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Abstract: A novel discrete-valued model-predictive control (DVMPC) algorithm termed DVMPC2 for
the position control of pneumatic actuators using inexpensive on/off valves is presented. DVMPC2
includes a more flexible cost function, an improved prediction strategy, and other improvements.
The actuator is a double-acting cylinder with two on/off solenoid poppet valves connected to each
chamber. To reduce the switching frequency and prolong the valve life, DVMPC2 directly switches
the valves when necessary, instead of using relatively high-frequency pulse-width modulation.
Experimental comparisons are made with the state-of-the-art sliding-mode control (SMC) algorithm
and the previous DVMPC algorithm. The comparisons are based on the five performance metrics:
integral of time-weighted absolute error (ITAE), root mean square error (RMSE), overshoot (OS),
steady-state error (SSE), and valve switches per second (SPS). The robustness is evaluated by increasing
and decreasing the total mass of the moving components while keeping the controller parameters
constant. The experimental results show that the proposed algorithm is superior to the previous
DVMPC and outperformed SMC by a wide margin. Specifically, DVMPC2 reduced ITAE by 80%,
RMSE by 52%, OS by 43%, and SPS by 20% relative to SMC. There was no clear winner in terms
of SSE.

Keywords: pneumatic actuator; on/off solenoid valve; model-predictive control; position control;
position tracking

1. Introduction

Pneumatic actuators have the advantages of being low cost, clean, and providing a high power to
weight ratio. Improving the performance of their closed-loop position control is an area of ongoing
research. The biggest challenge of achieving fast and accurate position control of a pneumatic actuator
is dealing with its nonlinearity. A pneumatic actuator is highly nonlinear due to the compressibility of
the air, the nonlinearity of the mass flow rate, and the variation of the friction. A typical pneumatic
position control system (also known as a pneumatic servo system) includes a double-acting pneumatic
cylinder; one or more control valves; sensors; and the controller hardware and software. The valves are
typically either proportional valves or on/off solenoid valves. Although proportional valves have the
benefit of continuously variable orifice size, they are also much larger and more expensive than on/off

valves (e.g., US $40 vs. US $800). The cost-saving with on/off valves increases the number of potential
applications of pneumatic servo systems in robotics and automation. That is why our research focuses
on using on/off valves.
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On/off valves can be controlled using either pulse-width modulation (PWM), e.g., [1–4], or direct
switching, e.g., [5–12]. PWM has the advantage of approximating the desirable flow behavior of
a proportional valve. However, PWM requires the valves to be switched every PWM period unless
the duty cycle is either 0 or 100%. In contrast, systems employing direct switching only switch the
valves when it is necessary for the desired closed-loop performance. This reduced switching frequency
prolongs the valve life, leading to reduced repair and replacement costs.

This paper is focused on the position control of pneumatic actuators using directly switched
on/off valves for the reasons presented above. Previous papers have presented sliding-mode control
(SMC) [5–8] and nonlinear model-predictive control (NMPC) [9–12] algorithms for systems with
directly switched valves. In [5], a double-acting cylinder was controlled using four two-way on/off

