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Abstract: Linear motors have been playing a crucial role in mechanical motion systems due to
its ability to provide a straight motion directly without mediate mechanical actuators. This paper
investigates tracking control problems of Polysolenoid Linear Motor, which is a particular type of
permanent magnet linear motor in a tubular structure. In order to deal with unmeasurable velocity,
our method proposes a novel observer guaranteed asymptotic convergence of the observer errors.
Then, based on observed velocity, our method proposes controllers for position-velocity and current
tracking control concerning an unknown disturbance load problem by using Lyapunov direct method.
The proposed controllers ensure that the position-velocity tracking error converges to arbitrarily
small values by adjusting control parameters. Finally, the validity and effectiveness of our approach
are shown in illustrative examples.
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1. Introduction

Linear Motor motion systems have been widely applied to fruitful applications in order to provide
directed straight motions in which, unnecessary mechanical transmissions are excluded that results in
better performance and lost-cost requirement of motion systems [1]. Recently, there has been a great
deal of effort devoted to control design for linear motors in various topics including motion control
theory [2,3], the planar motion of a nanopositioning platform [4], traction systems for subway [5] and
jetting dispenser [6]. As a particular case, polysolenoid linear motor (PLM) belongs to the group of
permanent magnet linear motor in tubular structure as shown in Figure 1. The motor has two phases
corresponding to two separated windings working differently in 90o of electrical angle. The usage of
PLM brings some beneficial properties such as the durable structure, low cost, and reliable operations
according to an electromagnetic phenomenon with principles as shown in [7,8]. More recently, various
research topics focus on control design for PLM such as model predictive control [9,10] and flatness
based control structure [11].

Without the needs of any gearbox for motion transformation, the movement of linear motor
systems become sensitive due to external impacts such as frictional force, changed load and non-sine
of flux. The disturbance force impacts in both the longitudinal and in the transversal direction,
which results in harmful effects to system performance. Over the past few years, there have been
several kinds of research spending amounts of effort to deal with position tracking problems of
linear motor systems in the presence of external disturbances. A neural network learning adaptive
robust controller was designed by [12] to achieve both tracking performance and disturbance rejection.
Besides, compensation approaches were proposed in researches [13–15], by which the frictional force
and position-dependent disturbance are compensated to guarantee the stability of the overall system.
The researches in [16–18] present effective sliding mode control methods for tracking control of the
linear motor.
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In the progress of disturbances rejection methods, sensorless control problems of a linear
permanent-magnet motor have been received a lot of attention from fruitful researches including
linear tubular motors [19,20], end-effects [21,22], position sensorless control [23,24]. Generally, for a
class of permanent-magnet synchronous motor, almost all researches use back electromotive force
(EMF), which are observed via currents and voltages, to estimate the velocity of the linear motor. As a
matter of fact, at low and zero speed, the back electromotive force (EMF) voltage magnitude is very
small, or zero, and this makes all the techniques based on the back EMF unsuccessful [25,26]. Besides,
the main problems of the approach are disturbance impacts in currents and voltages. Furthermore,
the variation in inductance parameters due to some main characteristics of the linear motor, such as
end effect, may result in considerable estimation error. On the other hand, almost PLMs are packed
with at least one position sensor, and Figure 2 describes the typical control scheme of PLM. However,
when the sensors are affected by measurement noise, velocity is not obtained accurately by taking
derivatives respect to specific interval time.

Figure 1. Structure of polysolenoid linear motor provided by [7,27].

Inspired by the above observations, this paper addresses tracking problems of Polysolenoid Linear
Motor under unknown load disturbance effect. In the light of novel observer-based control approach,
our research covers a realistic problem arsing when the velocity of PLM can not be measured by using
directly position sensor can not be calculated by using data from position sensor. To summarize, our
contributions can be highlighted as

• A novel velocity observer has been proposed such that the observer errors exponentially converge
by utilizing the available position sensors attached in PLM. To be specific, based on Lyapunov
theorem, the exponential convergence of observer errors has been proofed in a rigorous way.
Furthermore, conditions for selecting parameters of the observer are provided as well as delay
rate of the observer errors.

