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Abstract: In the motorcycle industry, the safety of motorcycles operating at high speeds has
received increasing attention. If a motorcycle is equipped with an anti-lock braking system (ABS),
it can automatically adjust the size of the brake force to prevent the wheels from locking and
achieve an optimal braking effect, ensuring operation stability. In an ABS, the brake force is
controlled by an electro-hydraulic brake (EHB). The control valve inside the EHB was replaced
with a proportional valve in this study, which differed from the general use of a solenoid valve.
The purpose for this change was to precisely control the brake force and prevent hydraulic pressure
oscillating in the piping. This study employed MATLAB/Simulink and block diagrams to establish
a complete motorcycle ABS simulation model, including a proportional electro-hydraulic brake
(PEHB), motorcycle motion, tire, and controller models. In an analysis of ABS simulation results,
when traveling on different road surfaces, the PEHB could effectively reduce braking distance and
solve the problem of hydraulic pressure oscillation during braking. The research demonstrated that
this proportional pressure control valve can substitute the general solenoid valve in commercial
braking systems. This can assist the ABS in achieving more precise slip control and improved
motorcycle safety.

Keywords: slip control; anti-Lock braking system; proportional electro-hydraulic brake; proportional
pressure control valve

1. Introduction

The brake modules of modern motorcycles are generally equipped with an ABS to enable vehicles
to stop within the shortest distance and motorcycle handles to be controlled to avoid obstacles and
ensure driver safety. Brake performance is affected by the level of tire adhesion during the braking
process. Tire adhesion refers to the acting force of the road surface on the tires and is also known as
tire friction, which is divided into longitudinal and lateral directions. The sliding ratio between tires
and the ground surface is defined as the slip [1–6].

S =
Vv − Vw

Vv
(1)

where S is the brake slip, Vv is the vehicle speed, and Vw is the wheel speed.
The curve in Figure 1 shows that optimal maneuverability was yielded when the slip was 0 (that

is, when the vehicle speed was equal to the wheel speed) [7]. Conversely, the brake was locked if the
slip was 1; thus, the wheel speed was 0 with no maneuverability. The highest point of longitudinal

Actuators 2018, 7, 34; doi:10.3390/act7030034 www.mdpi.com/journal/actuators

http://www.mdpi.com/journal/actuators
http://www.mdpi.com
http://dx.doi.org/10.3390/act7030034
http://www.mdpi.com/journal/actuators
http://www.mdpi.com/2076-0825/7/3/34?type=check_update&version=2


Actuators 2018, 7, 34 2 of 21

braking force Op served as the boundary for the stable and unstable zones, as well as the target for the
optimal maneuverability.
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Figure 1. Relationship between tire adhesion coefficient and brake slip curve. 

When the rider presses the brake handle, the master cylinder generates brake pressure that is 

transmitted to the brake caliper of a wheel. At this time, the wheel speed sensor is responsible for 

constantly measuring wheel speed signals and providing these to the electronic control unit (ECU) 

of the ABS. After calculations by the microcomputer inside the ECU, control signals are sent to the 

EHB. The EHB is responsible for converting electrical control signals from the ECU into actual 

control actions of the solenoid valve to control brake pressure in the wheel cylinder. In the event of 

wheels locking, the brake pressure is controlled to a fixed level. If the wheel speed continues to 

decrease, the brake pressure will also decrease. When the ECU has determined that the wheels have 

resumed rotating, it will again increase the brake pressure to perform a braking action and repeat 

these actions until the vehicle has stopped [8–10]. The control circuit of an EHB actuator between 

master cylinder and wheel cylinder is shown in Figure 2 [11]. 
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Figure 2. The control circuit of an EHB actuator: (a) structure; and (b) ABS control mode. 

The general ABS control method drives the solenoid valve to increase, hold, and relief brake 

force. However, the solenoid valve is a discrete actuation component that can be controlled 

intermittently to adjust braking force in an approximate manner. The design of the proportional 

Figure 1. Relationship between tire adhesion coefficient and brake slip curve.

