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Abstract: An unusual idea for the construction of active magnetic bearings has been recently discussed
in the literature. Theoretical results predict a greater equivalent stiffness for it, when compared with
traditional active magnetic bearings. The development of a mathematical model that allows these
predictions and the use of recently-built prototypes for testing if the expectations hold true are the
main goals of this paper.
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1. Introduction

Conventional AMBs (active magnetic bearings) [1–3], here called Type A, are based on the
structure shown in Figure 1. There are four “U-shaped electromagnets”, two for the x or horizontal
direction and two in the y or vertical direction, resulting in four independent magnetic flux loops.
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i1(t)

Figure 1. Type A, or traditional, configuration for active magnetic bearings (AMBs); windings are
shown for the positive x direction only; there are no connections among the flux paths. Opposing pairs
of windings along the x (y) direction control the horizontal (vertical) position.
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The windings in the x and y direction are fed with currents i0 ± ix(t) and i0 ± iy(t); the constant
current i0 is the base, or bias, and the differential currents ix and iy will control the rotor position.
Using basic reluctance concepts, the resultant forces fx and fy can be expressed in terms of these
currents, the air magnetic permeability µ0, the total number of coils na, the cross-section area in
the stator ferromagnetic material Aa and the nominal length h of the air gaps. After a standard
linearization procedure [1] around the operating point x = y = ix = iy = 0, the forces generated by
the Type A structure are shown in (1). Notice that the unconnected nature of the magnetic fluxes leads
to uncoupled forces:

fx = ka
px + ka

i ix

fy = ka
py + ka

i iy

 where

 ka
p = µ0 Aan2

ai20/h3

ka
i = µ0 Aan2

ai0/h2.
(1)

A different structure for magnetic bearings, here named Type B, is possible, with four windings
that lead to interconnected magnetic loops, as depicted in Figure 2. This structure is found in the
split-winding self-bearing motors researched in Brazil [4–10], among others. In that approach,
to provide a simultaneous torque, alternate currents are injected into the windings; for AMBs,
DC currents are considered.

AbAb
2 nb

i1(t)

Figure 2. Type B, the proposed configuration for AMBs; windings are shown for the positive x direction
only; the flux paths are interconnected. Opposing pairs of windings along the x (y) direction control
the horizontal (vertical) position.

It is now appropriate to discuss, in a preliminary way, some aspects of this different geometry for
AMBs. At first glance, it seems safe to state that Type B, with its four- “pole” stator structure, shows
a cleaner and more compact design than Type A, which will probably result in more cost-effective
manufacturing situations. It is also easy to accept that Type B offers more space for heat dissipation
and that the flux losses in its coils are smaller.

It is clear that all of the very desirable Type B characteristics in the above paragraph do not
represent true facts yet: they are only very reasonable conjectures that must be thoroughly tested
before definite conclusions can be made. If all of these considerations turn out to be true, then the Type
B geometry must be seen as a valid alternative to, if not as a better choice than, Type A for AMBs.

The main goal of this work is to discuss at some depth yet another aspect of this “reduced
pole” geometry: its capability of generating restoring forces fx and fy that are potentially better for
AMBs than those in the eight-“pole” case. It will be shown, in a theoretical way, that the linearized
restoring forces for Type B are similar to those for Type A, shown in (1), but with a higher magnitude.
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Is this ability of generating higher forces a desired characteristic for AMBs? This problem will also be
addressed in this paper, with the help of examples. In order to assure that the theoretical conclusions
for the four-pole geometry hold true in the real world, a series of laboratory tests is necessary. The
final sections in this article deal with prototypes that have been built for Types A and B and consider
the possible tests capable of comparing the force-generating performances of both structures.

This paper is based on ongoing research [11–13]. Its first stage, shown here, is based on theoretical
considerations and on simulations; the last steps of this research, the important laboratory tests that
can validate all of the initial considerations, are not ready yet, and will be presented in a future work.
The material covered in this article is spread throughout the sections as follows. A mathematical
model, based on elementary reluctance concepts, is detailed in Section 2, which tracks closely [11]
and [12]. This model explains the generation of reluctance forces fx and fy in Type B bearings; the
linearized final expressions for these forces show a decoupled nature, similar to those for Type A in (1).
In addition, the position and current constants, kb

p and kb
i , are shown to have higher values than in the

A case.
Section 3 presents analytical results and simulations on how increased values of kb

p,i affect
the dynamics and control aspects of AMBs in a positive way [12]; simple examples that illustrate
meaningful control situations are used. The prototypes built to the laboratory tests that will compare
Types A and B are shown in Section 4; a mathematical model describing their dynamic behavior is
developed. In Section 5, simulations of some control laws applied to the prototypes are made, and
their results are discussed. The importance of this section is that the control laws used here will be the
ones driving the prototypes in the real tests. Discussions about the future real tests, final comments
and general considerations on what remains to be done are made in Section 6.