solenoid valves (i.e., two valves per cylinder chamber) and a linear potentiometer for position feedback.
To avoid measuring the piston acceleration and chamber pressures, they designed a reduced-order
SMC algorithm requiring only position and velocity measurements. Their SMC algorithm directly
switched the valves based on the product of the sliding surface and the position error. They included
one experimental result. For a 120 mm step input, the steady-state error (SSE) was 1 mm. No payload
mass was used, and no robustness test results were reported. The SMC algorithm in [5] was extended
and enhanced in [6]. Their control algorithm directly switches the valves between three operating
modes based on the sign of the estimated derivative of a Lyapunov function. The three modes were:
(1) Charge 1st chamber and discharge 2nd chamber; (2) Discharge both chambers; and (3) Discharge
1st chamber and charge 2nd chamber. Their hardware consisted of a double-acting cylinder and two
three-way on/off solenoid valves (i.e., one valve per chamber). They included experimental results for
a 10 kg payload mass and 0.5 Hz to 3 Hz, 25 mm amplitude sinusoidal reference inputs. The tracking
errors were not reported but appear to be about 2 mm. They did not report any robustness results.
The SMC algorithm proposed in [7] was the first to consider the problem of excessive valve switching.
They use a double-acting cylinder with the same valve arrangement as in [5]. Three operating modes
were used. Their modes 1 and 2 were the same as modes 1 and 3 from [6]. However, their mode 3 closed
both cylinder chambers. This distinct 3rd mode was intended to save the energy of the compressed air
and to reduce the frequency of valve switching. They defined a 2nd order sliding surface. When the
dynamics were close to the sliding surface (i.e., within a dead band) the 3rd mode was employed.
Their experimental results demonstrated that this dead band had the benefit of reducing the valve
switching at the cost of larger errors. For a 2 kg payload and a 40 mm step input, the SSE was
0.1 mm, and the overshoot (OS) was less than 10 mm. A more sophisticated SMC algorithm with
seven operating modes was proposed in [8]. They used the same valve configuration as in [5] and [7].
The introduction of the four additional modes and two additional tuning parameters was shown to
improve both the tracking errors and valve switching frequency. For a 0.9 kg payload and 40 mm step
input the 7-mode controller reduced the positive OS from 18% to 1.9% compared with the 3-mode
controller from [7]. For the same payload and a multiple sine wave reference input the switching
frequency with the 7-mode controller was 48% less than with the 3-mode controller, while the tracking
errors were similar. Fewer researchers have investigated the use of NMPC to directly switch the valves.
The reason may be that the resulting optimization problem is an integer nonlinear program (INP)
since the operating modes are integers and the actuator’s dynamics are nonlinear. In general, solving
an INP is very difficult, and obtaining a solution in real-time (i.e., within one sampling period for
this application) cannot be guaranteed [13]. In [9], an NMPC algorithm was developed to control the
leg motion of a hopping robot. The actuator was a single rod double-acting cylinder, and the valve
configuration was the same as in [6]. The NMPC minimized a cost function consisting of the weighted
sum of the Euclidean norms of the deviations of the state vector and input vector from their equilibrium
values. A terminal equality constraint was included in the optimization formulation to ensure the
stability of the nominal system. They presented a sorted depth-first search (SDFS) algorithm to solve
the NMPC INP. According to their simulated hopping results, the average execution time of the SDFS
was less than 10% of the time required for an exhaustive search. They did not include any experimental



Actuators 2019, 8, 56 3 of 15

results. A different solution to the real-time computational difficulty of INP was presented in [10].
Their objective was to control the position of a spring-return pneumatic clutch actuator using two
two-way on/off solenoid valves. Three operating modes were used. The cost function was a weighted
sum of the squares of the predicted position errors and the squares of the predicted changes in the
modes. A constraint on the magnitude of the predicted error was included to ensure bounded-input,
bounded-output stability of the nominal system. They computed an explicit NMPC by solving the
optimization problem offline. This has the advantage of greatly simplifying the NMPC calculations
that must be performed online in real-time. However, even though the optimization computations
were done offline, they had to simplify the actuator’s dynamic model from 5th order to 3rd order
to reduce the computational burden. The NMPC performed well in simulation. No experimental
results were presented. An alternate solution for the INP’s real-time computation was proposed
in [11] and [12]. The pneumatic system consisted of a single rod double-acting cylinder and the same
valve configuration as in [6]. The cylinder rotated a single-link robot arm in the vertical plane using
a rack and pinion mechanism. The NMPC’s cost function equaled the sum of the squares of the
predicted position errors. The number of modes used over the prediction horizon was limited to four.
This allowed the NMPC computations to be computed by exhaustive search in real-time (specifically,
in less than 1 ms). No model simplification or lengthy offline computations were required. This NMPC
algorithm was termed discrete-valued model-predictive control (DVMPC).

The main contributions of this paper are the design and experimental verification of an improved
NMPC algorithm for the position control of pneumatic actuators using three operating modes with
four two-way on/off solenoid valves. We have limited the number of modes to three to allow the
new algorithm to be implemented in real-time using common hardware (i.e., a standard PC). We will
refer to the algorithm from [12], modified for the 3-mode case, as DVMPC1 and the new algorithm
as DVMPC2. The performance of DVMPC2 will be compared to both DVMPC1 and the 3-mode
SMC algorithm from [7], abbreviated here as SMC3. SMC3 is the state-of-the-art 3-mode controller
in the literature. All three controllers have parameters that require tuning in order to achieve the
desired performance. To make the comparison of the controllers fair, the parameters will be tuned by
optimization. The organization of the paper is as follows. In Section 2, the system design is described,
and its model is derived. The SMC3, DVMPC1, and DVMPC2 control algorithms are presented in
Section 3. The controller parameter optimization strategy and results are given in Section 4. The test
bed and experimental results are presented in Section 5. Finally, conclusions are drawn in Section 6.