• From the observer, a position-velocity and current controllers are designed by Lyapunov direct
method. Accordingly, the position or velocity tracking error converge to small arbitrary values by
adjusting control parameters.

This paper is organized as follows. Section 2 establishes main problems and a mathematical
model of the PLM in d− q axis. In Section 3, a novel velocity observer is proposed, and asymptotic
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convergence of observer errors are proofed. Section 4 mainly describes position-velocity and current
controller design. Section 5 illustrates the simulation results for verification of the proposed method.
Finally, conclusions are summarized in Section 6.

Figure 2. Typical control scheme of polysolenoid linear motor.

2. Problem Statement

As mentioned above, the PLM has two separated windings a, b and is supplied by two AC voltage
sources as follow

ua(t) = U cos(ωt), ub = U sin(ωt). (1)

Further, angular electrical position of PLMs inducing in the windings has the relationship with
the primary position, and electrical angular frequency can be expressed as

θ(t) =
npπ

τ
x(t), ω(t) =

npπ

τ
v(t). (2)

By neglecting the friction terms in mechanical equation, let us take into account dynamic model
of Polysolenoid Linear Motor (PLM) in d− q frame given in as follow

dx
dt

= v(t), (3)

dv
dt

=
2πψp

mτp
iq(t)−

1
m

f`(t)−
1
m

fm(t), (4)

did
dt

= −Rs

L
id(t) +

(
2π

τp
v(t)

)
iq(t) +

1
L

ud(t), (5)

diq
dt

= −Rs

L
iq(t)−

(
2π

τp
v(t)

)
id(t)−

(
2π

τp
v(t)

)
ψp

L
+

1
L

uq(t), (6)

where τp = τ
np

, id(t), iq(t) are the direct and quadrature stator current; v(t), x(t) denote linear velocity
and position of rotor; Rs, L represent for phase resistance, and stator inductances; ψp, m stand for the
flux of the permanent magnet and mass of slider (rotor), respectively. The inputs of system are the
direct and quadrature voltage which are denoted as ud(t), uq(t). Additionally, f`(t) is disturbance load
and fm(t) represents for a combination of detent force (including cogging and ending force [28]) and
the force generated by inductance fluctuation [29].

In what follows, let xr(t), vr(t), respectively, are stator’s desired position and velocity of the PLM.
This note aims to design a position-velocity controller, by which the actual position and velocity can
track these references with small errors. It should be noted that the PLM in industrial applications
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often does not include a velocity sensor. Unlike rotor rotation motors where velocity sensors can
be easily employed by attaching in rotor shape, the velocity sensor equipment for PLM increases
enormous additional cost, and it is difficulties in installing and restricted by environmental factors like
temperature, humidity and vibration as well. Therefore, the paper develops a novel velocity observer
that utilizes the available position sensors in PLM to estimate velocity. Furthermore, the proposed
controllers also guarantee robust performance in the presence of unknown disturbance load variations.
In views of control performance, the rotor angular position must track a reference trajectory xr(t).
Additionally, to avoid reluctance effects and force ripple, id(t) should track a constant direct current
reference idr(t) = 0. The following sections present the observer and controller synthesis for position
tracking of PLM.

3. Observer Design

To cover more realistic situations in industrial applications, we provide a velocity observer to deal
with the velocity sensorless problem. For simplicity’s sake, let f (t) = 1

m f`(t) + 1
m fm(t). In this paper,

we deal with the continuous disturbance f (t) such that

| f (t)| ≤ F, | ḟ (t)| ≤ δF, (7)

in which F and δF are given positive constants. Let us provide the following observer as

˙̂x(t) = v̂(t) + h1
(

x(t)− x̂(t)
)
,

˙̂v(t) =
2πψp

mτp
iq(t) + h2

(
x(t)− x̂(t)

)
+ Ksign

(
x(t)− x̂(t)

)
,

(8)

where h1, h2, K are real positive constants. By denoting x̃(t) = x(t) − x̂(t) and ṽ(t) = v(t) − v̂(t),
the dynamics of observer errors are given by the combination of (3), (4) and (8):

˙̃x(t) = −h1 x̃(t) + ṽ(t),
˙̃v(t) = −h2 x̃(t)− Ksign

(
x̃(t)

)
− f (t).

