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Abstract: The generalized parametric structural schematic diagram, the generalized
structural-parametric model, and the generalized matrix transfer function of an electromagnetoelastic
actuator with output parameters displacements are determined by solving the wave equation
with the Laplace transform, using the equation of the electromagnetolasticity in the general form,
the boundary conditions on the loaded working surfaces of the actuator, and the strains along
the coordinate axes. The parametric structural schematic diagram and the transfer functions
of the electromagnetoelastic actuator are obtained for the calculation of the control systems for
the nanomechanics. The structural-parametric model of the piezoactuator for the transverse,
longitudinal, and shift piezoelectric effects are constructed. The dynamic and static characteristics of
the piezoactuator with output parameter displacement are obtained.

Keywords: structural-parametric model; electromagnetoelastic actuator; piezoactuator; nanomechanics;
deformation; parametric structural schematic diagram; displacement; transfer function

1. Introduction

Let us consider the role of an electromagnetoelastic actuator on the piezoeffect, the piezomagnetic
effect, and the electrostriction or the magnetostriction effect, which are used for precise alignment
in nanomechanics and adaptive optics [1–8]. A piezoactuator uses the inverse piezoeffect and plays
a role in the actuation or management of mechanisms, as well as converts electrical signals into
the displacement and the force. A piezoactuator is applied for research on the nanomechanics of
drives in nanotechnology, microelectronics, adaptive optics, biology as well as in scanning tunnelling
microscopes, scanning force microscopes, and atomic force microscopes [7–28].

In the present paper, the generalized structural-parametric model and the generalized parametric
structural schematic diagram of an electromagnetoelastic actuator are constructed by solving the wave
equation with the Laplace transform for the equation of the electromagnetolasticity in the general
form, the boundary conditions on the loaded working surfaces of the actuator, and the strains along
the coordinate axes. The transfer functions and the parametric structural schematic diagrams of the
piezoactuator are obtained from the generalized structural-parametric model.

In References [6,7], the solution of the wave equation of the piezoactuator was determined.
In References [6,14,15,28], the structural-parametric models and the schematic diagrams for the
simplest piezoactuators were obtained, and these were transformed into the structural-parametric
model of an electromagnetoelastic actuator with output displacements.

The structural-parametric model of the piezoactuator was determined in contrast to electrical
equivalent circuit types Cady and Mason for the calculation of the piezoelectric transmitter and
receiver, the vibration actuator, and the vibration motor [8–13]. Reference [12] presents the classic
analytical two-port lumped-element model (LEM) types Cady and Mason of the piezoelectric
composite circular plate with the output pressure. Reference [13] considers the development of various
lumped-element models as practical tools to design and manufacture actuators with the output velocity.
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In References [8,14,15], the transfer functions of the piezoactuator were used to overcome the problem
of the absolute stability condition of the strain control system for an electromagnetoelastic actuator.

The elastic compliances and the mechanical and adjusting characteristics of a piezoactuator
were explored in Reference [17–19] in order to calculate its transfer functions and create the
structural-parametric model. The structural-parametric model of a multilayer and compound
piezoactuator was determined in References [17–22] with output displacement. In this paper,
we solve the problem of building the generalized structural parametric model and the
generalized parametric structural schematic diagram of an electromagnetoelastic actuator for
the equation of electromagnetoelasticity in the general form. The difference of this work
from other reports [23,24,26–28] is that the construction of the structure-parametric model of the
electromagnetoelastic actuator is produced immediately in the general form, and not by the method of
mathematical induction from individual examples of models of piezoactuators.

2. Structural-Parametric Model and Transfer Functions of Electromagnetoelastic Actuator

Let us consider the general structural-parametric model and the parametric structural schematic
diagram of an electromagnetoelastic actuator with output parameter displacement. For the
electromagnetoelastic actuator, six stress components are presented; T1, T2, T3, T4, T5, T6, where
the components T1–T3 are related to extension-compression stresses, and T4–T6 are related to shear
stresses. In the electromagnetoelastic actuator, its deformation corresponds to the stressed state.

For polarized piezoceramics PZT the matrix state equations [11,14] with electric and elastic
variables can be given by two equations, where the first equation represents the direct piezoelectric
effect, and the second describes the inverse piezoelectric effect:

D = dT + εTE (1)

S = sET + dtE (2)

where D is the column matrix of electric induction; S is the column matrix of relative deformations;
T is the column matrix of mechanical stresses; E is the column matrix of electric field strength; sE is the
elastic compliance matrix for E = const; εT is the matrix of dielectric constants for T = const; and dt is
the transposed matrix of the piezoelectric modules.