2. System Design and Modeling

2.1. System Design

A schematic diagram of the pneumatic and electrical components of the position-controlled
pneumatic actuator is presented in Figure 1. The double-acting cylinder can be rodded or rodless (as
shown). The four two-way on/off solenoid poppet valves (labelled V1 to V4) allow the charging and
discharging of the cylinder chambers, A and B, to be controlled independently. The piston position is
measured by a linear incremental encoder. Two pressure sensors are used to measure the chamber
pressures. The sensor and control signals are interfaced with a PC through a data acquisition card.
With four on/off valves, the maximum number of operating modes is 16. In this work, we limit the
modes to the set:

(ψ, v1, v2, v3, v4) ∈

{
(1, on, off, off, on), (2, off, on, on, off),
(3, off, off, off, off)

}
, (1)

where ψ is the mode; v1 to v4 are the binary states of valves V1 to V4, respectively. These modes
are identical to those used in [6] and [10]. Further details on the hardware used for experimental
verification are presented in Section 5.1.
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2.2. System Model

The chamber filling and discharging process are modeled as adiabatic. Based on the ideal gas,
mass continuity, and energy conservation laws, the pressure dynamics for chambers A and B of the
cylinder are

γRT
.

ma = γPa
.

Va + Va
.
Pa and (2)

γRT
.

mb = γPb
.

Vb + Vb
.
Pb, (3)

where γ is the ratio of specific heats for air; R is the universal gas constant; T is the air temperature;
.

ma and
.

mb are the mass flow rates into chambers A and B; Pa and Pb are the chamber pressures; and Va

and Vb are the chamber volumes. The chamber volumes can be expressed by

Va = Aay and (4)

Vb = Ab(L− y), (5)

where y is the piston displacement, Aa and Ab are the cross-sectional areas of chambers A and B; and L
is the stroke length. Differentiating both sides of (4) and (5) gives

.
Va = Aa

.
y and (6)

.
Vb = −Ab

.
y (7)

After substituting (6) and (7), (2) and (3) can be rewritten as

γRT
.

ma = γAa
.
yPa + Aay

.
Pa and (8)

γRT
.

mb = −γAb
.
yPb + Ab(L− y)

.
Pb (9)

The mass flow rates
.

ma and
.

mb into chambers A and B are

.
ma =

.
m1 −

.
m2 and (10)

.
mb =

.
m3 −

.
m4, (11)

where
.

m1,
.

m2,
.

m3, and
.

m4 are the mass flow rates through the four valves. To improve the modeling
accuracy, suitable functions were chosen by studying experimental data and empirical curve fitting
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was adopted to model the flow behavior of the on/off valves. The mass flow rates through each valve
are then given by

.
m1(u, Pa) =


λ f ill(Pa(tk)), if u

(
tk − τd,open

)
= 1

0, if u
(
tk − τd,close

)
∈ {2, 3}

(12)

.
m2(u, Pa) =


λdis(Pa(tk)), if u

(
tk − τd,open

)
= 2

0, if u
(
tk − τd,close

)
= {1, 3}

(13)

.
m3(u, Pa) =


λ f ill(Pb(tk)), if u

(
tk − τd,open

)
= 2

0, if u
(
tk − τd,close

)
= {1, 3}

(14)

.
m4(u, Pb) =


λdis(Pb(tk)), if u

(
tk − τd,open

)
= 1

0, if u
(
tk − τd,close

)
= {2, 3}

(15)

λ f ill(P) =

 cchokedPs, if Ps > P
0.53

c f ill
√

Ps − P, if Ps ≤
P

0.53

and (16)

λdis(P) =

 cchokedP, if P > P0
0.53

cdis(P− P0), if P ≤ P0
0.53

, (17)

where tk is the time of the current sampling instant, u is the commanded operating mode, τd,open is the
valve energizing delay time, τd,close is the valve de-energizing delay time, Ps is the supply pressure,
P0 is the atmospheric pressure, cchoked is the choked mass flow rate coefficient, c f ill is the chamber filling
coefficient, and cdis is the chamber discharging coefficient.