When the rider presses the brake handle, the master cylinder generates brake pressure that is
transmitted to the brake caliper of a wheel. At this time, the wheel speed sensor is responsible for
constantly measuring wheel speed signals and providing these to the electronic control unit (ECU)
of the ABS. After calculations by the microcomputer inside the ECU, control signals are sent to the
EHB. The EHB is responsible for converting electrical control signals from the ECU into actual control
actions of the solenoid valve to control brake pressure in the wheel cylinder. In the event of wheels
locking, the brake pressure is controlled to a fixed level. If the wheel speed continues to decrease,
the brake pressure will also decrease. When the ECU has determined that the wheels have resumed
rotating, it will again increase the brake pressure to perform a braking action and repeat these actions
until the vehicle has stopped [8–10]. The control circuit of an EHB actuator between master cylinder
and wheel cylinder is shown in Figure 2 [11].
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Figure 1. Relationship between tire adhesion coefficient and brake slip curve. 
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intermittently to adjust braking force in an approximate manner. The design of the proportional 
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The general ABS control method drives the solenoid valve to increase, hold, and relief brake force.
However, the solenoid valve is a discrete actuation component that can be controlled intermittently
to adjust braking force in an approximate manner. The design of the proportional pressure control
valve in this study combined the inlet and outlet valves into a three-port two-position solenoid
valve, which was capable of accurately and rapidly yielding the optimal braking force through the
continuous adjustment of the valve opening. Figure 3 shows a novel control circuit for a proportional
electro-hydraulic brake (PEHB) actuator of a motorcycle [12]. Normal braking involves the rider
pressing the brake handle to pressurize the master cylinder, and the pressure enters through the inlets
of the reversing valve and proportional valve and is output from the caliper to drive the wheel cylinder
to implement braking. The proportional valve is activated when the pressure is too high, and the inlet
and outlet openings are adjusted according to the level of solenoid force to achieve an appropriate
pressure drop in the caliper, thereby yielding the optimal slip control.
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The brake performance of an ABS is determined through control logic, which is applied to
overcome numerous uncertain parameters such as the time-varying characteristics of braking dynamics
as well as environments, roads, and coefficients of friction. Various controlling strategies have
been proposed and confirmed to control wheel slip effectively. The relevant mechanisms include
optimal controller [10,13], fuzzy learning/logic controller [14–16], sliding mode controller [17], and
proportional–integral–derivative (PID) control [18,19].

Of the relevant mechanisms, the PID controller is the most widely adopted across industries [20].
Various adjustment methods for PID have been proposed as described in [21]. Among them,
the adjustment method for internal model control (IMC) was proposed by Rivera in 1986 [22].
The main operating principle of IMC is through feedback compensation. In addition to being
able to compensate for disturbances and eliminate the uncertainty of the approximate model, the
IMC can provide closed-loop stability and can also adjust to changes in the approximate model
parameters. The model matching approach was employed in [23] to directly design the IMC according
to the robust performance of the system. In the present study, a new type of brake actuator with a
proportional solenoid valve was developed. Compared with the general solenoid valve with an on/off
control, a proportional solenoid valve involves the advantage of continuous pressure servo control.
To commercialize this invention, a basic PID controller was adopted, and a bang-bang controller was
installed in front of the integrator so that the system can achieve precise and rapid ABS slip control.
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2. Proportional Pressure Control Valve

The proportional pressure control valve consists of a proportional valve body and a
proportional electromagnet.

2.1. Proportional Valve Body

The proportional valve body is composed of a proportional iron shell, a shuttle shaft with an iron
core, and a valve body. Its design is shown in Figure 4 [24,25]. Outlet A and Inlet B are interconnected,
and both are connected to the caliper. The openings of the spool and needle valves are adjusted through
the shuttle shaft. The opening sizes of the two valve ports are proportional to each other. The needle
valve port must be tightly closed when it is not actuated to avoid internal leakage. Therefore, the cone
valve design was adopted, with the check valve in the shuttle shaft being used as a safety device. In the
event that the shuttle shaft cannot be reset and the needle valve malfunctions, the caliper pressure can
still be released through the check valve. The shuttle shaft force (Fm) equation is as follows:

Fm = Fem + Fcal (2)

In addition, Fm = Pm · Asp, Fcal = Pcal · (Asp − Aol)

Substituting Equation (2)
Pcal = (Fm − Fem)/(Asp − Aol) (3)

where Fem is the proportional solenoid force; Fcal is the caliper force; Pm is the master cylinder pressure;
Pcal is the caliper pressure; Asp is the spool valve cross-sectional area; and Aol is the needle valve hole
cross-sectional area.
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2.2. Proportional Electromagnet

