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Abstract: Piezoelectric unimorph deformable mirrors offer a cheap solution to adaptive optics,
with mass production capability. However, standard solutions have significant drawbacks:
(i) the static shape is sensitive to the temperature, and (ii) the low structural damping limits the
control bandwidth, because of the interaction between the shape control and the vibration modes
of the mirror. This paper discusses how these two problems may be alleviated by using a mirror
covered with an array of actuators working in d31 mode on the back side and a ring of transducers
(actuators and sensors) on the front side, outside the pupil of the mirror.

Keywords: piezoelectric; unimorph; bimorph; deformable mirror; adaptive optics; thermal control;
active damping; modal filters

1. Introduction

The variation of the speed of light due to the random variation of the refraction index in the Earth’s
atmosphere distorts the wavefront of incoming plane waves of distant stars; this phenomenon, called
atmospheric turbulence, limits the resolution of Earth-based telescopes and has been used to promote
space astronomy. This limit resolution (called seeing) is given by λ/r0, where λ is the wavelength and
r0 is the Fried length, the maximum size of a diffraction-limited telescope for a given site (r0 depends
on the wavelength, r0 = 10–20 cm for λ = 0.55 µm and r0 = 53–106 cm for λ = 2.2 µm) [1]. Adaptive
optics (AO) allows improving the resolution of the telescopes by correcting the wavefront error by
means of a deformable mirror (DM); if the latter has enough independent actuators with adequate
stroke to accommodate complex shapes and enough bandwidth to handle the rapid variations of
the wavefront error, the resolution may be extended to the diffraction limit λ/D, where D is the
telescope aperture (i.e., the diameter of the primary mirror). Comparing D and r0 gives an idea of
the huge benefit of AO for astronomy. There are AO mirrors of all sizes, but a minimum size is
generally required by the field of view of the telescope; the typical DM diameter for a few hundred
actuators is 150–200 mm [2]; the European Southern Observatory’s (ESO) future Extremely Large
Telescope (ELT) will have an AO mirror of 2.5 m with 5800 actuators [3]. As the size of the mirror
grows, the natural frequencies of the vibration modes drop and the vibration modes tend to be excited
by the control system, limiting the control bandwidth fc to a fraction of the natural frequency f1 of the
lowest vibration mode. Typical values of f1/ fc depend on the structural damping of the DM.

In a recent paper [4], the passive and active damping augmentation of piezoelectric DMs was
investigated. The passive damping was achieved by providing the front side of the DM, outside
the pupil, with a ring of piezoelectric ceramic (PZT) [5] used simultaneously to reduce the thermal
sensitivity of the mirror and to provide passive shunt damping of the critical mode at f1 by connecting
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it to an appropriate, properly tuned R–L circuit [6]. Alternatively, a strategy for active damping
was also proposed, where the wavefront sensor array, a Shack–Hartmann (SH) in this case, and the
shape control actuators (the PZT array on the back of the DM) are used to construct modal filters
and introduce active damping in the critical mode(s). There were two difficulties: (i) the wavefront
sensor has a limited bandwidth because of the time needed for data acquisition (typically 1000 Hz
or at most 2000 Hz for an SH), which can lead to time aliasing of some vibration modes, and (ii) the
wavefront sensor covers only part of the mirror (the pupil), which leads to a possible confusion in the
mode shapes. In this study, it is proposed to partition the ring actuator on the front side of the mirror
in such a way that the confusion between mode shapes mentioned above is eliminated, leading to
a better modal reconstruction. Furthermore, this configuration allows a full (active) thermal control of
the mirror.

2. Baseline Configuration

The configuration considered in [4] is represented in Figure 1; it consists of a 1 mm thick SiC
substrate of 216 mm diameter, simply supported on its edges, covered on its back by an array of
127 PZT actuators of 200 µm, with honeycomb electrodes. The pupil has a diameter of 100 mm, and the
SH sensor consists of a square array of 17 × 17 lenslets (225 activated). The front side of the mirror is
provided with a ring of PZT material outside the pupil. The telescope aperture is assumed to have
an aperture D = 5 m, the Fried length r0 = 79 cm (defined at λ = 2.2µm for a seeing of 0.57 arcsec),
and the wind speed V = 10 m/s.
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Figure 1. Adaptive optics (AO) mirror baseline configuration used in the simulations. The left side
shows the piezoelectric ceramic (PZT) actuator array with honeycomb electrodes, and the right side
shows the square lenslet array of the Shack–Hartmann (SH) sensor and the ring of PZT material used
for inductive shunt damping [4].