The dynamics of the piston and payload are obtained using Newton’s second law as follows

M
..
y = Fp − Ff + Fext, (18)

where M is the total mass (i.e., sum of piston and payload masses), Fp = PaAa − PbAb is the pneumatic
force, Ff is the friction force, and Fext is the external force. It was empirically determined that the
friction force was direction-dependent and included Stribeck, Coulomb, and viscous components.
The friction force is modeled using

Ff
( .
y
)
=



[
Fc,p +

(
Fs,p − Fc,p

)
e−(

.
y/vs,p)

2
]
+ Cv,p

.
y

.
y > 0

−

[
Fc,n + (Fs,n − Fc,n)e−(

.
y/vs,n)

2
]
+ Cv,n

.
y

.
y < 0

Fp + Fext
.
y = 0 and 0 < Fp + Fext < Fs,p

Fp + Fext
.
y = 0 and − Fs,n < Fp + Fext < 0

Fs,p
.
y = 0 and Fp + Fext ≥ Fs,p

−Fs,n
.
y = 0 and Fp + Fext ≤ −Fs,n

(19)

where Fc,p and Fc,n are the Coulomb friction forces for the positive and negative directions; Fs,p and
Fs,n are the static friction forces for two directions; vs,p and vs,n are the Stribeck velocities for the two
directions; and Cv,p and Cv,n are the viscous friction coefficients for the two directions. This friction
model is similar to those studied in [14–16]. It has the advantage of capturing more of the complex
behavior of the actuator’s friction than the ones used in [1–12].



Actuators 2019, 8, 56 6 of 15

2.3. Model Fitting and Validation

We used existing testing and curve fitting methods [16] to identify the valve and friction model
parameters. The empirically identified model parameters for the test bed described in Section 5.1 are
listed in Table 1. Note that the large static and Coulomb friction forces are caused by the tight piston
seals that are required to prevent leakage. A computer simulation was created using these parameters
with the model equations from the previous section. The simulation and experimental results for the
same sequence of commanded operating modes are compared in Figure 2. Note that the simulation
was open-loop (i.e., it does not use any sensor data to predict the position, velocity, or pressures).
The graphs show that the simulated model predicts the experimental results closely over a wide range
of operating conditions.

Table 1. System parameters.

Parameter Value Description

Ts 0.001 s Sampling period
Aa 4.91 × 10−4 m2 Chamber A cross-sectional area
Ab 4.91 × 10−4 m2 Chamber B cross-sectional area
T 293 K Air temperature
L 0.6 m Cylinder stroke
Ps 6.0 × 105 Pa Supply pressure (absolute)
P0 1.0 × 105 Pa Atmospheric pressure (absolute)
M 2.14 kg Nominal total mass

τd,open 0.004 s Valve energizing delay time
τd,close 0.001 s Valve de-energizing delay time

c f ill 1.7 × 10−6 (m·kg) 0.5 Chamber filling coefficient
cdis 6.1 × 10−9 m·s Chamber discharging coefficient

cchoked 2.65 × 10−8 m·s Choked mass flow rate coefficient
Fs,p 54 N Static friction force in the positive direction
Fs,n 48 N Static friction force in the negative direction
Fc,p 81 N Coulomb friction force in the positive direction
Fc,n 78 N Coulomb friction force in the negative direction
Cv,p 7.9 N·s·m−1 Viscous friction coefficient in the positive direction
Cv,n 23 N·s·m−1 Viscous friction coefficient in the negative direction
vs,p 0.37 m·s−1 Stribeck velocity in the positive direction
vs,n 0.36 m·s−1 Stribeck velocity in the negative direction

3. Control Algorithms

3.1. SMC3

SMC3 was proposed in [6] and will be briefly summarized here. Its sliding surface is defined as

s =
..
e
ω2 +

2ξ
.
e

ω
+ e (20)

where e = yd − y is the position error, y is the actual position, yd is the desired position,ω is the desired
natural frequency, and ξ is the desired damping ratio. The commanded mode is then

u =


1 s > ε
2 s < −ε
3 − ε ≤ s ≤ ε

(21)

where ε is a small positive dead band. The parameter ε can be used to reduce the valve switching
frequency at the cost of larger position errors.
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3.2. DVMPC1

DVMPC was first proposed in [11]. In this section, DVMPC1, which is a modified version for the
3-mode case, is presented. For brevity in writing the prediction equations, we define:

t j = tk + jTs (22)

where tk is the time of the current sample, Ts is the sampling period, and t j is the time j samples into
the future. The cost-function to be minimized is defined as:

J =
Np∑
j=1

ê
(
t j
)2

(23)

where ê
(
t j
)
= yd

(
t j
)
− ŷ

(
t j
)

is the predicted tracking error, ŷ is the predicted position, yd is the desired
position, and Np is the prediction horizon. The predicted optimal sequence of modes is then given by:
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Uopt = arg min
U

J (24)

subject to:
U =

[
û(tk), û(tk + Ts), ..., û

(
tk +

(
Np − 1

)
Ts

)]
(25)

û
(
t j
)
= û(tk) for j =

{
1, 2, ..., Np

}
(26)

û ∈ {1, 2, 3} and (27)[
ŷ
(
t j
)
,

.̂
y
(
t j
)
, P̂a

(
t j
)
, P̂b

(
t j
)]T

=

f

 û
(
t j − Ts

)
, ŷ

(
t j − Ts

)
,

.̂
y
(
t j − Ts

)
,

P̂a
(
t j − Ts

)
, P̂b

(
t j − Ts

)
 for j =

{
1, 2, ..., Np

} (28)

The commanded operating mode,u(tk), is set equal to the first element of Uopt. The search is
limited by (26) to three possible solutions allowing the optimization problem to be easily solved by
exhaustive search in real-time. The closed-loop performance may be tuned by changing the prediction
horizon, Np. A zero-order hold with a period of max

(
τd,open, τd,close

)
is used to obtain reliable valve

activation. The predictions in (28) are computed using the system model, Euler integration, backward
differencing, and the sensed position and pressures. The details are given in Algorithm 1.

Algorithm 1: Prediction algorithm for DVMPC1

1 Set p = 0, P̂a
(
tp
)
= Pa(tk), P̂b

(
tp
)
= Pb(tk), ŷ

(
tp
)
= y(tk) and

.̂
y
(
tp
)
= (y(tk) − y(tk − Ts))/Ts.

2 Compute tp = tk + pTs

3
If tp > tk, then use: P̂a

(
tp
)
= Pa

(
tp − Ts

)
+ Ts

.̂
Pa

(
tp − Ts

)
, P̂b

(
tp
)
= Pb

(
tp − Ts

)
+ Ts

.̂
Pb

(
tp − Ts

)
,

ŷ
(
tp
)
= ŷ

(
tp − Ts

)
+ Ts

.̂
y
(
tp − Ts

)
and

.̂
y
(
tp
)
=

.̂
y
(
tp − Ts

)
+ Ts

.̂.
y
(
tp − Ts

)
4

Compute the predicted mass flow rates using:
.̂

ma
(
tp
)
=

.̂
m1

(
û
(
tp
)
, P̂a

(
tp
))
−

.̂
m2

(
û
(
tp
)
, P̂a

(
tp
))

and
.̂

mb
(
tp
)
=

.̂
m3

(
û
(
tp
)
, P̂b

(
tp
))
−

.̂
m4

(
û
(
tp
)
, P̂b

(
tp
))

5
Compute the predicted pressure derivatives using:

.̂
Pa

(
tp
)
=

(
γRT

.̂
ma

(
tp
)
− γAa

.̂
y
(
tp
)
P̂a

(
tp
))

/Aa ŷ
(
tp
)

and
.̂
Pb

(
tp
)
=

(
γRT

.̂
mb

(
tp
)
+ γAb

.̂
y
(
tp
)
P̂b

(
tp
))

/Ab
(
L− ŷ

(
tp
))

6 Compute the predicted pneumatic force using: F̂p
(
tp
)
= P̂a

(
tp
)
Aa − P̂b

(
tp
)
Ab

7 Substitute
.̂
y
(
tp
)
, P̂a

(
tp
)

and P̂b
(
tp
)

into (19) to obtain the predicted friction force, F̂f
(
tp
)

8 Compute the predicted acceleration,
.̂.
y
(
tp
)
, using (18), Mnom, F̂p

(
tp
)
, and F̂f

(
tp
)

9 Set p = p + 1
10 If p < Np, then go to Step 2
11 Stop

3.3. DVMPC2

In the NMPC literature, each change of the predicted control signal during the prediction horizon
is termed a “move.” Move blocking [17] limits the number of allowed moves. While this strategy
has the advantage of reducing the computational load, it also has the disadvantage of reducing the
optimality of the solution. With DVMPC1, only one move (i.e., a change in û