(9)

Theorem 1. For a given α > 0, let K, h1, h2 are positive constants satisfying[
h1h2 0

0 h1

]
≥ 2α

[
h2 +

1
2 h2

1
1
2 h1

1
2 h1 1

]
, (10)

Kh1

2
− h1F

2
− δF ≥ 2α(K + F). (11)

Then, the system (9) is exponentially stable. Furthermore, there exist β1, β2 > 0 such that

|x̃(t)| < β1e−αt, |−h1 x̃(t) + ṽ(t)| < β2e−αt. (12)

Proof of Theorem 1. Letting η1(t) = x̃(t), η2(t) = −h1 x̃(t) + ṽ(t) and η(t) = [η1(t), η2(t)]T , then (9)
can be rewritten as

η̇1(t) = η2(t),

η̇2(t) = −h1 ˙̃x(t) + ˙̃v(t)

= −h1η2(t)− h2η1(t)− Ksign
(
η1(t)

)
− f (t).

(13)
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Consider the following function

Vo(t, η(t)) =
1
2

η2(t)2 +

(
h2

2
+

h2
1

4

)
η1(t)2 + K|η1(t)|+ f (t)η1(t) +

h1

2
η1(t)η2(t). (14)

From the fact that K > F, we have K|η1(t)| >
∣∣ f (t)η1(t)

∣∣. Then, Vo(t, η(t)) is a positive real
function, and especially it has Vo(t, 0) = 0, Vo(t, η(t)) > 0 ∀η(t) 6= 0, and Vo(t, η(t)) → ∞ as
||η(t)|| → ∞. Hence, the time derivative of the Lyapunov function (14) along the solution of (13) is
given by

V̇o(t, η(t)) = η2(t)η̇2(t) +

(
h2 +

h2
1

2

)
η1(t)η2(t) + Kη2(t)sign

(
η1(t)

)
+ f (t)η2(t) + ḟ (t)η1(t)

+
h1

2
η2(t)2 +

h1

2
η1(t)η̇2(t)

= −h1

2
η2(t)2 + ḟ (t)η1(t) +

h1

2
η1(t)

(
− h2η1(t)− Ksign

(
η1(t)

)
− f (t)

)
= −h1

2
η2(t)2 − h1h2

2
η1(t)2 + η1(t)

(
− Kh1

2
sign

(
η1(t)

)
− h1

2
f (t) + ḟ (t)

)
. (15)

Recalling K in Lemma 1 and (7), it is worth remarking that

Kh1

2
>

h1F
2

+ δF >

∣∣∣∣h1

2
f (t)− ḟ (t)

∣∣∣∣ . (16)

Using the fact that η1(t)sign(η1(t)) = |η1(t)|, and multiplying both sides of (1) by |η1(t)| leads to

Kh1

2
η1(t)sign(η1(t)) ≥

(
h1F

2
+ δF

)
|η1(t)| ≥

∣∣∣∣η1(t)
(

h1

2
f (t)− ḟ (t)

)∣∣∣∣.
As a result,

η1(t)
(

Kh1

2
sign(η1(t))−

h1

2
f (t) + ḟ (t)

)
≥ Kh1

2
|η1(t)| −

∣∣∣∣η1(t)
(

h1

2
f (t)− ḟ (t)

)∣∣∣∣
≥ Kh1

2
|η1(t)| −

(
h1F

2
+ δF

)
|η1(t)|.