Other results are known in the literature with the Type B bearing concept. In [14], a Type
B structure is used to minimize rotor vibrations; a non-linear expression for the bearing forces is
mentioned by the authors. The Type B geometry is used in a magnetic force determination problem,
in [15]; some steps are taken toward a reluctance model for the bearing forces. A patent for a Type B
bearing was claimed and granted in [16], where some superior aspects of this structure are described.
This short list is all that the authors could find.

None of the references above shows a detailed mathematical model, neither nonlinear nor linear,
for the reluctance forces generated in a Type B structure, or any type of comparisons with Type A,
like the ones presented in the next sections. The main contribution of this work is this mathematical
model and the comparisons between the two possible types of AMBs.

2. Force Generation in Type B Bearings

A detailed study of the force generation in the flux interconnected structure (Type B) was presented
in [6,11,12]; the main points are now repeated. The x and y components of a radial displacement of the
rotor change the nominal gap width h, as shown in Figure 3.

To compensate the displacements, it is usual to apply differential currents [1] to the pairs of
windings: the differential, or control, currents ix(t), for the x or horizontal direction, and iy(t), for the
vertical direction, are added and subtracted to a base, or bias, current i0, a constant DC level. The total
currents imposed at each winding are:

i1(t) = i0 + ix(t) and i3(t) = i0 − ix(t) for the x direction, (2)

i2(t) = i0 + iy(t) and i4(t) = i0 − iy(t) for the y direction. (3)

Light pink lines in Figure 2 represent the magnetic flux distribution caused by these currents.
The reluctance forces depend on the magnetic fluxes φk, k = 1, 2, 3, 4, in the four air gaps with
cross-section Ab:

fx =
φ2

1 − φ2
3

2µ0 Ab
and fy =

φ2
2 − φ2

4
2µ0 Ab

. (4)
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Figure 3. When the rotor moves x and y in the horizontal and vertical positions, the air gap widths
change to h− x in the right pole, h + x (left pole), h− y (upper pole) and h + y (lower pole); the fluxes
are not shown.

The ferromagnetic connections in Type B allow a current injected in any winding to cause fluxes
in all four air gaps; Figure 4 illustrates the effects of i1 in all four “poles”. If φjk denotes the flux in air
gap j caused by a current in winding k, the total magnetic flux φ1 in “Pole” 1 is a function of the fluxes
φ11, φ12, φ13, φ14. Assuming no air or ferromagnetic losses and positive signs for fluxes headed to the
rotating center, the total magnetic fluxes in the poles are:

φ1 = φ11 + φ12 − φ13 + φ14, φ2 = −φ21 − φ22 − φ23 + φ24, (5)

φ3 = −φ31 + φ32 + φ33 + φ34, φ4 = −φ41 + φ42 − φ43 − φ44. (6)

x

y

i1(t)

φ21

φ41

φ31 φ11

Figure 4. Magnetic flux distribution associated with i1 in the Type B magnetic bearing; current injected
only in Winding 1 causes fluxes in all air gaps.

For the determination of the φjk, let the magneto-motive force generated by i1 be denoted by F1

and the reluctance of the air gaps in the four poles in Figure 3 byR1,R2,R3 andR4. Recalling that
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Ab is the cross-section area of the poles in Figure 2 and that the displacements h, x and y are explained
in Figure 3, the reluctances are expressed by:

R1 =
h− x
µ0 Ab

, R2 =
h− y
µ0 Ab

, R3 =
h + x
µ0 Ab

, R4 =
h + y
µ0 Ab

. (7)

The equivalent circuit that models the magnetic flux situation in a Type B structure is shown
in Figure 5.

F1���
φ11 R1

φ31 R3

φ41

φ21 R2

R4

Figure 5. Magnetic flux equivalent circuit associated with current only in Winding 1 of the Type B
magnetic bearing.

A simple way to extract information from magnetic circuits like the one in Figure 5 is by using the
passive electric circuit analogy: fluxes are treated as currents; operations with reluctances are the same
as those with resistances; and the usual operations allowed in Kirchoff’s rules are valid. It is easy to
see that in the circuit under study, reluctanceR1 is in series with the parallel combination of reluctance
R2,R3 andR4. IfR∗ denotes the equivalent reluctance of the parallel combination:

1
R∗

=
1
R2

+
1
R3

+
1
R4

=
R3R4 +R2R4 +R2R3

R2R3R4
(8)

that easily leads to the value of R∗. Therefore, the magnetic circuit in Figure 5 can be replaced by
a single reluctanceRe

1 given by:

Re
1 = R1 +R∗ = R1 +

R2R3R4

R3R4 +R2R4 +R2R3
(9)

and, finally:

Re
1 =
R1R2R3 +R1R2R4 +R1R3R4 +R2R3R4

R2R3 +R2R4 +R3R4
. (10)

