. It is found
that the performance of sudden change tracking improves with the increase of τ. However, when τ
increases beyond 5, poor tracking performances (i.e., large estimate fluctuations during sudden change
instants and deteriorations in tracking error) occur. As a result, τ is set to be 5. It is observed from
Figure 9a that UKF and AUKF do attempt to follow the step changes, but the convergence is too
slow to track the true value before next sudden change occur. By contrast, the AEUKF can ensure the
prompt tracking of the sudden changes by enhancing the posteriori state error covariance timely with
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the aid of the auxiliary detector Ψ. The estimated values of Rrv (shown in Figure 10) using AEUKF,
AUKF and UKF, are 0.463 Nms/rad, 0.478 Nms/rad and 0.487 Nms/rad, respectively, which are close
to the actual fault value (i.e., 0.469 Nms/rad). The estimated values of K1 (shown in Figure 11) using
AEUKF, AUKF and UKF, respectively, are 10.09 Nm/rad, 10.14 Nms/rad and 9. 85 Nm/rad, which are
close to the nominal one (i.e., 10.02 Nm/rad). As the result, the K1 is excluded from the SFC. To show
the average performance of fault estimation algorithms, more experiments (i.e., 6 sets of experiments)
are conducted where the corresponding results are summarized in Table 4. In the table, Li, i = 1, 2, 3,
represents the time period between tai and tdi . It was found that AEUKF and AUKF are superior to
UKF, owing to the employment of the covariance matching technique.
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Figure 10. Estimate of Rrv.
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Table 4. Comparison of fault estimation performance.

βθr Rrv(Nms/rad) K1(Nm/rad)

L1 L2 L3
Actual value 0.94 0.78 0.55 0.469 10.02

Mean
AEUKF 0.95 0.79 0.56 0.463 10.05
AUKF 0.96 0.85 0.62 0.477 10.09
UKF 0.96 0.91 0.70 0.487 9.88

St.dev
AEUKF 0.0011 0.0012 0.0011 0.0012 0.06
AUKF 0.0016 0.0016 0.0017 0.0015 0.11
UKF 0.0022 0.0021 0.0022 0.0023 0.14

Since the identified fault type of βθr is intermittent based on Figure 9a, the RUL is statistically
predicted via the MCS method with M = 80. Figure 12a–c, respectively, show the predicted RUL PDF
based on the AEUKF, AUKF and UKF under Y f . The predicted mean RUL is 17.87 s for AEUKF, 17.83 s
for AUKF, and 17.19 s for UKF. The actual RUL under Y f stays within 95% confidence interval (CI) for
all filters. The AUKF and UKF are acceptable since no step change occurs before td1 (i.e., AUKF and
UKF do not exhibit estimation latency before td1). In order to quantitatively compare the prognosis
performance of different methods, two metrics, i.e., relative accuracy (RA) for prediction accuracy and
relative standard deviation (RSD) for prediction spread, are adopted [14]. The performance results
under usage 1 are given in Table 5 where the metrics are expressed in percentages. From the table, it is
observed that all methods yield good RA (i.e., over 90%) and RSD (i.e., under 10%). The performance
of AUKF is almost the same as that of AEUKF. The slight decrease in performance of UKF is due to the
difficulty of setting noise covariances.

After ts1 , the usage condition is changed which causes the degradation to follow another trajectory
as shown in Figure 7. The prognoser is reactivated at td3 since Ωp = 1. From Figure 9a, the AUKF and
UKF cannot rapidly track the step changes which could adversely affect the subsequent degradation
coefficient calculation and RUL prediction. Figure 12d–f, respectively, illustrate the predicted RUL PDF
using the AEUKF, AUKF and UKF under Yr. The predicted mean RUL is 4.21 s for AEUKF, which is
close to the actual value (i.e., 3.86 s). The actual RUL falls inside the 95% CI. However, as expected,
improper RUL predictions occur for AUKF and UKF, where the actual RUL falls outside the 95% CI.
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This is due to the overestimations of fault values which stems from the lack of ability to promptly
track the sudden changes. As a result, the RUL predictions by the AUKF and UKF are not acceptable.
The prognosis performances under usage 2 is shown in Table 5 where the mark “×” in the entry
indicates an unacceptable prediction metric.
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Table 5. Comparison of remaining useful life (RUL) prediction performance.