The actuation principle of the proportional electromagnet is the same as the general solenoid
valve: the operating current passing through the coil causes the internal soft magnetic components to
magnetize and generate a magnetic effect, thereby achieving the objective of mechanical movement
due to electric excitation through energy conversion. Figure 5 shows the structure of the proportional
electromagnet. The magnetic field direction and magnetic induction force are controlled by the current
in the input coil, in turn causing the materials, such as base and iron core, to generate attraction due to
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excitation. The displacement of the valve shaft determines the flow volume and direction, whereas
the spring provides the compressive force required for closing the valve port when no current is
supplied. The main purpose of the brass ring is to change the direction of the magnetic field lines in
order for them to enter the iron core through the guide tube, after which they are divided into two
directions, entering the flange and axial center of the base through the radial and axial directions,
respectively. The stopper is the component controlling the movement of the shuttle shaft in the linear
region of operation.
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Six types of simplified magnetic flux paths (Figure 6) were employed in this study as the design
basis for the magnetic induction force, to deduce the direction for the magnetic field lines in the air gap
between the metals, shown in Table 1 [26,27]. Here µ0 represents the permeability of air, g represents
the air gap, r represents the iron core radius, h represents the right side distance between iron core and
brass ring, t represents the thickness of brass ring, and z represents the distance from base to iron core.
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Therefore, when a magnetic force is present and the magnetic flux is Φ, the magnetomotive force
in the air gap (Fair) is as follows:

Fair = ΦPair
−1 (4)

In soft magnetic materials, the magnetomotive force can be acquired by multiplying the magnetic
field intensity (H) and the current path length (l). The magnetic field intensity can be determined
according to its corresponding relationship with the magnetic flux density (B) through the B–H curve
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of each material. When a magnetic flux is present, the magnetomotive force of a soft magnetic material
(Fsteel) is as follows:

Fsteel =
i

∑
j=1

Hjlj (5)

Table 1. The air gaps magnetic flux path model calculations.

Flux Path Model Mean Path Length Permeance (Pair)

I g 2πµ0(r +
g
2 )h/g

II 1.22g 3.3µ0(r +
g
2 )

III 1.22g 3.3µ0(r +
g
2 )

IV
√

g(g + t) 4µ0(r +
√

g(g + t)) ln( g+t
g )

V
√

g(g + r) 4µ0(r + g −
√

g(g + r)) ln( g+r
g )

VI z µ0π
z (r + g − 2z/π)2

According Equations (4) and (5), magnetic flux and total magnetomotive force (Fsum) are generated
when the number of coil turns (N) and the operating current (I) are input. In addition, Equation (6)
shows that total magnetomotive force can be obtained from electrical energy through energy conversion.
The relationship between the iron core displacement and the solenoid force (Fem) can be obtained
through the principle of virtual work (W), as shown in Equations (7) and (8).

NI = Fsum = Fair + Fsteel (6)

W =
1
2

Φ2Pair
−1 (7)

Fem =
∂W
∂z

=
Φ2

2
· d

dz
(P−1

air ) = −Φ2

2
· [P−2

air
d
dz

Pair] (8)

According to the above derivation, when the proportional electromagnet is completed,
the magnetic flux can be calculated by inputting the operating current, thereby acquiring the magnetic
flux density and magnetic field intensity of soft magnetic materials. The solenoid force can be obtained
from the linear region of operation and used as a basis for the subsequent proportional valve control.

3. Mathematical Model and Controller

3.1. Mathematical Model of Motorcycle Motion

The motorcycle motion model provides calculations of vehicle dynamics that can be used to
calculate relevant data during braking such as speed, slip, and braking distance. Figure 7a presents a
simplified motorcycle motion model [28].
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Its positive force N acting on the wheel is expressed as follows: N f =
(

1 − e−t/t f
)
(Mv · g · Lb + Fint · HG − Fw · Hw)/L

Nr =
(

1 − e−t/tr
)
(Mv · g · La − Fint · HG + Fw · Hw)/L

(9)

In Equation (9), the subscript f represents the action on the front wheel, whereas the subscript r
represents the action on the rear wheel. Among these actions, Mv represents the total mass of the rider
and the motorcycle, L indicates the wheelbase between the front and rear wheels of the motorcycle,
and La and Lb, respectively, denote the distances between the front and rear wheels and the center of
mass of the vehicle. HG represents the height of the center of the mass of the vehicle, Hw indicates the
average height of the wind force acting on the motorcycle, t represents time, t f denotes the time-delay
constant of the front shock absorber, and tr represents the time-delay constant of the rear shock
absorber. Fint represents the inertial force of the vehicle and Fw represents the longitudinal force of the
wind. Their mathematical formulas are expressed as follows:

Fint = Mv · a (10)

Fw =
1
2
· ρw · Cw · Aw · (Vv + u0)

2 (11)

Among these, ρw is air density, Cw is the coefficient of air resistance, Aw is the frontal area of the
vehicle, Vv is the vehicle speed, and u0 is the wind speed. In this paper, the effect of wind speed is
ignored, that is, it is assumed that u0 = 0 and wind force is Fw = 0.155 · V2

v .