To avoid cumbersome formulas, some auxiliary variables are defined:

N = R1R2R3 +R1R2R4 +R1R3R4 +R2R3R4, (11)

D1 = R2R3 +R2R4 +R3R4, D2 = R1R3 +R1R4 +R3R4, (12)

D3 = R1R2 +R1R4 +R2R4, D4 = R1R2 +R1R3 +R2R3. (13)

Since F1 = nbi1, algebraic operations lead to expressions for the fluxes associated with i1 = i0 + ix

imposed on the winding in Pole 1 of Figure 3:

φ11 =
F1

Re
1
= nb(i0 + ix)

D1

N
, φ21 = nb(i0 + ix)

R3R4

N
, (14)

φ31 = nb(i0 + ix)
R2R4

N
, φ41 = nb(i0 + ix)

R2R3

N
. (15)
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The same procedure, repeated for currents i2, i3, i4 imposed at the windings in Poles 2, 3 and 4 in
Figure 3 results in:

φ12 = nb(i0 + iy)
R3R4

N
, φ22 = nb(i0 + iy)

D2

N
, φ32 = nb(i0 + iy)

R1R4

N
, φ42 = nb(i0 + iy)

R1R3

N
,

φ13 = nb(i0 − ix)
R2R4

N
, φ23 = nb(i0 − ix)

R1R4

N
, φ33 = nb(i0 − ix)

D3

N
, φ43 = nb(i0 − ix)

R1R2

N
,

φ14 = nb(i0 − iy)
R2R3

N
, φ24 = nb(i0 − iy)

R1R3

N
, φ34 = nb(i0 − iy)

R1R2

N
, φ44 = nb(i0 − iy)

D4

N
.

The total fluxes φk for k = 1, 2, 3, 4 can be determined by substituting the previous values of
the partial fluxes φjk in Equations (5) and (6). Then, with the help of (4), the total reluctance forces
generated in a Type B magnetic bearing can be expressed as:

fx =
µ0 Abn2

b
2

qx(h, x, y, i0, ix, iy) and fy =
µ0 Abn2

b
2

qy(h, x, y, i0, ix, iy) (16)

where qx,y are complicated functions of their arguments:

qx(h, x, y, i0, ix, iy) =
N2

1 − N2
2

∆2 and qy(h, x, y, i0, ix, iy) =
N2

3 − N2
4

∆2 (17)

with

N1 = (i1 + i2)∆1 + (i1 − i3)∆2 + (i1 + i4)∆3, N2 = (i3 − i1)∆2 + (i2 + i3)∆4 + (i3 + i4)∆5,

N3 = (i1 + i2)∆1 + (i2 + i3)∆4 + (i2 − i4)∆6, N4 = (i1 + i4)∆3 + (i3 + i4)∆5 − (i2 − i4)∆6.

The currents ik are defined in Equations (2) and (3); if the distances h± x and h± y are denoted
by δ±x and δ±y , the ∆s above are:

∆1 = δ+x δ+y , ∆2 = δ+y δ−y , ∆3 = δ+x δ−y

∆4 = δ−x δ+y , ∆5 = δ−x δ−y , ∆6 = δ+x δ−x

∆ = δ−x δ−y δ+x + δ−x δ−y δ+y + δ−x δ+x δ+y + δ−y δ+x δ+y .

The complexity of the above formulas makes the linearization of (16) a hard task. Considering that
the AMB operates around a point P0 = (x, y, ix, iy)0 = (0, 0, 0, 0), the use of symbolical computation,
or even a pen on paper procedure, allows the calculation of the partial derivatives:

∂qx

∂x

∣∣∣∣
P0

=
4i20
h3

∂qx

∂y

∣∣∣∣
P0

= 0 (18)

∂qx

∂ix

∣∣∣∣
P0

=
4i0
h2

∂qx

∂iy

∣∣∣∣
P0

= 0. (19)

If a similar procedure is made for qy, the combined results lead to the linear expressions for the
Type B structure forces:

fx = kb
px + kb

i ix

fy = kb
py + kb

i iy

where

 kb
p = 2µ0 Abn2

bi20/h3

kb
i = 2µ0 Abn2

bi0/h2.
(20)

Two remarkable aspects are to be noted when these expressions are compared with the ones in (1):
(a) even though the fluxes are interconnected in a Type B structure, the forces are decoupled, exactly
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as they were in Type A; (b) a factor of two appears in the formulas above for the kb
p,i, which was not

present in Case A.
In the above developments, an underlying assumption is made: there is no magnetic saturation.

What happens when both types are saturated? This is a pertinent question that cannot be answered
with theoretical tools: extensive laboratory tests would have to be done.