The piezoactuator or piezoplate has the following properties: δ is the thickness, h is the height,
b is the width, and l = {δ, h, b respectively denotes the length of the piezoactuator for the longitudinal,
transverse, and shift piezoeffect. The direction of the polarization axis P, i.e., the direction along which
polarization was performed, is usually taken as the direction of axis 3 on kinematic schemes of the
piezoactuator, shown in Figure 1.

The equation of electromagnetoelasticity [11,14,24] in the general form is:

Si = dmiΨm(t) + sΨ
ij Tj(x, t) (3)

where Si = ∂ξ(x, t)/∂x, Ψm(t) = {Em(t) , Dm(t), Hm(t), and Si is the relative displacement of the
cross-section of the piezoactuator along axis i, Ψm(t) is the control parameter along axis m = 1, 2, 3
for Figure 1, ξ(x, t) is the displacement of the section of the piezoactuator, dmi is the piezomodule,
Em(t) = U(t)/δ is the electric field strength along axis m, U(t) is the voltage between the electrodes
of the actuator, Dm(t) is the electric induction along axis m, Hm(t) is the magnet field strength along
axis m, sΨ

ij is the elastic compliance for Ψ = const, Tj is the mechanical stress along axis j, and i, j = 1, 2,
. . . , 6. The main size is the length l of the piezoactuator, respectively, denotes the thickness, height,
and width for the longitudinal, transverse, and shift piezoeffect in Figure 1a–c.
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Figure 1. Kinematic schemes of the piezoactuator (a) for the longitudinal piezoeffect; (b) transverse 
piezoeffect; and (c) shift piezoeffect. 

To calculate the electromagnetoelastic actuator, we used the wave equation [6,7,14] for the wave 
propagation in the long line with damping but without distortions. After Laplace transform is 
obtained, the linear ordinary second-order differential equation with the parameter p is achieved, 
where the original problem for the partial differential equation of hyperbolic type using the Laplace 
transform is reduced to the simpler problem for the linear ordinary differential equation. 

Figure 1. Kinematic schemes of the piezoactuator (a) for the longitudinal piezoeffect; (b) transverse
piezoeffect; and (c) shift piezoeffect.

To calculate the electromagnetoelastic actuator, we used the wave equation [6,7,14] for the wave
propagation in the long line with damping but without distortions. After Laplace transform is obtained,
the linear ordinary second-order differential equation with the parameter p is achieved, where the
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original problem for the partial differential equation of hyperbolic type using the Laplace transform is
reduced to the simpler problem for the linear ordinary differential equation.

d2Ξ(x, p)
dx2 − γ2Ξ(x, p) = 0 (4)

with its solution
Ξ(x, p) = Ce−xγ + Bexγ (5)

where Ξ(x, p) is the Laplace transform of the displacement of the section of the electromagnetoelastic
actuator, γ = p/cΨ + α is the propagation coefficient, cΨ is the sound speed for Ψ = const, α is the
damping coefficient, and Ψ is the control parameter; E stands for the voltage control, D for the current
control, and H for the magnet field strength control.

From Equations (3)–(5), the boundary conditions on loaded surfaces, the strains along the axes the
system of equations for the generalized structural-parametric model, and the generalized parametric
structural schematic diagram are determined in Figure 2 for the electromagnetoelastic actuator with
output parameters and the Laplace transform for the displacements of the faces in the form:

Ξ1(p) =
(

1
M1 p2

){
−F1(p) +

(
1
χΨ

ij

)[ dmiΨm(p)−
−
(

γ
sh(lγ)

)
[ch(lγ)Ξ1(p)− Ξ2(p)]

]}

Ξ2(p) =
(

1
M2 p2

){
−F2(p) +

(
1
χΨ

ij

)[ dmiΨm(p)−
−
(

γ
sh(lγ)

)
[ch(lγ)Ξ2(p)− Ξ1(p)]

]} (6)

where χΨ
ij =

sΨ
ij

S0
dmi =


d33, d31, d15

g33, g31, g15

d33, d31, d15

, Ψm =


E3, E3, E1

D3, D3, D1

H3, H3, H1

, sΨ
ij =


sE

33, sE
11, sE

55
sD

33, sD
11, sD

55
sH

33, sH
11, sH

55

,

l = {δ, h, b, cΨ =
{

cE, cD , cH , γΨ =
{
γE,γD ,γH , dmi is the coefficient of the electromagnetolasticity

or the piezomodule, the coefficient of magnetostriction, and F1(p), F2(p) are the Laplace transform of
the forces on the faces of the electromagnetoelastic actuator in Figure 1a–c.
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The generalized parametric structural schematic diagram (Figure 2) of the electromagnetoelastic
actuator corresponds to Equation (6) for the Laplace transform of the displacements of the faces.
The generalized transfer functions of the electromagnetoelastic actuator are the ratio of the Laplace
transform of the displacement of the face actuator and the Laplace transform of the corresponding
control parameter or the force at zero initial conditions. From Equation (6), the generalized matrix
equation of the deformation for the electromagnetoelastic actuator has the form:

(
Ξ1(p)
Ξ2(p)

)
=

(
W11(p) W12(p) W13(p)
W21(p) W22(p) W23(p)

) Ψm(p)
F1(p)
F2(p)

 (7)

where
W11(p) = Ξ1(p)

Ψm(p) =
νmi
Aij

[
M2χ

Ψ
ij p2 + γth

(
lγ
2

)]
Aij = M1M2

(
χΨ

ij

)2
p4 +

(M1+M2)χ
Ψ
ij

cth(lγ) p3+

+

[
(M1+M2)χ

Ψ
ij α

th(lγ) + 1
c2

]
p2 + 2α

c p + α2

c = cΨ

W21(p) = Ξ2(p)
Ψm(p) =

νmi
Aij

[
M1χ

Ψ
ij p2 + γth

(
lγ
2

)]
W12(p) = Ξ1(p)

F1(p) = −
χΨ

ij
Aij

[
M2χ

Ψ
ij p2 + γ

th(lγ)

]
W13(p) = Ξ1(p)

F2(p) = W22(p) = ξ2(p)
F1(p) =

χΨ
ij γ

Aijsh(lγ)

W23(p) = Ξ2(p)
F2(p) = −

χΨ
ij

Aij

[
M1χ

Ψ
ij p2 + γ

th(lγ)

]
.

Let us find the displacement of the faces the electroelastic actuator in the stationary regime for
Ψm(t) = Ψm0 · 1(t), F1(t) = F2(t) = 0, and inertial load. The static displacement of the faces of the
electroelastic actuator ξ1(∞) and ξ2(∞) can be written in the following forms:

ξ1(∞) = lim
t→∞

ξ1(t) =
νmilΨm0(M2 + m/2)

M1 + M2 + m
(8)

ξ2(∞) = lim
t→∞

ξ2(t) =
νmilΨm0(M1 + m/2)

M1 + M2 + m
(9)

ξ1(∞) + ξ2(∞) = lim
t→∞

(ξ1(t) + ξ2(t)) = νmilΨm0 (10)

where m is the mass of the electroelastic actuator, and M1, M2 are the load masses.
The static displacements of the faces of the piezoactuator for the longitudinal piezoeffect

(Figure 1a) and m << M1 and m << M2 are obtained in the following forms:

ξ1(∞) = lim
p→ 0
α→ 0

pW11(p)U0

δp
=

d33U0M2

M1 + M2
(11)

ξ2(∞) = lim
p→ 0
α→ 0

pW21(p)U0

δp
=

d33U0M1

M1 + M2
(12)
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Let us consider a numerical example for a piezoactuator from PZT d33 = 4 · 10−10 m/V,
U = 400 V, M1 = 1 kg, and M2 = 4 kg. We obtain the static displacements of the
faces of the piezoactuator for the longitudinal piezoeffect: ξ1(∞) = 128 nm, ξ2(∞) = 32 nm,
ξ1(∞) + ξ2(∞) = 160 nm.

The static displacements of the faces of the piezoactuator for the transverse piezoeffect (Figure 1b)
and m << M1 and m << M2 are determined in the following forms:

ξ1(∞) = lim
p→ 0
α→ 0

pW11(p)U0

δp
=

d31hU0M2

δ(M1 + M2)
(13)

ξ2(∞) = lim
p→ 0
α→ 0

pW21(p)U0

δp
=

d31hU0M1

δ(M1 + M2)
(14)

For the piezoactuator from PZT under the transverse piezoeffect at m << M1 and m << M2,
d31 = 2.5 · 10−10 m/V, h/δ = 20, U = 360 V, M1 = 1 kg, and M2 = 4 kg. The static displacements of
the faces are obtained: ξ1(∞) = 1440 nm, ξ2(∞) = 360 nm, ξ1(∞) + ξ2(∞) = 1800 nm.

From Equation (7), the transfer function of the piezoactuator for the transverse piezoelectric effect
for one rigidly fixed face of the piezoactuator at M1 → ∞ is determined in the form:

W21(p) = Ξ2(p)/E3(p) = d31h/
[

M2hχE
11 p2 + hγcth(hγ)

]
(15)

From Equation (15), the resonance condition at M1 → ∞ and M2 = 0 is obtained in the form:

ctgkh = 0 (16)

where k = ω/cE is the frequency coefficient;ω is the circular frequency.
Because

kih = π(2i− 1)/2 (17)

where index i = 1, 2, 3, ....
Therefore, the piezoactuator is the quarter-wave vibrator with the resonance frequency:

f1 = cE/(4h). (18)

For the piezoactuator from PZT under the transverse piezoeffect at cE = 3 · 103 m/s,
h = 5 · 10−2 m, the resonance frequency f1 = 15 kHz is obtained. The experimental and calculated
values for the piezoactuator are in agreement up to an accuracy of 5%.