RA RSD

Experiment1 Usage1 UKF 90.57 9.57
AUKF 93.94 9.06

AEUKF 94.15 9.32
Usage2 UKF × ×

AUKF × ×

AEUKF 90.71 11.59

Experiment2 Usage1 UKF 90.68 8.31
AUKF 93.51 8.25

AEUKF 95.07 8.28

In the second experiment, an abrupt fault in Rrv and a non-monotonic intermittent fault in βθr

(whose profile is given in Figure 13) are introduced. The designed fault appearing and disappearing
moments are ta1 = 10 s, td1 = 15.3 s, ta2 = 19.2 s, td2 = 21 s, ta3 = 24 s, td3 = 27 s, ta4 = 30 s, td4 = 34 s,
and the designed fault values at the appearing interval are 0.92, 0.7, 0.82 and 0.76. The failure
threshold βθr,end = 0.3. The input representing the usage condition is changed from 1 V to 1.3 V at
ts1 = 19.7 s. The degradation coefficient λusa1

βθr
= −0.003 and the designed RUL is 14.8 s under Y f .

The RUL under Yr is not available since the degradation is non-monotonic after ts1 . The residual
responses are presented in Figure 14 where a CV = [1 1 0] is observed after 10 s and the resulting SFC is
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{
βθr , K1, βθr&Rrv, βθr &K1, βθr &Rrv&K1, Rrv&K1

}
. The fault estimation is then enabled where AEUKF,

AUKF and UKF are adopted.
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The estimation results are given in Figure 15 where the AEUKF can ensure the timely tracking
of sudden changes with the help of the auxiliary detector, but UKF and AUKF cannot work well.
The estimated values of Rrv using AEUKF, AUKF and UKF, are 0.461 Nms/rad, 0.447 Nms/rad and
0.445 Nms/rad, respectively. The estimated values of K1 using AEUKF, AUKF and UKF, respectively,
are 9.94 Nm/rad, 9.91 Nms/rad and 10. 15 Nm/rad, which are close to the nominal one. Thus, the K1 is
not a fault candidate and Rrv is an abrupt fault. Table 6 shows the average estimation results of 6 sets
of experiments. In the table, Li, i = 1, 2, 3, 4, represents the time period between tai and tdi . From the
Table 6, it is observed that the AEUKF performs best among all methods.

The RUL prediction is carried out for βθr with M = 80. Figure 16a–c, respectively, give the predicted
RUL PDF based on the AEUKF, AUKF and UKF under Y f . The predicted mean RUL is 14.07 s for
AEUKF, 13.84 s for AUKF, and 13.42 s for UKF. For all methods, the actual RUL remains within 95% CI.
The prognosis performances of different methods are shown in Table 5. It was observed that AUKF and
AEUKF achieve similar performance since no sudden change occurs before td1 , while UKF performance
decreases slightly. After ts1 , the usage condition is changed where the degradation characteristic is
non-monotonic as shown in Figure 13. Thus, EV1 = 1 is not satisfied and the prognoser will not be
reactivated at td3 . As a result, the RUL of βθr under the new usage condition cannot be predicted.
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Table 6. Comparison of fault estimation performance.