3. Theoretical Comparisons

Assuming the same outside diameter of the stator, the following characteristics can be identified
for the Type B active magnetic bearing when it is compared with Type A:

1. The position and current constants kb
p and kb

i in (20) are two-times bigger than their counterparts
ka

p and ka
i in Equation (1);

2. the cross-section area Ab can be chosen greater than Aa; it is reasonable to have Ab ≈ 2Aa;
3. the number of coils nb can, possibly, be larger than na.

The net conclusion is: the position (kp) and current (ki) constants for Type B AMBs have values at
least two-times higher than in Case A. Depending on the design aspects (Ab and nb), even higher rates
can be achieved. How much can these constants be increased? The magnetic saturation seems to be
the limit. Higher valued coefficients mean, at first sight, higher forces for the same input currents and
displacements and a different dynamic behavior for Type B. Are these effects beneficial in the AMB
performance? Are they sound advantages?

To evaluate the effects of kb and ki in an AMB operation, a theoretical analysis was applied, in [12],
to a simple, but meaningful, control problem, where many aspects of the real-life functioning of AMBs
are present. That material is summarized in Figure 6: a particle moving without friction in a horizontal,
rectilinear path is to be positioned.

i- MD1
- xy

m
MD2 �

Figure 6. The particle position x(t) is to be controlled by injecting currents in the magnetic devices
MD1 and MD2; only horizontal and frictionless movements are considered.

The magnetic devices MD1 and MD2 apply a resultant force f (t) = kpx(t) + kii(t) on the sphere,
where i is a control current and x is the displacement. A controller is desired, for driving x(t) to zero for
all possible initial conditions, and in the eventual presence of constant, horizontal disturbance forces d.
A mathematical model can be found with a simple application of Newton’s law: f (t) + d(t) = mẍ(t).
The linear nature of f leads to mẍ(t)− kpx(t) = kii(t) + d(t), which can be expressed, with the use of
Laplace transforms, as (ms2 − kp)X(s) = ki I(s) + D(s). The particle position (its Laplace transform)
is, therefore, given by:

X(s) =
ki I(s) + D(s)

ms2 − kp
=

(1/m)

s2 − (kp/m)
(ki I(s) + D(s)) = G(s)(ki I(s) + D(s)) (21)

where G(s) is called the plant transfer function. The controller’s output is the current i and its input
is the error signal e = r− x where r is an external reference that indicates the desired behavior of x
(in this case, r = 0). If C(s) is the controller transfer function, then, using the Laplace transforms:

I(s) = C(s)E(s) = C(s)(R(s)− X(s)). (22)
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Combining (21) and (22), it is possible, after some direct algebraic manipulations, to see how the
overall output x depends on the command input r and the disturbance input d:

X(s) = Tc(s)R(s) + Td(s)D(s) where Tc(s) =
kiC(s)G(s)

1 + kiC(s)G(s)
and Td(s) =

G(s)
1 + kiC(s)G(s)

. (23)

The command transfer function Tc(s) measures the effect of the reference input r on the closed
loop behavior; it is common to say that controllers are designed to make Tc(s) as close to unity as
possible, meaning that x must be as close to r as possible. The disturbance transfer function Td(s)
indicates how the controlled output x depends on d; controllers should, ideally, make Td(s) as close
to zero as possible. Block diagrams, widely used in control studies, are a very convenient tool for
presenting expressions like (21) and (22) in an easy to understand graphical way. The block diagram in
Figure 7 models the use of a controller C(s) in the particle problem.

r +- j-e C(s) i- ki���- ?
d

+j- G(s) x-

6−
G(s) = 1/m

s2−kp/m

Figure 7. Block diagram showing the plant dynamics, in the transfer function G(s), and a closed loop
control scheme with a controller C(s).

It is possible, using the simple rules of the so-called block diagrams algebra, to extract Tc(s) and
Td(s) from block diagrams, which is easier and faster than the above manipulations leading to (23).
These last paragraphs cover basic control aspects and can be found in almost all textbooks on the field.

A stabilizing PD controller C(s) = αs + β guarantees that initial displacements x(0) 6= 0 are
corrected, when d = 0. The speed of convergence depends on the closed loop poles, which are functions
of α and β. The effects of extra horizontal forces d on x(t) can be evaluated by Xd(s) = Td(s)D(s),
where Td(s) is the disturbance transfer function. For this problem, the effect of d on x is described,
with the results in (23) and using C(s) = αs + β for the PD controller, by:

Td(s) =
G(s)

1 + kiC(s)G(s)
=

1/m
s2 + a1s + a0

where the characteristic polynomial coefficients are: a1 = αki/m and: a0 = (βki − kp)/m. The steady
state influence of disturbances, when r = 0, is measured by ρ = limt→∞ x(t). Assuming closed
loop stability, an important property of the Laplace transforms (the final value theorem) says that:
ρ = lims→0 sX(s) = lims→0 sTd(s)D(s). For constant disturbances D(s) = d0/s this leads to

ρ = lim
s→0

sTd(s)
d0

s
= d0Td(0) =

d0

βki − kp
. (24)