The static relationship between the 127 input voltages v and the SH output signals s is

s = Jv. (1)

The Jacobian J is a rectangular matrix that describes the quasi-static behavior of the mirror,
at frequencies such that f � f1; the pseudo-inverse J† may be computed by singular value
decomposition (SVD). If J = UΣVT ,
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v = J†s with J† = VΣ†UT . (2)

In order to alleviate the ill-conditioning associated with the lowest singular values, which is
responsible for unnecessarily large control voltages without any benefit to the fitting error, a Tikhonov
regularization may be used; the pseudo-inverse reads

J† = (JT J + α2 I)−1 JT , (3)

where α2 is a tuning parameter (α has the same dimension as the elements of J); this method is often
called damped least squares [7]. Figure 2 shows the result of a simulation performed with randomly
generated turbulent screens. It shows the evolution of the voltage range ∆V and the root mean square
(RMS) residual surface figure error as a function of the damping coefficient α for a typical turbulent
screen; one sees that a value of α = 10−8 reduces considerably the voltage range without significantly
increasing the residual wavefront error. Note that the deformable mirror will introduce a modification
of the wavefront twice that of the deformed mirror within the pupil.
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Figure 2. L-curve for the damped least squares: Voltage range ∆V vs. root mean square (RMS) residual
surface figure error for various values of the damping coefficient α.

The control system is based on the assumption that the DM behaves in a quasi-static manner.
The block diagram is represented in Figure 3; the disturbance d consists of a frozen Kolmogorov
turbulent screen transported by the wind. The performance is measured by the residual phase
variance error and its Zernike expansion. The feedback loop consists of an SVD compensator
K(s) = VH(s)Σ†UT , where H(s) provides an adequate disturbance rejection and stability margin.
H(s) may be a scalar function if the same loop shaping is applied to all the SVD modes, as in this study
(Figure 4).
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Figure 3. Block diagram of the control system. The input–output relationship is s = Jv.
The feedback loop consists of the singular value decomposition (SVD) controller K(s) = VH(s)Σ†UT .
The disturbance d consists of a frozen Kolmogorov turbulent screen transported by the wind.
The performance is measured by the Zernike expansion of the residual error; σ2 is the phase
variance error.
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Figure 4. Compensator H(s), normalized to fc = 10 Hz. It consists of an integrator, a lag filter, a lead
filter, and a Butterworth second-order filter; the position of the poles and zeros are indicated on the
Bode plots (left). The bandwidth may be adjusted by translating the Bode plots along the frequency
axis until the proper crossover frequency fc is reached. This leaves the Nichols plot (right) unchanged.

In reality, however, the deformable mirror does not behave quasi-statically but dynamically.
The control approach is legitimate if the crossover frequency of the compensator is very small compared
to the resonance frequency of the DM, fc � f1.

However, as the control bandwidth increases, the dynamic part of the mirror response will become
more significant and will interfere with the controller, especially if the structural damping is low. This is
illustrated in Figure 5, which shows the evolution with the control bandwidth (measured here by the
crossover frequency fc) of the normalized phase variance residual error when the tip-tilt is removed,
for various values of the structural damping ξ. The open-loop residual error is σ2 = 0.134(D/r0)

5/3;
the curves were obtained with a time-history analysis including the SH sensor and a dynamic model
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of the mirror; the compensator is that of Figure 4. The phase variance corresponding to a quasi-static
response is shown in dashed lines. For low values of the crossover frequency fc, the results of the
dynamic and the quasi-static analyses are identical, but when fc increases, the dynamic response of
the mirror tends to deteriorate the phase error because of the contribution of the flexible modes of the
mirror; for larger values of fc, the system becomes unstable. One sees that the phase error deterioration
occurs for values of fc much below the first resonance of the mirror, f1 = 208.9 Hz in this case, and that
it depends strongly on the structural damping ξ of the mirror.
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Figure 5. Normalized phase variance residual error, σ2(D/r0)
−5/3 (with tip-tilt removed) when the

SH and the dynamics of the mirror are included in the analysis, as a function of the crossover frequency
fc of the controller of Figure 4. The deterioration of the performance for larger fc is highly dependent
on the structural damping ξ. The first natural frequency of the mirror is f1 = 208.9 Hz.