(
t j
)

relative to u(tk − Ts))
is allowed by (26) over the prediction horizon, so the resulting control may be far from the optimum
obtained without move blocking. In order to improve the optimality, with DVMPC2 multiple moves
are allowed in the optimization. The prediction horizon is now:

Np = NmNdelta (29)

where Nm is the number of moves, and Ndelta is the prediction horizon used with each move.
The cost-function for DVMPC2 is also changed to:
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J =
Np∑
j=1

ê
(
t j
)2
+ λ1

Np∑
j=1

jTs

∣∣∣∣ê(t j
)∣∣∣∣+ λ2Npsps (30)

where Npsps is the number of predicted switches per second per valve (PSPS), λ1 is the weighting
coefficient of the predicted integral of time-weighted absolute error (PITAE), λ2 is the weighting
coefficient of the PSPS. The PSPS is obtained using:

Npsps =
1

4NpTs

Np∑
j=1

Sp, jand (31)

Sp, j =


0 if û

(
t j − Ts

)
= û

(
t j
)

4 if
(
û
(
t j − Ts

)
= 1∧ û

(
t j
)
= 2

)
∨

(
û
(
t j − Ts

)
= 2∧ û

(
t j
)
= 1

)
2 otherwise

(32)

where Sp, j is the number of predicted valve switches at time t j.
Comparing (30) to (23), the addition of the weighted PITAE and PSPS terms improves DVMPC2’s

ability to control the transient and steady-state position control performance and the switching
frequency. The predicted optimal sequence of modes is then given by:

Uopt = arg min
U

J (33)

subject to:
U = [û(tk), û(tk + NdeltaTs), ..., û(tk + NmNdeltaTs)] (34)

û(tk + ( j + mNdelta)Ts) = û(tk) for j = {1, 2, ..., Ndelta}

and m = {1, 2, ..., Nm}
(35)

û ∈ {1, 2, 3} (36)[
ŷ
(
t j
)
,

.̂
y
(
t j
)
, P̂a

(
t j
)
, P̂b

(
t j
)]T

=

f
(
û
(
t j − Ts

)
, ŷ

(
t j − Ts

)
,

.̂
y
(
t j − Ts

)
, P̂a

(
t j − Ts

)
, P̂b

(
t j − Ts

))
for j =

{
1, 2, ..., Np

} (37)

V(tk + Np · Ts) < V(tk) ∨ V(tk + Np · Ts) < Vthreshold (38)

where V = (yd − y)2 + d
( .
yd −

.
y
)2

is a Lyapunov-like function, and d is a positive weighting coefficient.
The constraint (38) is used to guarantee the bounded-input, bounded-output stability of the nominal
system. Only the errors of position and velocity are included in the Lyapunov-like function V.
The chamber pressures are already bounded by Ps and P0, and leaving them out of V gives the
optimization more freedom when minimizing J. The constraint (38) includes two inequalities. The first
inequality, V(tk + Np · Ts) < V(tk) will be satisfied if V decreases over the prediction horizon,
which implies that the position and velocity errors have also decreased. Unfortunately, even in the
nominal case, this inequality will not always hold due to the control signal being discrete-valued
and the finite prediction horizon. As mentioned in [10], steady-state errors or limit cycles can
occur with this type of system. For these reasons, it was necessary to include the second inequality,
V(tk +Np ·Ts) < Vthreshold. This inequality guarantees that the position and velocity errors are bounded

for the nominal system. Specifically, the error vector
[
e

.
e
]T

is forced inside an ellipse that is centered at
the origin. The dimensions of the ellipse are determined by the choices of Vthreshold and d. Note that
for small values of Vthreshold the optimization problem can become infeasible. So, choosing Vthreshold

involves a trade-off between feasibility and stability with DVMPC2. Note that the cost function (30)
and stability constraint (38) are different than those used in the prior papers [9–12].



Actuators 2019, 8, 56 10 of 15

The use of move blocking in (33) to (38) reduces the search space from 3Np to 3Nm nodes. So the
computational load grows exponentially with Nm. With NMPC, a larger Np tends to improve the
closed-loop performance. Since Np = NmNdelta, Ndelta, and Np can be increased without increasing
the computational load of this ILP. However, larger Ndelta values will block more moves and reduce
the optimality of the solution (as previously mentioned), so there is a trade-off when choosing Ndelta.
To allow larger values of Nm and Np to be used with the chosen Ndelta, the search algorithm used
with DVMPC2 is the efficient SDFS algorithm from [9] instead of the exhaustive search employed
with DVMPC1.