3.2. Wheel Braking Model

Figure 7b presents an analysis of the torque of a vehicle during braking, where Tt represents the
torque generated by the adhesive force of the road surface on the wheel and Tb denotes the torque
generated by the brake caliper on the wheel. These are expressed as follows:

Tt = FD · Rw (12)

Tb = Kb · Pcal (13)
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where FD represents the longitudinal adhesion value of the ground on the tire, Rw is the tire radius,
and Kb is a torque constant and represents the constant of proportionality between the brake pressure
and brake torque. The torque balance equation of the wheel is as follows:

Iw · .
ω = Tt − Tb (14)

where Iw indicates the moment of inertia of the wheel and ω indicates its angular velocity. After
obtaining the longitudinal force balance (Fint = Fw + FD), the acceleration value of the vehicle can be
expressed as follows:

a =
(

Fw + FD f + FDr

)
/Mv (15)

The integral of the aforementioned formula can be used to obtain the speed value of the vehicle,
whereas integrating the formula twice can obtain braking distance. The motorcycle motion of symbols,
parameters and values which are used in our simulation are described in Table 2.

Table 2. The motorcycle motion data.

Symbol Parameter Value

Mv total mass of the rider and the motorcycle 220 Kgf
HG height of the center of the mass of the vehicle 0.6 m
Hw average height of the wind force acting on the motorcycle 0.7 m
L wheelbase between the front and rear wheels of the motorcycle 1.2 m
La distances between the front wheels and the center of mass of the vehicle 0.7 m
t f time-delay constant of the front shock absorber 0.2
tr time-delay constant of the rear shock absorber 0.1
ρw air density 1.18 kg/m3

Cw coefficient of air resistance 0.48
Aw frontal area of the vehicle 0.55 m2

Rw tire radius 0.21 m

3.3. Tire and Ground Model

Several mathematical models can be applied to measure the acting forces of the ground and tires
(hereafter referred to as tire force). This study employed the tire model presented by Dugoff to describe
the relationship between longitudinal tire force FD, slip s, and vehicle speed Vv. The equations for this
Dugoff’s model are as follows [1,29]:

FD =


Cn ·s
1−s when Cn ·s

1−s < µ·N
2

N
[
µ − µ2 N(1−s)

4Cn ·s

]
when Cn ·s

1−s > µ·N
2

(16)

where Cn is the longitudinal stiffness of the tire, µ is the friction coefficient, and N is the normal force
of the tire.

The friction coefficient µ in the following equation, according to the experimental results of
Dugoff’s, assumes that the friction coefficient and slip speed Vv · s change linearly under normal
conditions, that is,

µ = µno(1 − An · Vv · s) (17)

where µno is the friction coefficient during no slip, and An is the adhesion reduction coefficient.
On wet road surfaces, the friction coefficient decreases exponentially with an increase in slip

speed, that is,

µ = µno · exp
[
−Vv · s

Vc

]
(18)

where Vc is the characteristic speed and is a constant; its size is related to the root mean square
texture height.
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3.4. PEHB Mathematic Model Analysis

The PEHB design configuration (Figure 3) is primarily composed of a proportional control valve,
motor pump, accumulator, caliper set, and hydraulic pipes. First, this study established a relationship
database of proportional solenoid force, current, and stroke (Figure 8). The system can obtain solenoid
force data through the look-up table after input current and stroke.

Actuators 2018, 7, 34 9 of 21 

 

exp v
no

c

V s

V
 

 
=  − 

 
 (18) 

where cV  is the characteristic speed and is a constant; its size is related to the root mean square 

texture height. 