The well-known fact that PD controllers do not completely reject (ρ = 0) constant disturbances
becomes apparent. However, Equation (24) tells more: for a fixed, stabilizing controller, ρ decreases
when kp and ki increase by the same factor. In other words, if the position and current coefficients in a
magnetic force generation law are both increased by the same amount, the resulting PD control is less
sensitive to constant disturbances, and this characterizes a better, stiffer suspension.
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Since a full steady state rejection of constant disturbances can be achieved by PID controllers,
consider now C(s) = αs + β + γ/s. The new disturbance transfer function Td(s) is:

Td(s) =
s/m

s3 + a2s2 + a1s + a0
with


a2 = αki/m

a1 = (βki − kp)/m

a0 = γki/m.

Because each coefficient depends on a single controller parameter, the closed loop poles can be
arbitrarily assigned. A simple calculation shows that complete rejection (ρ = 0) of step disturbances is
indeed achieved by the PID controller.

In order to feel the performance details of the situation, a simulation was performed. The numerical
values, in the SI system, m = 4, k0

i = 200 and k0
p = 200,000 were used. A PID controller that assigns

all of the closed loop poles at −10 was calculated: α = 3/5, β = 10,006 and γ = 20. An initial
displacement of 1 cm was imposed on the sphere, and in less than 1 s, it returned to the desired rest
position x = 0. After stabilization, a constant disturbance (d0 = 40 N) was applied and successfully
rejected. Figure 8 shows the curves for different values of the ki and kp constants: (k0

i , k0
p), (2k0

i , 2k0
p),

(4k0
i , 4k0

p) and (8k0
i , 8k0

p).

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

 

 

Figure 8. Sphere positioning with PID control for several values of the magnetic constants kp and ki.
The vertical axis displays the sphere displacement x, in meters; time t is in the horizontal axis, with a
total simulation time of 4 s, using 105 points per second. The highest rising, dark blue curve refers to
the nominal values (NV) k0

p and k0
i ; twice the NV leads to the dark green (second highest rising) curve;

four- and eight-times the NV generate the next curves, red and light blue.

All curves are very similar in the first 2 s, implying that high or low values for the magnetic
constants are not crucial in the stabilizing stage. However, when constant disturbance rejection is
needed, better transient behaviors are a direct consequence of higher values in kp and ki.

The conclusions of this simple example in [12] are valid in much more general situations, involving
real-world applications of practical interest. Additionally, these conclusions are: increasing the values
of the magnetic force constants kp and ki is a highly desirable goal in the AMB field.

4. Prototype Building and Models

The final conclusions of Sections 2 and 3 are that the interconnected fluxes in the Type B structure
increase the values of the magnetic force constants kp and ki. How sure can one be about the theoretical
tools used in those developments? The best possible way to answer this question is by constructing
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and testing prototypes in an exhaustive way. Only after this stage will the ideas proposed here be
validated; or not. Two prototypes, one for Type A and the other for Type B, have been constructed;
Figure 9 shows a top view of them. A vertical rotor with a large, perforated upper disk will fill the
above pieces; the same Figure 9, in the center, shows a view of a mounted kit, with the rotor inserted
in the carcass with the stators. The upper disk’s sole purpose is to determine whether Type B is really
a stiffer AMB than Type A; see Section 5. This is because it can generate, in an easy way, as explained
in Section 4.4, harmonic disturbances.

Type A stator

mounted kit

Type B stator

Figure 9. Top view of Prototypes A, on the left, and B, on the right; notice the eight “poles” in Type A
and only four “poles” in Type B. A mounted kit is shown in the center, with a vertical rotor inserted in
one of the carcasses. The perforated disk built in the upper position is used for mass unbalance tests.

The details of the vertical part are depicted in Figure 10. The bottom part is a mechanical bearing
to prevent vertical movements; just above it there is the rotor of a two-phase induction motor for
spinning the shaft. Next comes the AMB rotor, the same for Types A and B, and the sensors’ target.
A disk with holes perforated near its edge lies on the upper part.

upper disk

back-up bearing
sensor xs, ys

Type A or B
AMB

induction motor

supporting bearing x

unbalancing mass m
z

x, α

z, θ

y, β

upper disk

sensor x, y

Type A or B
AMB

induction motor

q

d

b

Figure 10. Vertical rotor’s aspects and dimensions, in the left part. In the right half, a simplified
representation of its basic geometric aspects and dimensions.

Traditional procedures, like those in [1,3] and Chapter 4 in [2], will be used to find mathematical
models for the prototypes. The self-aligning, supporting bearing at the bottom, while allowing angular
movements in any direction, provides a fixed point for the rotor. An inertial reference system is placed
at this location; axes x and y lie in the horizontal plane, and z marks the vertical direction. The positive
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angles α, β and θ can be found by using the right-hand rule on x, y and z. The right half of Figure 10
sketches the situation; the supporting and back-up bearings are not shown.