For the approximation of the hyperbolic cotangent by two terms of the power series in transfer
function (Equation (15)), the following expressions of the transfer function of the piezoactuator are
obtained for the elastic-inertial load at M1 → ∞ , m << M2 under the transverse piezoeffect, and the
control voltage for the resistance R = 0 of the voltage source (Figure 3) is given in the form:

W(p) = Ξ2(p)
U(p) = d31h/δ

(1+Ce/CE
11)(T2

t p2+2Ttξt p+1)

Tt =
√

M2/
(
Ce + CE

11
)
, ξt = αh2CE

11/
(

3cE
√

M
(
Ce + CE

11
)) (19)

where U(p) is the Laplace transform of the voltage, Tt is the time constant, and ξt is the damping
coefficient of the piezoactuator.
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The expression for the transient response of the voltage-controlled piezoactuator for the
elastic-inertial load under the transverse piezoeffect and the resistance R = 0 of the voltage source is
determined in the following form:

ξ(t) = ξm

[
1− e

− ξt t
Tt√

1−ξ2
t

sin(ωtt +ϕt)

]
ξm = d31(h/δ)Um

1+Ce/CE
11

,ωt =

√
1−ξ2

t
Tt

, ϕt = arctg
(√

1−ξ2
t

ξt

) (20)

where ξm is the steady-state value of displacement of the piezoactuator, and Um is the amplitude of
the voltage.

For the voltage-controlled piezoactuator from the piezoceramics PZT under the transverse
piezoelectric effect for the elastic-inertial load M1 → ∞ , m << M2 and input voltage with amplitude
Um = 200 V at d31 = 2.5 · 10−10 m/V, h/δ = 20, M2 = 9 kg, CE

11 = 2 · 107 N/m, Ce = 0.5 · 107 H/m,
values ξm = 800 nm, Tt = 0.6 · 10−3 s are obtained.

3. Results and Discussions

The generalized structural-parametric model, the generalized parametric structural schematic
diagram, and the matrix equation of an electromagnetoelastic actuator with output parameters
displacements are obtained from the solutions of the wave equation with the Laplace transform
and from its deformations along the coordinate axes.

From the generalized matrix equation for the transfer functions of the electromagnetoelastic
actuator, the matrix equations of the piezoactuator for the longitudinal, transverse, and shift
piezoelectric effects are constructed after algebraic transformations.

The dynamic and static characteristics of the piezoactuator are constructed in order to elucidate
the nanomechanics, with regard to its physical parameters and the external load.

The structural-parametric model and the parametric structural schematic diagrams of the
voltage-controlled piezoactuator for the longitudinal, transverse, and shift piezoelectric effects are
determined from the generalized structural-parametric model of the electromagnetoelastic actuator for
the nanomechanics by replacing the generalized parameters with the parameters of the piezoactuator.

4. Conclusions

The generalized structural-parametric model, the generalized parametric structural schematic
diagram, and the matrix equation of an electromagnetoelastic actuator with output parameters
displacements for the nanomechanics were obtained. The structural-parametric model, the matrix
equation for the transfer functions, and the parametric structural schematic diagram of the
piezoactuator for the transverse, longitudinal, and shift piezoelectric effects were determined from the
generalized structural-parametric model of the electromagnetoelastic actuator.

From the solution of the wave equation with the Laplace transform, the equation of the
electromagnetolasticity in the general form, the deformations along the coordinate axes of the
generalized structural-parametric model, and the generalized parametric structural schematic diagram
of the electromagnetoelastic actuator with output parameters displacements were constructed for
the nanomechanics. The deformations of the actuator were described by the matrix equation for the
transfer functions of the actuator.
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To calculate control systems in the nanomechanics of nanotechnology, microelectronics,
nanobiology, astronomy, and adaptive optics, the transfer functions of the electromagnetoelastic
actuator were obtained.

The deformations of the piezoactuator for the nanomechanics were described by the matrix
equation and the transfer functions of the piezoactuator. The structural-parametric model, the
parametric structural schematic diagrams, and the transfer functions of the piezoactuator make
it possible to describe the dynamic and static characteristics of the piezoactuator for the nanomechanics
with regard to its physical parameters and the external load.
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