3.4. PEHB Mathematic Model Analysis 

The PEHB design configuration (Figure 3) is primarily composed of a proportional control 

valve, motor pump, accumulator, caliper set, and hydraulic pipes. First, this study established a 

relationship database of proportional solenoid force, current, and stroke (Figure 8). The system can 

obtain solenoid force data through the look-up table after input current and stroke. 

 

Figure 8. The relationship database of proportional solenoid force, current, and stroke. 

When the direction of the solenoid force of the proportional solenoid is defined as positive, the 

equation of motion on the shuttle shaft is as follows: 

( )em m s cF F M X B X K X X= +  +  + +  (19) 

where sM  is the shuttle shaft and iron core mass; B  is the damping coefficient; K  is the spring 

constant; cX  is the spring initial compression value; and X  is the shuttle shaft stroke. 

The valve body is a variation of a three-port proportional solenoid valve. Its mathematic model 

comprises two functions, namely those of the inlet valve and outlet valve. The inlet valve is a spool 

valve. The flow rate–pressure equation that describes the brake fluid flowing through the orifice is 

( ) ( )1 2

2

4
d

d
Q C d X P P






=  −  −  (20) 

where Q  is the flow rate; d  is the spool valve hole diameter;   is the fluid mass density; dC  is 

the discharge coefficient; and 1P  and 2P  represent the pressure before and after the fluid flows 

through the orifice, respectively. The brake fluid may flow from either end to the other depending 

on which side exhibits the higher pressure.  

The outlet valve parameters are identical to those of the inlet valve. The only difference between 

the inlet valve and the outlet valve is that the outlet valve is a needle valve that normally remains 

closed. After excitation, the degree to which the outlet valve opens is adjusted by the shuttle shaft 

interlocked with the iron core. The framework of the interior component blocks of the outlet valve is 

Figure 8. The relationship database of proportional solenoid force, current, and stroke.

When the direction of the solenoid force of the proportional solenoid is defined as positive,
the equation of motion on the shuttle shaft is as follows:

Fem = Fm + Ms ·
..
X + B ·

.
X + K(Xc + X) (19)

where Ms is the shuttle shaft and iron core mass; B is the damping coefficient; K is the spring constant;
Xc is the spring initial compression value; and X is the shuttle shaft stroke.

The valve body is a variation of a three-port proportional solenoid valve. Its mathematic model
comprises two functions, namely those of the inlet valve and outlet valve. The inlet valve is a spool
valve. The flow rate–pressure equation that describes the brake fluid flowing through the orifice is

Q = Cd ·
π · d

4
(d − X) ·

√
2
ρ
(P1 − P2) (20)

where Q is the flow rate; d is the spool valve hole diameter; ρ is the fluid mass density; Cd is the
discharge coefficient; and P1 and P2 represent the pressure before and after the fluid flows through the
orifice, respectively. The brake fluid may flow from either end to the other depending on which side
exhibits the higher pressure.

The outlet valve parameters are identical to those of the inlet valve. The only difference between
the inlet valve and the outlet valve is that the outlet valve is a needle valve that normally remains
closed. After excitation, the degree to which the outlet valve opens is adjusted by the shuttle shaft
interlocked with the iron core. The framework of the interior component blocks of the outlet valve is
identical to that of the inlet valve. The coning angle of the needle valve is θ. Accordingly, the area of
the port is as follows:

A0 = π · d · X · sin(θ/2) (21)
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The major component of the caliper is a piston. The brake fluid from the EHB pushes the piston,
causing the caliper to clench the brake disc and stop the car. The spring serves to restore the caliper to
its original position. Therefore, the equation of the caliper is as follows:

Fcal = Kc · XP (22)

Because Fcal = Pcal · Ac and Xp = Vc/Ac, the previous equation can be rewritten as follows:

dPcal =
dVc · Kc

A2
c

(23)

where Kc is the coefficient of caliper spring; XP is the stroke of caliper piston; Vc is the volume of
caliper piston; and Ac is the caliper piston cross-sectional area.

The strokes of the caliper involve two stages. In the first stage, the caliper does not make contact
with the brake disc. In the second stage, the caliper is regarded as a rigid hydraulic chamber, described
through the following equation:

dPcal = β · dVc

Vc
(24)

where β is the bulk modulus of the liquid.
Once the ABS decompression cycle begins, the two ports adjust their degrees of opening.

The brake fluid flows through the outlet valve and out the caliper, entering the oil return pipe.
Subsequently, the brake fluid is stored in the pressure accumulator. The return pump is activated to
draw the fluid back into the brake pipe to avoid a pressure increase in the oil return area, which may
result in brake-release failure.