3. Thermal Deformations, Tip-Tilt Control

Because of the difference in the coefficient of thermal expansion (CTE) between the substrate
(SiC in this case) and the PZT layer (Table 1), unimorph DMs are thermally unbalanced; the situation is
improved when the outer ring is added on the front side of the mirror, as illustrated in Figure 6 for
a temperature variation of ∆T = 15 K; one sees that the piston term is strongly reduced, but significant
deformations remain in the pupil.

Table 1. Material data used in the simulations

SiC PZT

Young’s modulus Y [GPa] 476 62
Density ρ [kg/m3] 3210 7800

Poisson’s ratio ν [/] 0.19 0.34
Coefficient of thermal expansion CTE [×10−6/K] 5.12 4

Max. electric field [V/m] - 2× 106

Piezoelectric constant d31 [pC/N] - −180

However, one can use the PZT ring on the front side to compensate the thermal deformations
actively; to this end, it is partitioned into 6 sectors (Figure 7a), and each sector has two electrodes,
a large one used as actuator for thermal balance and a small one used as a sensor for mode detection,
as discussed later in the paper. Only the large electrode is concerned with the active thermal control.
Figure 7b shows the residual surface figure error in the pupil when a voltage of Vring = 33.6 V is
applied to the 6 ring actuators (all finite element modeling of piezoelectric plates was done in the
software SAMCEF [8]). It can be further reduced if the honeycomb electrodes in the central part of the
back side are also used for thermal control (Figure 7c). If the front-side ring actuators are introduced
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in the Jacobian J, the thermal control is integrated with atmospheric turbulence in the shape control
(Figure 3). In Figure 7c, the residual surface figure error consists of an array of dimples; their amplitude
is related to the gap between the electrodes [9].

Without top-layer ring (PZT) With top-layer ring (PZT)

Full: peak-to-valley (PV) = 8.3 µm
Pupil: PV = 2.5 µm

Full: PV = 2.9 µm
Pupil: PV = 1.5 µm

Figure 6. Thermal deformations induced in the mirror by ∆T = 15 K; the substrate is SiC. Left: without
PZT ring on the front side. Right: with PZT ring (200 µm).

Thermal
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Mode
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Figure 7. Active compensation of thermal deformations. (a) Design configuration showing the outer
ring divided into 6 sectors with two electrodes each: A larger one is used as actuator for thermal control,
and a smaller one is used as curvature sensor for mode detection for active damping. (b) Residual
surface figure error in the pupil when the 6 ring actuators are used. (c) Residual surface figure error in
the pupil when using the honeycomb and the 6 ring actuators for thermal control.

3.1. Control Authority

In addition to allowing a precise thermal control of the mirror, the front-side actuators bring
additional authority to the control of the low-order Zernike modes, as illustrated in Figure 8 and
Table 2, which compare the situation where the optical modes are controlled with the honeycomb
actuators in the central part alone with that where the central actuators are used jointly with the
front-side ring actuators. The voltage range is defined as ∆V = Vmax − Vmin to produce the optical
mode with a peak-to-valley (PV) displacement of 1 µm; all calculations are done with damped least
squares with a damping coefficient α = 10−8.
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Table 2. Comparison of the control authority for the low-order Zernike modes with a PV amplitude of
1 µm. ∆V = Vmax −Vmin. Left: The central actuators on the back are used alone. Right: They are used
jointly with the ring actuators on the front side.

Without Front-Side Ring PZT With Front-Side Ring PZT

∆V [V] Err. RMS [nm] ∆V [V] Err. RMS [nm]

Z2 Tilt X 24.6 2.1 9.4 0.26
Z3 Tilt Y 26.8 2.04 10.9 0.25

Z4 Defocus 35.5 6.9 14.1 2.7
Z5 Astigmatism (O) 43.9 3.9 20.6 1.2
Z6 Astigmatism (V) 41.3 4.0 18.1 1.2

Z7 Coma (V) 61.6 9.0 35.1 4.0
Z8 Coma (H) 58.2 9.0 39.3 4.1
Z9 Trefoil (V) 66.5 6.4 32.1 0.6

Z10 Trefoil (O) 49.9 5.8 49.5 5.8

Z11 Spher. Aber. 105.1 35.3 73.0 23.5
Z12 Sec. Astig. (V) 73.7 19.2 54.7 11.2
Z13 Sec. Astig. (O) 76.9 18.9 49.0 11.1