Therefore, from (15), it follows that

V̇o(t, η(t)) ≤ −h1

2
η2(t)2 − h1h2

2
η1(t)2 −

(Kh1

2
− h1F

2
− δF

)
|η1(t)|. (17)

On the other hand, it can be derived from (14) that

Vo(t, η(t)) ≤ 1
2

ηT(t)

[
h2 +

1
2 h2

1
1
2 h1

1
2 h1 1

]
η(t) + (K + F)|η1(t)|. (18)

As the result, from condition (10) and (11), it derived that V̇o(t, η(t)) ≤ −2αVo(t, η(t)). By using
comparison lemma in ([30], Lemma 3.4), we obtain

Vo(t, η(t)) ≤ Vo(0, η(0))e−2αt. (19)

Accordingly, η1(t) and η2(t) exponentially converge. Further, exist β1, β2 > 0 such that η2
1(t) <

β2
1Vo(t, η(t)), η2

2(t) < β2
2Vo(t, η(t)). Intuitively, the proof of Lemma 1 is completed.
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Remark 1. In the case the load disturbance F`(t) is excluded (F`(t) ≡ 0), the switching term in (8) can be
removed. In this case, the observer (8) can be reduced as high-gain observer founded in [31]. Hence, our proposed
observer can be considered as an extension of high-gain observer to handle the influence of disturbance.

4. Controller Design

In the view of control strategy, the dynamic model (3)–(6) can be separated into two subsystems
named as position-velocity and current subsystem. It worth noting that the current subsystem
possesses much faster dynamics than that of the position-velocity subsystem. By taking cascade
control into account, our method establishes an inner and outer control loop corresponding to the
current and position-velocity subsystem.

4.1. Position-Velocity Subsystem

As a convenience, we denote desired velocity and acceleration corresponding to vr(t) = ẋr(t),
ar(t) = v̇r(t). Additionally, the following notations are applied

σ =
2πψ

mτp
, ex(t) = x(t)− xr(t), ev(t) = v(t)− vr(t), êv(t) = v̂(t)− vr(t), (20)

to rewrite position-velocity subsystem in (3)–(4) as

ėx(t) = ev(t),

ėv(t) = σi∗q − ar(t)− f (t),
(21)

where the notation “i∗q ” indicates the desired quadrature current which is entrusted to current control
loop. In this paper, we assume iq(t) simultaneously track i∗q . According, i∗q replaces iq(t) in (21).
The following theorem provides a controller for

Theorem 2. Let us consider

i∗q =
1
σ

(
ar(t)− Kxex(t)− Kv êv(t)

)
, (22)

where Kx, Kv are real positive constants. Then, the system (21) is stable, and ex(t), ev(t) converge to a arbitrary
small values by choosing large enough control parameters Kx, Kv.

Proof of Theorem 2. Recalling notations in (20), it is obtained that êv(t) = ev(t)− ṽ(t). Then, (21) can
be rearranged as

ėx(t) = ev(t),

ėv(t) = −Kxex(t)− Kvev(t) + Kvṽ(t)− f (t).
(23)

To analyse stability and control performance of the proposed controller, a Lyapunov function can
be chosen from (14) as follows

Vx(t) =
1
2
(Kx + Kv)e2

x(t) +
1
2

e2
v(t) + ex(t)ev(t) + Vo(t). (24)

From (23), the time derivative of Vx(t) is given by

V̇x(t) = (Kx + Kv)ex(t)ev(t) + ev(t)ėv(t) + e2
v(t) + ex(t)ėv(t) + V̇o(t)

= −Kxe2
x(t)− (Kv − 1)e2

v(t) + Kvṽ(t)
(
ex(t) + ev(t)

)
− f (t)

(
ex(t) + ev(t)

)
+ V̇o(t). (25)
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As mentioned in (17), it is clear that V̇o(t) ≤ − h1
8 (h1η1(t) + η2(t))2 = − h1

8 ṽ2(t). By using the
following inequalities

∣∣ṽ(t)(ex(t) + ev(t)
)∣∣ ≤ εxe2

x(t) + εve2
v(t) +

( 1
4εx

+
1

4εv

)
ṽ2(t),

∣∣ f (t)(ex(t) + ev(t)
)∣∣ ≤ F2

2ε f
+ ε f

(
e2

x(t) + e2
v(t)