Assuming a rigid and homogeneous rotor, the center of mass displacements can be determined
by the angles α and β, and a full dynamic model can be obtained from the rotational equations
alone. Denoting the angular moments of inertia around the three axes by Ix, Iy and Iz, symmetry
considerations assure that Ix = Iy = J. In the classical Newton–Lagrange framework, the dynamic
equations for rotations are:

J β̈(t)−ωIzα̇(t) = Eβ (25)

Jα̈(t) + ωIz β̇(t) = Eα (26)

where ω = θ̇ is the rotor angular velocity and Eβ,α express all external actions generating torques.
The main equations above can be displayed in a vector form:

J

 β̈

−α̈

+

 0 ωIz

−ωIz 0

 β̇

−α̇

 =

 Eβ

−Eα

 . (27)

Defining the angular position vector p and the external excitation vector E as:

p =

 β

−α

 and E =

 Eβ

−Eα

 (28)

the rotor dynamics is described by:
J p̈(t) + G ṗ(t) = E(t) (29)

where J is the inertia coefficient (or the inertia matrix J I2) and G is the gyroscopic matrix:

G =

 0 ωIz

−ωIz 0

 = ωIz

 0 1

−1 0

 . (30)

External torques may come from many different sources, four of which are considered in this paper:
the magnetic (Em), gravitational (Eg), supporting bearing (Ea) and disturbance or mass unbalance
(Ed) torques.

E = Em + Eg + Ea + Ed (31)

4.1. Magnetic Excitation

Considering xb and yb the rotor displacements at the AMB position, the forces generated in each
direction are:

fx = kpxb + kiix and fy = kpyb + kiiy (32)

where the differential currents ix and iy were discussed in Section 1, and the coefficients kp,i can refer
to either Type A or B. Assuming rigidity and small angular displacements:

β ≈ sin β =
xb
b

and α ≈ sin α =
−yb

b

which lead to xb ≈ bβ and yb ≈ b(−α). Equation (32) becomes:

fx = bkpβ + kiix and fy = bkp(−α) + kiiy.
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These forces cause torques Pβ = b fx cos β and Pα = −b fy cos α. Assuming, again, rigidity and
small angular displacements: cos β ≈ 1 and cos α ≈ 1, which lead to Pβ = b fx and Pα = −b fy.
These magnetic torques can be expanded as:

Pβ = b2kpβ + bkiix and − Pα = b2kp(−α) + bkiiy.

If Em = [Pβ − Pα]T is the magnetic external excitation vector and u = [ix iy]T is the external input
or control vector, a concise expression can be written:

Em = b2kp p + bkiu. (33)

4.2. Gravitational Excitation

Since α and β are small angles, the torques caused by the rotor weight acting at its center of mass
are negligible:

Eg ≈ 0. (34)

This is usually the case with vertical rotors; for horizontal ones, gravity must be considered.

4.3. Supporting Bearing Excitation

The supporting bearing has a viscous damper effect; if Ca is the viscous constant, the torques are
modeled by Pβ = −Ca β̇ and Pα = −Caα̇, and the external excitation contribution is:

Ea =

 Pβ

−Pα

 = −Ca

 β̇

−α̇

 =⇒ Ea = −Ca ṗ (35)

4.4. Mass Unbalance Excitation

Rotors with a homogeneous mass distribution are assumed in the mathematical model.
When, and if, this is not true, unexpected torques appear, acting as disturbances. If these actions
are not considered when designing control laws, their effects, sometimes, can be unpleasant and
even unacceptable. The upper disk in the considered rotor has 12 holes near the outer edge,
placed in a symmetrical way, to preserve the body homogeneity. A small mass m in one of the
holes, as shown in Figure 11, will act on the rotor with a centrifugal force mrθ̇2 = mrω2, causing
an intentional disturbance.

x

y

r

θ

f c → centrifugal force

f c = mrθ̇2 = mrω2

f c
y = mrω2 sin θ

f c
x = mrω2 cos θ

Figure 11. Top view of the upper disk with an extra mass m filling one of the holes; the centrifugal
force is projected on the x and y axes.
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The projections of the centrifugal force on the x and y directions are: f c
x = mrω2 cos θ and

f c
y = mrω2 sin θ. Since θ(t) = ωt, the disturbance torques generated by the unbalanced mass are:

Pβ = mrqω2 cos ωt and Pα = mrqω2 sin ωt. The mass unbalance external excitation contribution is

Ed =

 Pβ

−Pα

 = mrqω2

 cos ωt

− sin ωt

 = ∆v(t) (36)

where:

∆ = mrqω2 and v(t) =

 cos ωt

− sin ωt

 (37)

are, respectively, the disturbance coefficient and the disturbance input vector.