Z14 Tetrafoil (V) 82.7 9.2 77.5 8.5
Z15 Tetrafoil (O) 83.8 9.2 69.8 8.5

20
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Astigmatism

PV = 1µm

Target shape
Tilt X
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10

-10

0

[V]
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Figure 8. Comparison of the control voltages necessary to achieve a PV = 1 µm in the
pupil. Left: honeycomb actuators alone. Right: honeycomb + front ring actuators. Top: X-Tilt.
Bottom: Z5 astigmatism. The voltage ranges and the RMS residual errors are reported in Table 2.
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3.2. Tip-Tilt Control

The one-axis tilt angle variance is given by [1]

θ2 = 0.182(D/r0)
5/3(λ/D)2, (4)

with the assumed values of D = 5 m, r0 = 79 cm, and λ = 2.2µm, θ = 8.75× 10−7 rad. It follows that
the RMS value of the deformable mirror is

θDM =
θ

2
D

Dpupil
= 2.19× 10−5rad, (5)

where Dpupil = 0.1 m is the pupil diameter of the AO mirror. This leads to a peak-to-valley amplitude
of 2.19 µm. Referring to Table 2 and Figure 8 showing the voltage map needed to achieve a PV of 1 µm,
one sees that this amplitude is well within the capability of the AO mirror when the front-side ring
actuator is used, reducing the need for a dedicated tip-tilt mirror.

4. Active Damping

Figure 9 shows the vibration mode shapes and natural frequencies of the AO mirror of Figure 1;
the low-frequency modes, if their damping is low, may interfere with the SVD controller and degrade
the image quality (Figure 5). A strategy for active damping has been proposed in [4], based on ideas
first proposed in [10]: The starting point is the dynamic input–output relationship between the input
voltages of the actuators and the output signals (the slopes) from the SH sensor:

s = G(s)v, G(s) = SΦ · diag[
1

s2 + 2ξiωis + ω2
i
]ΦTKa, (6)

where Ka stands for the matrix relating the input voltages to the equivalent piezoelectric forces acting
on the mirror [8,11], Φ is the matrix of mode shapes (normalized to a unit modal mass), and S is the
matrix relating the SH output to the deflection modes of the mirror. ωi are the resonance frequencies
and ξi the modal damping of the various vibration modes. The size of G(s) was (450 × 127) in [4];
with the addition of the ring actuators and sensors, it becomes (456 × 133). Note that with these
notations, the Jacobian reads

J = G(0) = SΦ · diag[
1

ω2
i
]ΦTKa. (7)

If Φ̂ is the set of modes whose amplitude must be reconstructed (a small number of low-frequency
modes), the matrices C = SΦ̂ and B = Φ̂TKa may be constructed (either numerically or experimentally).
The pseudo-inverses C† and B† may be computed (taking care of possible ill-conditioning—we will
return to this below); if s is the output vector of the SH sensor (not to be mistaken with the Laplace
variable s), the modal amplitudes of the reconstructed modes read

ẑ = C†s = (CTC)−1CT s. (8)

A set of damping filters may be introduced to provide the selected modes with the appropriate
active damping ξd

i :
D(s) = diag(2ξd

i ωis). (9)

Finally, the modal control is projected on the control electrodes by the matrix B†:

v = B†D(s)C† s, (10)

leading to the so-called HAC/LAC (high authority/low authority) control strategy of Figure 10.
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Mode 2
(600.7Hz)
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(600.7Hz)
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(1110.4Hz)
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(1110.4Hz)
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(208.9Hz)
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(1274.6Hz)
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(1724.5Hz)
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(1724.5Hz)

Mode 9
(2072.9Hz)

Mode 10
(2072.9Hz)

Figure 9. Vibration mode shapes and natural frequencies of the AO mirror. The pupil is represented in
dashed lines. Notice the possible confusion between mode 1 and mode 6 within the pupil, and similarly
between modes 2–3 and 9–10.
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Figure 10. High authority/Low authority (HAC/LAC) strategy for active damping of the mirror.
The shape control loop (HAC) is supplemented by a modal active damping (LAC) of the critical low
frequency modes.