The structure of the pressure accumulator is similar to that of the caliper in that the pressure
accumulator is also composed of a piston and a restoring spring; however, its spring constant and
cross-sectional area are smaller.

A reciprocating fixed-displacement pump is positioned between the pressure accumulator and
the oil return pipe. The return pump is activated by the DC motor. In the mathematic model,
a fixed-frequency square wave represents the motor. In the mathematical equation representing the
return pump function, the difference between the inlet pressure and the atmospheric pressure is
derived and then multiplied by the displacement gain, and the maximum discharge is then added.

The PEHB model of symbols, parameters and values which are used in our simulation are
described in Table 3.

Table 3. The PEHB model data.

Symbol Parameter Value

Ms shuttle shaft and iron core mass 0.1 Kgf
B damping coefficient 0.20 Kgf-s/mm
K spring constant 0.18 Kgf/mm
Xc spring initial compression value 0.3 mm
d spool valve hole diameter 1.2 mm
θ coning angle of the needle valve 25
β bulk modulus of the liquid 190 Kgf/mm2

Pcal/Vc Caliper pressure per unit volume 0.06 Kgf/mm5

3.5. Traditional Discrete Switch Control

The switch control of a traditional solenoid valve, which must be open or closed, can be
represented by Figure 9. This type of discrete switch control has a control signal of 1 when the
index is greater than 0. Applied to this paper, this represented full supercharge; the solenoid valve
remained open during the entire sampling time. Conversely, if the index is less than 0, the control
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signal is −1, signifying full depressurization; it remains in a depressurized state during the entire
sampling time. In such a situation, the control signal is not fine enough to achieve the desired control
effect. To improve this performance, the sampling period can be shortened (i.e., increase the sampling
frequency) to achieve immediate control.
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3.6. Proportional–Integral–Derivative Controller

The proportional–integral–derivative (PID) controller, which has a long history of use, is a
feedback control method commonly found in industrial control and is widely used in various fields.
The PID has become a common and reliable technical tool in industrial control because of its simple
structure, favorable stability, and ease of operation and adjustment. It is composed of a proportional
unit, integral unit, and derivative unit. By adjusting the parameters of controller Kp, Ki, and Kd,
the control system can be adjusted to satisfy design requirements. The responding result can be
expressed in terms of how rapidly the controller responds to an error, the degree to which the controller
overshoots, and the degree of system oscillation. The input to the PID controller is the error value or
the signal derived from this value. The output (controlled variable) is the result of the sum of three
algorithms. Defining u(t) as the control output, the PID algorithm can be expressed as Equation (25);
its block diagram is presented in Figure 10.

u(t) = Kpe(t) + Ki

∫ t

0
e(τ) dτ + Kd

d
dt

e(t) (25)

The transfer function of PID controller can be described as:

Gc(s) = U(s)
E(s) = Kp +

Ki
s + Kds

= Kp

(
1 + 1

Tis
+ Tds

)
Where Ti =

Kp
Ki

, Td = Kd
Kp

(26)

where Ti is the integral time constant and Td is the derivative time constant.
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4. Simulation and Results Analysis

For this analysis, MATLAB/Simulink was used to construct a PEHB system. The simulation
commands were primarily step and triangular wave commands. Step commands confirmed the
response time and triangular wave commands confirmed the following status and linearity, and this
depressurization result was analyzed to determine whether it could satisfy ABS control requirements.
Subsequently, a complete motorcycle ABS simulation model was established, which comprised a
motorcycle motion model, tire model, and a controller model. A comparison of EHB and PEHB models
was also conducted. The EHB model used a bang-bang controller for slip feedback control, whereas
the PEHB model employed a PID controller for slip feedback control. Figure 11 shows a block diagram
of the anti-lock braking control system. Additionally, different road surface condition control results
and braking distance comparisons were analyzed.
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4.1. PEHB System Simulations and Analyses

In this study, a mathematical model was first constructed and analyzed for a single-wheel PEHB,
as presented in Figures 12 and 13. MATLAB/Simulink was used to connect each block excluding
the coil and iron core, which were voltage signals; the primary parameters considered were air gaps,
hydraulic pressure, and flow. To simulate a braking situation, the inlet valve produced a constant
pressure of 100 bars. After the coil received the excitation command, the iron core began to move and
the inlet and outlet valves were adjusted to a certain opening degree. When the hydraulic pressure
used for the shaft was balanced with the solenoid force, the opening degree was maintained, and the
brake caliper decreased the caliper pressure moderately; that is, skidding due to locking from the
application of excessive braking force could be prevented, and the fluid flowing from the outlet valve
was carried away by the motor pump.
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Figure 13. Block diagram of single-wheel PEHB system.