The commanded operating mode,u(tk), is set equal to the first element of Uopt. The zero-order
hold and prediction algorithm for computing (37) are the same as with DVMPC1. The closed-loop
performance may be tuned using the parameters Nm, Ndelta, λ1 and λ2.

4. Controller Parameter Optimization

To make the comparison of the SMC3, DVMPC1, and DVMPC2 controllers fair their parameters
will be tuned using optimization. A multi-step desired position trajectory is used so their performance
will be evaluated under dynamic and steady-state conditions. Figure 3 shows the desired trajectory.
The step heights are 200 mm, –200 mm, 100 mm and 10 mm. The total duration is 4 s.

Many metrics may be used to evaluate the performance of control systems. We have chosen the
metrics integral of time-weighted absolute error (ITAE) and the number of switches per second per
valve (SPS) to make quantitative comparisons. The ITAE is calculated in the normal manner, while the
SPS is obtained using

SPS =
1

4nTs

n∑
k=1

Skand (39)

Sk =


0 if u((k− 1)Ts) = u(kTs)

4 if (u((k− 1)Ts) = 1∧ u(kTs) = 2)∨
(u((k− 1)Ts) = 2∧ u(kTs) = 1)

2 otherwise

(40)

where n is the number of data points.
The next issue was deciding how to formulate the optimization using these two metrics. One option

was to define the cost function as the weighted average of the two metrics. This was rejected since
the chosen weighting coefficients may favor one controller more than the others. We instead chose to
minimize one of the metrics and use the others in the constraints. The optimal controller parameters
are then given by:

Xopt = argmin
X

ITAE (41)

subject to:
SPS ≤ SPSmax (42)

XLB ≤ X ≤ XUB (43)

where X is the vector of parameters; Xopt is the optimal vector of parameters; SPSmax is the upper bound
on the SPS; and XLB and XUB define the lower and upper bounds of the elements of X, respectively.

The ITAE is minimized in (41) since it provides a measurement of both the transient and steady-state
performance. The bound SPSmax = 15 s−1 was chosen based on the SPS values obtained when the
controllers were manually tuned.

The mesh adaptive direct search (MADS) optimization algorithm [18] was chosen to solve (41)–(44)
since it is well suited to blackbox problems of this type. The software library NOMAD (an abbreviation
of Nonlinear Optimization by MADS) [19] was used to perform the optimization. Although more
optimal parameters would have been obtained if the optimization was performed based on experiments,
the optimization was based on simulations of the closed-loop system. There are three good reasons
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for employing simulation-based optimization. First, the optimizer may choose parameters that cause
the response to be unstable, resulting in damage to the equipment. Second, the optimization may
require the cost to be computed thousands of times, so the required number of experiments could take
an excessive amount of time. Third, the large number of experiments would shorten the life of the
equipment. The system parameters used in the simulations are listed in Table 1.

Each optimization run terminated successfully when the minimum mesh size was reached.
The optimization results for SMC3 and DVMPC1 are: ω = 86.9 rad/s, ξ = 1.77, and ε = 0.52
mm; and Np = 61. The results for DVMPC2 are Nm = 4, Ndelta = 32, λ1 = 0.0269, λ2 = 2.50,
Vthreshold = 93.3 mm2, and d = 1.94× 10−5 s2.
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5. Experimental Verification

5.1. Testbed

A photograph of the hardware used to test the three control algorithms is shown in Figure 4.
The cylinder (made by Festo, model number DGPL-25-600) is rodless with a 600 mm stroke and 25 mm
bore. The cylinder includes an exterior linear bearing for supporting the moving mass. The four on/off

solenoid poppet valves are made by MAC with model number 34B-AAA-GDFB-1BA. The resolution
of the linear incremental encoder is 0.01 mm. The three pressure sensors are made by SSI Technologies
with model number P51-100. Low-pass filters with a 95 Hz cutoff frequency are used with the pressure
sensors to reduce high-frequency noise and prevent aliasing. The data acquisition card is made by
National Instruments with model number PCIe-6365. The sampling frequency is 1 kHz. The control
algorithms are executed on a PC with a 3.4 GHz Intel i7-6700 processor and 8.0 GB RAM and are
programmed in C language. The supply pressure was set to 0.6 MPa. The nominal total mass is 2.14 kg.
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5.2. Experimental Results and Discussion