)
,

where εx, εv, ε f > 0, it can be derived from (25) that

V̇x(t) ≤ −(Kx − εx − ε f )e2
x(t)− (Kv − εv − ε f − 1)e2

v(t)−
(

h1

8
− 1

4εx
− 1

4εv

)
ṽ2(t) +

F2

2ε f
. (26)

Accordingly, by letting

Kx − εx − ε f = 1, (27)

Kv − εv − ε f − 1 = 1, (28)

h1

8
− 1

4εx
− 1

4εv
> 0, (29)

V̇x(t) < 0 for all
(
ev(t), ex(t)

)
/∈ E ,

{
(ex, ev) ∈ R2 : e2

x + e2
v ≤ F2

2ε f

}
. As a result, (ev(t), ex(t))

converges to E in finite time. By choosing ε f large enough, the region E can be arbitrary small.
Obviously, the proof of Theorem 2 is completed.

4.2. Current Subsystem

In this part, due to much faster dynamics of current loop control, the desired quadrature current
i∗q can be considered as a constant in current control process. Further, fluctuations in inductance due to
end-effect phenomenon can be ignored. In what follows, let us denote

eiq(t) = iq(t)− i∗q , eid(t) = id(t)− idr(t). (30)

For the current subsystem, let us consider controllers which are a combination of PI controller
and decoupler based on the observed velocity as

ud(t) = Rsi∗d − Kdeid(t)− Kid

∫ t

0
eid(τ)dτ − 2πL

τp
iq(t)v̂(t), (31)

uq(t) = Rsi∗q − Kqeiq(t)− Kip

∫ t

0
eiq(τ)dτ +

(
2πL
τp

id(t) +
2πψp

τp

)
v̂(t). (32)

where Kd, Kp, Kid, Kiq are positive constants. As a result, the closed-loop of current subsystem is derived

ėid(t) = −
Kd + Rs

L
eid(t)−

Kid
L

∫ t

0
eid(τ)dτ +

2π

τp
iq(t)ṽ(t), (33)

ėiq(t) = −
Kq + Rs

L
eiq(t)−

Kiq

L

∫ t

0
eiq(τ)dτ −

(
2π

τp
id(t) +

2πψp

τpL

)
ṽ(t). (34)

In the same manner as subsection 4.1, by using the following Lyapunov candidate function

VI(t) = Vo(t) +
1
2

e2
id(t) +

1
2

e2
iq(t) +

Kid
2L

( ∫ t

0
eid(τ)dτ

)2

+
Kiq

2L

( ∫ t

0
eiq(τ)dτ

)2

, (35)
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we can point out that current tracking errors converge to zero. It should be noted that the current
control parameters Kd, Kid, Kq, Kiq are chosen such that the time response of current control loop is
considerably smaller than that of position-velocity loop. For further theoretical studies, we can apply
the backstepping technique provided by [32] to analyze the stability of the whole system, and the work
in [33] can be used to design an observer in the presence of nonlinear uncertainties. Finally, the overall
control scheme are shown in Figure 3.

Figure 3. The proposed control scheme of polysolenoid linear motor.

5. Numerical Simulation

The Polysolenoid Linear Motor’s parameters use in this simulation are listed in Table 1.
The parameters are selected from LinMot industrial PLM (P01-23x80/80x140). This motor is packed
with two position sensors which release sin(θ) and cos(θ) for flux oriented control (FOC). To verify the
effectiveness of the proposed method, the simulation includes two scenarios. The first one demonstrates
the performance of the proposed controllers and observer in the case where measurement noises are
excluded. While the other one focuses on the impacts of measurement noise in the position feedback
signal. Both of them share the same controller, observer, and disturbance load.

Table 1. Parameters of the Polysolenoid Linear Motor (PLM).