Figure 14 shows step wave command relief simulation results. It shows that when the voltage is
lower than 1 V, the solenoid force is short to open the valve port. The corresponding caliper pressure
drops and iron core stroke for 2, 3, 4, 5, 6, 7, 8, 9, and 10 V are, respectively, 5.5, 19.8, 36.6, 55.4, 76.9, 98.0,
99.3, 99.4 and 99.5 bars and 0.17, 0.29, 0.38, 0.45, 0.55, 0.73, 0.78, 0.79 and 0.8 mm. The simulation results
show that the caliper pressure and iron core stroke are saturated when the command is greater than
8 V. The proportional valve simulation remains stable after pressure relief and meets with application
requirements, and it can be used as a reference for the internal controller of the subsequent ABS module
as the basis for the slip control calculation.
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Figure 15 shows the triangular wave command relief simulation results. The proportional
electromagnet is not actuated at command 2.5 V or less, and the pressure drop is 100 bars above 8 V.
The pressure drop between 2.5 V and 8 V is linear, and the relationship between voltage and pressure
drop can be derived as 18.2 bars/V. The caliper pressure follows the command well and linearly, and
the pressure does not have vibration when the valve is fully open.
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4.2. Motorcycle ABS Simulation Model with an EHB

Figure 16 depicts the brake mathematical model of the bang-bang controller using
MATLAB/Simulink, which represents the action characteristic (i.e., it must be open or closed) of
the solenoid valve. After the hydraulic pressure transfer function was applied and the hydraulic lag
time constant TB is 0.5 s, it was integrated to obtain pressure change. Finally, it was applied to the brake
caliper and the brake force was adjusted. Figure 17 depicts the establishment of a complete motorcycle
ABS simulation model, which comprised an EHB model, motorcycle motion model, tire model, and
integrated bang-bang controller model.

The slip command was fixed at 0.2 and the initial vehicle speed and front and rear wheel speeds
were controlled at 60 km/h. The brake force changed the wheel and vehicle speeds. The speed
difference between the two was converted into slip, that is, the feedback factor of the ABS control
loop. The simulation results are presented in Figure 18; the entire process was approximately 2.4 s,
braking distance was approximately 22 m, and during the process the wheel speed clearly oscillated
because of the on-off control. After 0.5 s, the slip oscillated at approximately 0.2 ± 0.1 and the front
wheel exhibited greater inertial force due to braking and therefore had a higher frequency. After 2 s,
the vehicle speed was decreased to less than 10 km/h; the slip increased due to loop gain and was
unstable and divergent. This was an inherent phenomenon of the ABS; thus, in general ABS controls,
the ABS function must be turned off when the vehicle speed is less than approximately 10 km/h.
First-order damping was applied to the bang-bang controller to alleviate the pressure output changing
into a ramp change. Generally, the braking process is affected by inertia, resulting in an increase in the
normal force of the front wheel and a decrease in the rear wheel. By controlling the brake component
measurements the same way, the simulations demonstrated that the front wheel would skid earlier,
and the slip would continue to oscillate and be unable to stabilize. In other words, under normal
ABS control, the average discharge pressure of the front wheel is higher than that of the rear wheel.
The average pressure of the simulation results was approximately 50 bars for the rear wheel, which
was greater than that of the front wheel (40 bars).
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Figure  18. EHB performing anti‐lock braking on a dry  road  surface:  (a) vehicle  speed and wheel 
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4.3. Motorcycle ABS Simulation Model for New PEHB

The solenoid valve brake actuator in Figure 19 was replaced with the mathematical models of the
PEHB and PID controller for ABS control simulations. The block diagram of the controller is provided
in Figure 20. In the PID controller, to increase integral compensation, a conditional function similar
to that of the bang-bang system was added in front of the integrator. Thus, for the integrator, this
was equivalent to receiving a gain of a previous order that is changeable. Figure 21 illustrates the
differences in simulation results for the system with and without the bang-bang controller in front
of the integrator in the PID controller. After the bang-bang controller was installed, front–rear wheel
slip control with a target value of 0.2 was conducted; the results indicated that during the initial
stage of the brake, the overshoot of the slip control was small. Subsequently, the steady-state error
was eliminated to achieve the target value, thereby reducing the braking distance. Finally, after the
controller parameters were adjusted by Ziegler and Nichols method, the controller parameters can
achieved Kp = −40, Ki = −5, and Kd = −0.5.
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Figure 21. The difference results with and without the bang-bang controller in the PID controller:
(a) front wheel; (b) rear wheel.