4.5. Detailed Dynamic Equations

Entering Expressions (33)–(36) in Equation (29) leads, after rearranging terms, to:

J p̈(t) + (G + Ca I2) ṗ(t)− b2kp p(t) = bkiu(t) + ∆v(t). (38)

It is convenient to rewrite this equation in terms of xs and ys, the positions measured by the
sensors. Rotor rigidity, small angles and geometry considerations guarantee that:

β ≈ sin β =
xs

d
and α ≈ sin α =

−ys

d

which leads to xs = dβ and ys = d(−α). If the sensor measurements vector is denoted by
ps = [xs ys]T, then:  xs

ys

 = d

 β

−α

 =⇒ ps = dp (39)

Multiplying (38) by d from the left, using (39) and dividing by J, we reach an expression in terms
of the sensor positions:

p̈s + Ge ṗs −Keps = B2u + D2v (40)

where the parameters are:

Ge = J−1 (G + Ca I2) = J−1

 Ca ωIz

−ωIz Ca

 , Ke = J−1b2kp, B2 = J−1bdki, D2 = J−1mrqdω2. (41)

In order to express the system dynamic behavior in the state space, the state variables:

x =

 ps

ṗs

 =


xs

ys

ẋs

ẏs


can be chosen; Equation (40) becomes:

ẋ(t) = Ax(t) + Bu(t) + Dv(t) (42)
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where x, u and v have been previously defined, A is a 4×4 matrix and B, D are 4×2 matrices structured
as:

A =

 0 I

A21 A22

 , B =

 0

B2

 , D =

 0

D2

 (43)

where the 2× 2 blocks are:

A21 = Ke I = J−1b2kp I2 = A21(kp), A22 = −Ge = −J−1

 Ca ωIz

−ωIz Ca

 = A22(ω), (44)

B2 = J−1bdki I2 = B2(ki), D2 = J−1mrqdω2I2 = D2(m, ω). (45)

It is important to notice that Equation (42) models a linear system that is time invariant only for
a fixed rotational speed, because A22 depends on ω.

5. Prototype Simulations

The simulations in this section do not cover the normal operation of AMBs; they deal with
situations where the Case A and B performances have significant differences that can be easily detected
in the future laboratory tests. The prototypes’ characteristics were measured, in the SI system; the
geometric dimensions are b = 0.137, d = 0.203, q = 0.252, r = 0.060; the inertia and viscous values
are m = 0.001, Iz = 0.0017, Ix = Iy = J = 0.0592, Ca = 0.0303. A base current i0 = 3 was considered,
leading to the magnetic coefficients ka

p = 207,738, ka
i = 27.70 for Type A and four-times those values

for Type B: kb
p = 830,952, kb

i = 110.79 (SI units). Assuming a constant angular velocity ω = 3400 rpm,
corresponding to 356 rad/s, the state space parameters A, B and D were calculated for Types A and B,
generating matrices Aa, Ab, etc. The open-loop behavior of both types is described by the eigenvalues
of the system matrices, listed in Table 1, and is clearly unstable.

Table 1. The dynamic behavior of the open loop situation depends on the eigenvalues of Aa and Ab,
listed below for Cases A and B. Notice that the stable eigenvalues in Case B are located far to the left.

Open Loop Eigenvalues

case A case B

Aa Ab

−256.84± j5.12 −513.50± j5.11

+256.33± j5.11 +512.99± j5.11

A linear quadratic regulator (LQR) control law was used to stabilize the prototypes. The same
performance defining parameters were used for both cases: identity matrices Q = I4 and R = I2.
The resulting gain matrices:

Fa =

 −10119 −202 −39 0

202 −10119 0 −39

 and Fb =

 −10122 −101 −20 0

101 −10122 0 −20


are to be used in the state feedback control laws u = Fa,bx. The numerical values in the matrices above
are close, meaning that the control efforts can be considered similar in Cases A and B. The closed-loop
dynamic behavior can be described by the eigenvalues of A + BF, listed in Table 2.
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Table 2. The dynamic behavior of the closed loop situation depends on the eigenvalues of A + BFab,
listed below for Cases A and B. Notice that the eigenvalues in Case B are located far to the left.

Closed Loop Eigenvalues

case A case B

Aa + BaFa Ab + BbFb

−263.18± j5.24 −539.93± j5.37

−250.16± j4.98 −487.88± j4.85

Both cases present a highly damped behavior (very small imaginary part in the eigenvalues).
Case B is noticeable faster. The response of Cases A and B to xs(0) = 0.0002 (0.2 mm), ys(0) = −0.0002
and zero initial velocities was simulated. Figures 12 and 13 show xs(t) and ys(t) in Cases A and
B. Notice that the time scales are different and that Case B is at least two-times faster than Case A.
If curves for the required control efforts u were drawn, the simulations would again show a much
faster performance for Type B.