Parameter Notation Value Unit

Phase resistance Rs 10.3 ohm
Slider (rotor) mass m 0.171 kg
Phase inductance La, Lb 1.4 mH

Pairs of poles np 1
Pole pitch τ 10 mm

Flux ψp 0.035 Wb

MATLAB/Simulink models of the observer-based tracking control for PLM drive system are
built with sampling time 10−5 s. The disturbance load used in the simulations is chosen as: f`(t) =
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3 + 16
π sin(20t) + 16

3π sin(60t) + 16
5π sin(100t). Practically, it should be noted that fm(t) is very small in

comparison with f`(t). As a result, we select F = 60, δF = 2000. From (10) and (11), parameters of
observer (8) are give by K = 100, h1 = 103, h2 = 2.104, α = 30, γ = 0.1. In addition, (27), (28) and (29)
result in the position and current controller parameters: Kp = 105, Kv = 2.103, Kd = Kp = 10, Kid =

Kiq = 104.

5.1. Simulation Results in Case of None Measurement Noise

In this scenario, we assume that the position sensor is accurate, the initial observer errors are
selected as x̃(0) = 0 and ṽ(0) = 0.1. As can be seen in Figure 4, position, and velocity of PLM track the
reference signals. Besides, there are fluctuations in position and velocity error in Figure 4c,d due to the
transition of observer error. According to Figure 5c, despite the disturbance load shown in Figure 5d,
the observer error still converges to zero in approximately in 0.1 s. During this interval, the motor does
not move, which shows our advantage in velocity observer in comparison with other techniques based
on EMF. Therefore, the statement in Theorem 1 is verified. Further, the position can be maintained
under the impact of disturbance load. The Figure 5c shows that iq(t) tracks the reference signal i∗q by
current controllers in Section 4.2. The simulated results verify that the PLM observer-based control
system under the disturbance load has a high precision and response position.

Figure 4. Time response of (a) position tracking; (b) velocity tracking; (c) position error; (d) velocity
error.
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Figure 5. Time behavior of (a) quadrature current; (b) quadrature voltage; (c) velocity observer error;
(d) disturbance load.

5.2. Simulation Results in Presence of Measurement Noise

To verify our algorithm, we assume that the position feedback signal is affected by measurement
noise as following

xmeas(t) = x(t) + n(t) (36)

where xmeas(t) is the position feedback signal and n(t) is a white noise process. In this case,
the conventional approaches based on measurement of speed using a position sensor fails to estimate
the actual velocity. Due to the measurement noise, the initial observer position x̂(0) can not match
to initial actual position x(0). Accordingly, observer errors are selected as x̃(0) = 5.10−3, ṽ(0) = 0.1
in the simulation. Figure 6a shows the measurement and actual position. With this measurement
signal, the conventional approach which uses low-pass filter and derivatives can not estimated velocity.
Overall, our control method still has merits in position tracking control, as presented in Figure 6c,d.
As can be seen in Figure 7c,d, the observer errors remain small values after 0.1 s.
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Figure 6. Effects of noise measurement in time response of (a) position tracking; (b) velocity tracking;
(c) position error; (d) velocity error.

Figure 7. Effects of noise measurement in time behavior of (a) quadrature current, (b) quadrature
voltage, (c) velocity observer error and (d) position observer error.

6. Conclusions

This paper has addressed tracking control problems of PLM with velocity sensorless and unknown
disturbance force. The key success in our approach has laid on a novel observer, which guarantees
asymptotic convergence of the observer errors. Further, the observer can provide estate estimation
in the presence of unknown disturbance, and also deal with measurement noises. In cooperation



Actuators 2020, 9, 23 12 of 13

with observed velocity, the position-velocity and current tracking controllers have been designed by
using the Lyapunov direct method, such that the tracking error converges to arbitrarily small values
by adjusting control parameters. Accordingly, the stability analysis has been presented religiously
to enhance the reliability of our results. As a result, this study has possibly proposed a method to
overcomes some drawbacks of existed studies on velocity-sensorless control. Our future works will
focus on a problem of lack of current sensors, with the aim of no further sensor required in the control
of PLM.
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