βθr Rrv(Nms/rad) K1(Nm/rad)

L1 L2 L3 L4
Actual value 0.92 0.70 0.82 0.76 0.469 10.02

AEUKF 0.92 0.72 0.83 0.76 0.462 9.98
Mean AUKF 0.92 0.81 0.83 0.85 0.448 9.93

UKF 0.93 0.89 0.84 0.86 0.443 10.12

AEUKF 0.0011 0.0013 0.0011 0.0012 0.0013 0.06
St.dev AUKF 0.0016 0.0017 0.0015 0.0017 0.0019 0.12

UKF 0.0022 0.0022 0.0023 0.0021 0.0023 0.13
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5. Conclusions 

In this paper, a UBG based FDI of compound faults and an AEUKF-based fault estimation and 
sequential prognosis are developed for an electric scooter with parameter uncertainties. The 
compound faults of unknown types are considered, and the auxiliary detector aided AEUKF is 
proposed to distinguish the fault types, track the sudden changes of intermittent fault, and estimate 
the unknown noise covariances. For the sequential prognosis of intermittent fault in the presence of 
non-monotonic degradation, a set of reactivation events are defined, and the prognoser is only 
reactivated if all these events are satisfied. The efficiency of the proposed methodology is verified by 
experiment results. 
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5. Conclusions

In this paper, a UBG based FDI of compound faults and an AEUKF-based fault estimation and
sequential prognosis are developed for an electric scooter with parameter uncertainties. The compound
faults of unknown types are considered, and the auxiliary detector aided AEUKF is proposed to
distinguish the fault types, track the sudden changes of intermittent fault, and estimate the unknown
noise covariances. For the sequential prognosis of intermittent fault in the presence of non-monotonic
degradation, a set of reactivation events are defined, and the prognoser is only reactivated if all these
events are satisfied. The efficiency of the proposed methodology is verified by experiment results.
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10. Kolar, D.; Lisjak, D.; Pająk, M.; Pavković, D. Fault diagnosis of rotary machines using deep convolutional
neural network with wide three axis vibration signal input. Sensors 2020, 20, 4017. [CrossRef]
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15. Pająk, M. Fuzzy model of the operational potential consumption process of a complex technical system.
Facta Univ. Ser. Mech. Eng. 2020, 18, 453–472.

16. Daigle, M.; Bregon, A.; Roychoudhury, I. Distributed prognostics based on structural model decomposition.
IEEE Trans. Reliab. 2016, 63, 495–510. [CrossRef]

17. Hu, X.; Jiang, J.; Cao, D.; Egardt, B. Battery health prognosis for electric vehicles using sample entropy and
sparse Bayesian predictive modeling. IEEE Trans. Ind. Electron. 2016, 63, 2645–2655. [CrossRef]

http://dx.doi.org/10.1109/TIE.2015.2417501
http://dx.doi.org/10.1109/TIE.2017.2677327
http://dx.doi.org/10.1109/TIE.2014.2386293
http://dx.doi.org/10.1109/TR.2015.2459684
http://dx.doi.org/10.1109/TIM.2011.2179819
http://dx.doi.org/10.1109/TASE.2013.2252340
http://dx.doi.org/10.1109/TMECH.2007.912746
http://dx.doi.org/10.1109/9.995036
http://dx.doi.org/10.1109/TAC.2004.832201
http://dx.doi.org/10.3390/s20144017
http://dx.doi.org/10.2478/pomr-2019-0007
http://dx.doi.org/10.1109/TIA.2017.2669195
http://dx.doi.org/10.1109/TIE.2014.2327557
http://dx.doi.org/10.3233/JIFS-18121
http://dx.doi.org/10.1109/TR.2014.2313791
http://dx.doi.org/10.1109/TIE.2015.2461523


Actuators 2020, 9, 128 20 of 20

18. Climente-Alarcon, V.; Antonino-Daviu, J.A.; Strangas, E.G.; Riera-Guasp, M. Rotor-bar breakage mechanism
and prognosis in an induction motor. IEEE Trans. Ind. Electron. 2015, 62, 1814–1825. [CrossRef]

19. Gucik-Derigny, D.; Outbib, R.; Ouladsine, M. A comparative study of unknown-input observers for prognosis
applied to an electromechanical system. IEEE Trans. Reliab. 2016, 65, 704–717. [CrossRef]