For evaluating the prototypes’ disturbance characteristics, simulations were made for an extra
mass of 1 g fixed in the upper disk. The rotor will be unbalanced, and harmonic forces will appear
at the x and y axes. The resulting disturbance torques will impose orbital movements on the rotor.
This means that, for the same initial conditions, the radial displacements will not tend to zero anymore.
Figure 14 shows xs plotted against ys for Types A (at the left) and B, where the orbits are smaller,
characterizing a stiffer suspension behavior, as expected.
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Figure 12. Case A stabilized by Fa: curves for xs and ys when xs(0) = 0.0002, ys(0) = −0.0002 and the
initial velocities are zero. For t ≥ 0.035 s, the rotor can be considered centered.
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Figure 13. Case B stabilized by Fb: curves for xs and ys when xs(0) = 0.0002, ys(0) = −0.0002 and zero
initial velocities. The rotor can be considered in position for t ≥ 0.016 s, half the time of Case A.

Figure 14. Rotor orbital movements due to harmonic disturbances caused by a mass unbalance in the
upper disk; Case A on the left and Case B on the right. The scales for the horizontal (xs) and vertical
(ys) axes in both the left and right graphs range from −10−4 to 10−4 m.

These simulations suggest a procedure for laboratory tests on the prototypes: measuring the orbits.
In addition to this, a frequency response test was presented in [13] and is repeated here. Assuming now
a constant ω = 100 rad/s (954 rpm), the state space parameters A, B and D are calculated, generating
matrices Aa, Ab, etc. A state feedback control law u = Fx capable of stabilizing both models can be
achieved with:

F =

 −6073.8 −25.5 −3.5 0

25.5 −6073.8 0 −3.5

 .

The resulting closed-loop is described by the eigenvalues of
Aa + BaF = {−22.2± j113.8, −24.5± j 110.9} and Ab + BbF = {−90.1± j211.5, −95.2± j211.5}.
Simulations, with F driving models (Aa, Ba) and (Ab, Bb) (calculated for a fixed w = 100 rad/s) show
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that both cases are very quickly stabilized, in less than a second. With an extra mass of 1 g fixed in
the upper disk, the resulting harmonic forces will impose orbital movements on the rotor, and the
overall efficiency of the AMB control can be judged by these orbits, as noted above. A more complex
simulation, with the model parameters now depending on ω (A21 and D2 in (44) and (45)), can be
performed. For the same stabilizing F above, and for ω slowly varying from the rest condition to 250
rad/s, the orbit radius for Cases A and B was plotted as function of ω; the results are shown in Figure
15.

Figure 15. Steady state orbit radius as function of the exciting frequency; the effects are due to harmonic
disturbances caused by a mass unbalance in the upper disk. Case A on the left and Case B on the right;
the frequency ω in the horizontal axes varies from rest to 250 rad/s, the vertical scales range from 0 to
3.5× 10−5 m. The high resonance in Case A almost disappears in Case B.

The sharp resonance in Model A is almost completely eliminated and shifted to a higher frequency,
in Case B. Other control laws u = Fx can be found that stabilize both models with a better dynamic
behavior that avoids resonances in their frequency response. In all of these simulations, Model B
offers a clearly superior disturbance rejection characteristic. The bench tests to be made with the real
prototypes can follow very closely the procedures used in these simulations.

As a final remark, it must be said that the control laws presented in this section are “special
purpose” ones: their main goal is to stabilize the prototypes in a way that the differences between
Types A and B are explicitly shown and enhanced. The extremely important problem of choosing
control laws for the normal operation of AMBs, either of Type A or B, does not fit in this paper;
it belongs to a more control-oriented publication, where lengthy discussions could be made. This
future paper could address, for instance, the interesting problem of, with the help of control, making
a Type A bearing behave like a Type B.

6. Comments and Conclusions

A detailed mathematical model for Type B is the main contribution of this paper. Its validity,
as well as many possible comparisons with Type A, must wait for practical tests. The prototypes
are already finished and operational, but no solid measurements have been made up to now.
The simulations shown previously confirm the basic assumptions of Type B superiority, but, more than
that, they suggest the laboratory procedures to be used in the actual testing of the prototypes.

Some pertinent questions, not treated in this paper, but that will be certainly the object of future
research, must be considered. Is the Type B configuration, with its interconnected fluxes, decoupled
actions and higher magnetic gains as easy to control with traditional methods as Type A? Are there
control laws capable of imposing a Type B behavior on a Type A bearing? Can higher values for kp

and ki bring undesired effects, like bearing forces that are more sensitive to external disturbances? Will
the linearity be affected, with a narrower operating range?

Some other important facts can be considered in future works. It seems obvious that a Type B
structure, with only four “poles”, is more compact and, therefore, easier to design and build; its heat
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dissipation and magnetic loss characteristics are also expected to be superior. If these conjectures are
confirmed on the future laboratory tests, a solid advantage for Type B would appear.
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