Modal Sensor

Although orthogonal over the entire mirror, the vibration modes are not orthogonal within the
pupil, which covers only part of the mirror. Observing Figure 9, one sees that mode 1 and mode 6
have a very similar shape within the pupil, and similarly for modes 2 and 3 and modes 9 and 10.
This brings ill-conditioning in the C matrix of the SH sensor, which may lead to the response of mode
6 being mistaken with that of mode 1. In Figure 9, one further observes that outside the pupil, mode 1
and 6 have radial curvatures of opposite signs, and similarly for modes 2 and 3 and modes 9 and 10.
This suggests that this feature may be used to discriminate the modes and improve the conditioning
of C.

To this end, 6 piezoelectric sensors are added outside the pupil on the front side of the mirror
(in red in Figure 7a); because of their nearly rectangular shape, the sensor signal is nearly proportional
to the average curvature in the radial direction [11], that is, the difference of slopes between the outer
and the inner side of the sensor:

Q = gs

∫ b

a
z′′(r)dr = gs[z′(b)− z′(a)], (11)
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where the sensor gain gs depends on the material properties, the electrode width and the charge
amplifier gain. Figure 11 illustrates this situation for mode 1 and mode 6; one sees that the contribution
of the piezoelectric sensor will be positive for mode 1 and negative for mode 6, while the contributions
of the SH sensor will be similar.
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z' b( )Pupil
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Mode 1
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Local tilt within
a lenslet cell

Centroid location estimation

∆ = ∙∆x F θ

Charge-coupled
device (CCD) panel

Figure 11. Cross-section in the mirror illustrating the contribution of the piezoelectric sensor for mode 1
and mode 6. The sensor signal is Q = gs[z′(b)− z′(a)] and is positive for mode 1 and negative for
mode 6. The SH sensor produces similar signals in the central part of the mirror.

Of course, combining sensors of different natures requires proper scaling. If C1 refers to the SH
sensor (measuring the slopes within the pupil) and C2 refers to the 6 PZT sensors measuring the
average radial curvature outside the pupil, the C matrix becomes

C =

(
C1

wC2

)
, (12)

where w is the scaling factor. The condition number κ(CTC) = σmax/σmin of CTC = CT
1 C1 + w2CT

2 C2

is minimum when ‖ CT
1 C1 ‖2= w2 ‖ CT

2 C2 ‖2.
Figure 12 compares the condition number when the C matrix is based on the SH sensor alone

with that when it combines the SH and the curvature sensors. No reduction is observed for the first
5 modes because they differ significantly inside the pupil; starting from mode 6, the combined sensor
reduces the condition number by almost two orders of magnitude.

Figure 13 summarizes the open–loop modal input-output relationship for the LAC loop: The B†

matrix provides the scaling of the input voltages of the various electrodes in order to construct
the appropriate excitation of mode i, and the C† provides the modal filter to reconstruct the
modal amplitude.
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Figure 12. Condition number of κ(CTC) as a function of the reconstructed order of the modes, for the
SH sensor alone and the sensor combining the SH with 6 PZT radial curvature sensors outside the pupil.
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Figure 13. Block diagram of the modal input–output transfer function (illustrated for mode 1).

5. Conclusions

This paper proposes a simple and economical solution to manufacturing piezoelectric deformable
mirrors for adaptive optics. The idea relies on using a ring of PZT material outside the pupil on the
front side of the mirror; this ring is divided into sectors with two electrodes each, a large one used
as actuator for thermal and shape control and a small one used as a sensor in order to improve the
detection of the vibration modes in a modal filter. The proposed configuration has the following
important features:

• It allows a precise thermal control of the mirror (the thermal control is part of the shape control).
Simulations show a residual PV of 6.25 nm for a temperature difference of 15 K.

• It brings additional control authority on the low order Zernike modes, reducing the control budget
of the central actuators. The configuration has enough authority to provide full control of the
tip-tilt modes.

• It allows applying a bias voltage to the shape control actuators in order to exploit their full range
of actuation.

• The critical vibration modes that can deteriorate the image quality because of their low structural
damping may be damped actively with a minimum added complexity to the hardware and the
control system.

The example presented here uses a honeycomb layout of electrodes, but the approach applies to
any electrode layout (e.g., keystone layout).
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Abbreviations

The following abbreviations are used in this manuscript:

AO Adaptive optics
CTE Coefficient of thermal expansion
DM Deformable mirror
ELT Extremely Large Telescope
ESO European Southern Observatory
HAC High authority control
LAC Low authority control
PV Peak-to-valley
PZT Lead zirconate titanate
RMS Root mean square
SH Shack–Hartmann
SiC Silicon carbide
SVD Singular value decomposition
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