20. Ompusunggu, A.P.; Papy, J.; Vandenplas, S. Kalman-filtering-based prognostics for automatic transmission
clutches. IEEE/ASME Trans. Mechatron. 2016, 21, 419–430. [CrossRef]

21. Lei, Y.; Xie, H.; Yuan, Y.; Chang, Q. Fault location for the intermittent connection problems on CAN networks.
IEEE Trans. Ind. Electron. 2015, 62, 7203–7213. [CrossRef]

22. Obeid, N.H.; Battiston, A.; Boileau, T.; Nahid-Mobarakeh, B. Early intermittent interturn fault detection
and localization for a permanent magnet synchronous motor of electrical vehicles using wavelet transform.
IEEE Trans. Transp. Electrif. 2017, 3, 694–702. [CrossRef]

23. Yan, R.; He, X.; Wang, Z.; Zhou, D. Detection, isolation and diagnosability analysis of intermittent faults in
stochastic systems. Int. J. Control 2018, 91, 480–494. [CrossRef]

24. Hu, S.; Wang, L.; Mao, J.; Gao, C.; Zhang, B.; Yang, S. Synchronous online diagnosis of multiple cable
intermittent faults based on chaotic spread spectrum sequence. IEEE Trans. Ind. Electron. 2019, 66, 3217–3226.
[CrossRef]

25. Auzanneau, F. Detection and characterization of microsecond intermittent faults in wired networks.
IEEE Trans. Instrum. Meas. 2018, 67, 2256–2258. [CrossRef]

26. Syed, W.; Perinpanayagam, S.; Samie, M.; Jennions, I. A novel intermittent fault detection algorithm and
health monitoring for electronic interconnections. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 6,
400–406. [CrossRef]

27. Borutzky, W. Bond graph model-based system mode identification and mode-dependent fault thresholds for
hybrid systems. Math. Comput. Model. Dyn. Syst. 2014, 20, 584–615. [CrossRef]

28. Partovibakhsh, M.; Liu, G. An adaptive unscented Kalman filtering approach for online estimation of model
parameters and state-of-charge of lithium-ion batteries for autonomous mobile robots. IEEE Trans. Control
Syst. Technol. 2015, 23, 357–363. [CrossRef]

29. Meng, J.; Luo, G.; Gao, F. Lithium polymer battery state-of-charge estimation based on adaptive unscented
Kalman filter and support vector machine. IEEE Trans. Power Electron. 2016, 31, 2226–2238. [CrossRef]

30. Arogeti, S.; Wang, D.; Low, C.B.; Yu, M. Fault detection isolation and estimation in a vehicle steering system.
IEEE Trans. Ind. Electron. 2012, 59, 4810–4820. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIE.2014.2336604
http://dx.doi.org/10.1109/TR.2015.2494682
http://dx.doi.org/10.1109/TMECH.2015.2440331
http://dx.doi.org/10.1109/TIE.2015.2442518
http://dx.doi.org/10.1109/TTE.2017.2743419
http://dx.doi.org/10.1080/00207179.2017.1286039
http://dx.doi.org/10.1109/TIE.2018.2842737
http://dx.doi.org/10.1109/TIM.2018.2851646
http://dx.doi.org/10.1109/TCPMT.2015.2500023
http://dx.doi.org/10.1080/13873954.2013.874361
http://dx.doi.org/10.1109/TCST.2014.2317781
http://dx.doi.org/10.1109/TPEL.2015.2439578
http://dx.doi.org/10.1109/TIE.2012.2183835
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	UBG Model and FDI of Electric Scooter 
	Electric Scooter System Model 
	FDI Method 

	Fault Estimation and Sequential Prognosis 
	Fault Estimation Scheme 
	Sequential Prognosis 

	Experiment Results 
	Parameter Identification and Model Validation 
	Experimental Results 

	Conclusions 
	References