The experiments were performed using the controller parameters from Section 4 and the desired
position trajectory shown in Figure 3. Typical experimental results for SMC3, DVMPC1, and DVMPC2
with the nominal total mass are plotted in Figures 5–7, respectively. It is clear from these plots that
DVMPC1 and DVMPC2 produced much fewer position oscillations than SMC3. With DVMPC1,
this improved position control came at the cost of greater valve switching. However, DVMPC2 was able
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to both improve the smoothness of the position response and reduce the amount of valve switching.
The performance metrics for these nominal results and for the tests with mass mismatch are given
in Table 2. The tabulated values are the averages from five experiments. For four of the five metrics,
DVMPC2 was superior to DVMPC1 and outperformed SMC3 by a wide margin. Based on the averaged
results for the nominal and mass mismatch cases, DVMPC2 reduced ITAE by 80%, RMSE by 52%,
OS by 43% and SPS by 20% relative to SMC3. There was no clear winner in terms of SSE.

Regarding the controllers’ robustness, ITAE experienced the largest change of the four metrics.
When the total mass was 3.36 kg (57% larger than nominal), the ITAE increases for SMC3, DVMPC1,
and DVMPC2 were 7%, 14%, and 29%, respectively. These results make sense since the model-based
DVMPC algorithms should be more sensitive than SMC3. A decrease in the mass should allow it to
reach the desired position faster, causing the ITAE to decrease. When the mass was reduced to 0.95 kg
(56% smaller than nominal), the decreases in the ITAE for SMC3, DVMPC1, and DVMPC2 were 26%,
15%, and 21%, respectively. The ITAE with the DVMPC algorithms benefited less from the reduction in
mass since they were negatively affected by the model mismatch.

Table 2. Experimental results.

Controller Type Total Mass (kg) SPS (s−1) RMSE (mm) ITAE (smm) SSE (mm) OS (mm)

SMC3 2.14 7.75 64.7 15.81 0.876 8.02
DVMPC1 2.14 22.08 51.3 7.98 1.145 4.16
DVMPC2 2.14 5.70 32.2 2.95 0.578 3.78

SMC3 3.36 7.80 63.3 16.99 1.637 12.56
DVMPC1 3.36 25.43 51.0 9.07 1.778 8.71
DVMPC2 3.36 7.25 32.3 3.81 1.172 8.11

SMC3 0.95 7.20 60.9 11.71 0.326 1.92
DVMPC1 0.95 36.23 48.5 6.78 0.968 0.67
DVMPC2 0.95 5.15 26.7 2.34 0.782 1.03
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6. Conclusions

We have presented the development of an improved NMPC algorithm, termed DVMPC2, for the
position control of double-acting pneumatic cylinders using on/off valves. Even though they make
precise position control more challenging, we chose to use on/off valves since the resulting cost-savings
(compared to the proportional valves used with the majority of pneumatic servo systems) increases the
number of potential applications of pneumatic servo systems in robotics and automation. Similarly,
we designed DVMPC2 to directly switch the valves to reduce the switching frequency, compared with
the commonly used PWM approach, in order to reduce the costs of repairing or replacing valves worn
out by switching. DVMPC2 has several other advantages. Its prediction strategy is superior to the
strategy used in [11] and [12]. Its combination of move blocking and SDFS allows it to be computed in
real-time on common hardware. It is also not necessary to simplify the dynamic model as was done
in [10]. Finally, its cost function has four adjustable parameters making it much more flexible than the
cost functions employed in [9–12].

After optimally tuning the parameters to make the comparison fair, we compared the performance
of DVMPC2 with DVMPC1 and SMC3 for a multi-step desired position trajectory. The comparison was
based on five performance metrics. Robustness was evaluated by introducing a mismatch between the
nominal and actual total masses. The experimental results demonstrated the superior performance of
DVMPC2 in terms of the ITAE, RMSE, OS, and SPS metrics. This means that DVMPC2 provides better
position tracking while simultaneously extending the lives of the valves. This research is ongoing.
As mentioned in Section 1, a 7-mode SMC algorithm was proposed in [8] and shown to outperform the
SMC3 algorithm in terms of OS and SPS. An obvious extension to DVMPC2 is to expand from three
modes to the seven modes used in [7]. However, this will increase the maximum number of nodes to
be searched from 3Nm to 7Nm . Since reducing Nm will be detrimental to the closed-loop performance,
and we want to continue using common hardware to implement the controller, we are working on
more efficient strategies to solve the resulting INP in real-time.
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