As presented in Figure 22a, under initial conditions of a dry road surface and identical vehicle
speed and front and rear wheel speeds, the braking sequence started at 0.1 s, at which time slip control
was also initiated. The vehicle speed and front and rear wheel speeds decreased steadily to a halt, and
the braking distance was further reduced to 21 m.
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The slip trends of the front and rear wheels are provided in Figure 22b. The slip was controlled
within a stable region, and the slip of the front and rear wheels were precisely controlled at a target
value of 0.2 at 0.5 s and 0.8 s, respectively. The pressures of the front and rear wheel calipers are
depicted in Figure 22c; the stable pressure indicates that the front wheel is higher. At the beginning,
because the slip of the front wheel had exceeded the target value at 0.2 s, the brake force had to be
removed as a response. After entering a precise slip control loop, it was revealed that brake pressure of
the front wheel was greater than that of the rear wheel, which was consistent with the normal braking
model of a motorcycle.
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speed; (b) slip; and (c) brake pressure.

As depicted in Figure 23a, under the initial conditions of a wet road surface and identical vehicle
speed and front and rear wheel speeds, the braking sequence started at 0.1 s, at which time the
slip control was initiated. The vehicle speed and front and rear wheel speeds decreased steadily
to a halt; however, the braking time increased by 0.7 s compared with that obtained for dry road
surface conditions.

The slip trends of the front and rear wheels are presented in Figure 23b. Skidding was more
evident in the front wheel, and was at its maximum at approximately 0.32. However, the slips of the
front and rear wheels were both precisely controlled at a target value of 0.2 at 0.78 s. The pressures
of the front and rear wheel calipers are depicted in Figure 23c. Because the slip of the front wheel
exceeded the target value at 0.2 s, the brake force had to be removed as a response; at the same time,
a precise slip control loop was applied. However, because the road surface was wet and the friction
coefficient was smaller, to avoid skidding, the brake force applied should not be overly strong. Because
the steady-state pressure was less than that of the dry road surface (approximately 60 bars), the braking
distance was longer than that of the dry road surface.
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Figure 23. PEHB performing anti-lock braking on a wet road surface: (a) vehicle speed and wheel
speed; (b) slip; and (c) brake pressure.

4.4. Analyses of Simulation Results

Figure 24 presents a comparison of the braking distances for four braking models, including the
braking distances of a traditional EHB and the PEHB of this study on dry and wet road surfaces, as well
as the braking distance without the addition of the ABS. The simulation results revealed that the PEHB
could effectively reduce braking distance, and that vehicles without an ABS had the longest braking
distances due to vehicle brake locking, which resulted in skidding. A summary of the parameters of
each simulation is shown in Table 4.
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Table 4. A summary of the parameters of each simulation.

Control Module and Mode Road State Braking Time (s) Stopping Distance (m) Slip (Steady State)

PEHB + PID Dry 2.29 20.88 0.2 ± 0.06
PEHB + PID Wet 2.97 26.42 0.2 ± 0.03

EHB + Bang-Bang Dry 2.40 21.73 0.2 ± 0.1
Without ABS Dry >3 >34.35 1

5. Conclusions

This study primarily integrated the inlet and outlet valves of a market EHB into a set of
proportional pressure control valves to achieve precise brake force control. MATLAB/Simulink was
used to establish the mathematical model of the PEHB actuator. The simulation results demonstrated
that this actuator had achieved a stable adjustment of depressurization control as well as favorable
linear precision and repeatability; therefore, it can be applied to the ABS for slip control. Additionally,
a complete motorcycle ABS simulation model was established, and simulations and analyses were
performed for the wheel speed, slip, and brake force of the EHB and PEHB on different road surfaces
during braking. Through the simulation results, it was demonstrated that the PEHB could achieve
more favorable stability and speed during breaking, in addition to precisely achieving the target values
during slip control and effectively reducing braking distance.
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