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Abstract: Soft actuators have been employed in various fields recently. A miniature pneumatic
bending rubber actuator is one of the soft actuators. This actuator will be used for medical and
biological fields. Its flexibility and high safety are suitable for fragile objects. However, its modeling
is difficult due to its nonlinearity. There are no suitable sensors to measure the output of this
actuator. In this paper, the particle swarm optimization-support vector regression (PSO-SVR)-based
estimation method with the generalized Gaussian kernel is proposed. An experimental result with
the operator-based robust nonlinear control system is employed to verify the effectiveness of the
proposed method.

Keywords: support vector machine; support vector regression; particle swarm optimization;
soft actuator; operator theory; nonlinear control

1. Introduction

Soft actuators have been getting increased attention with the development of medical techniques
and in other fields. Soft actuators are actuators that are composed of flexible materials. Because of
their flexibility and high safety for fragile objects, they are expected to be applied in the medical,
biological and welfare fields. Many of the soft actuators are driven by air pressure; for example,
McKibben artificial muscles and straight fiber-type artificial muscles. However, these actuators have
some problems. First, because of their complicated manufacturing process, miniaturizing and cutting
cost are limited. Second, if they can be miniaturized, they cannot move greatly. Finally, the number
of tubes that are supplied air pressure is increased with increasing the number of bending directions.
Thus, a miniature pneumatic bending rubber actuator [1] was developed to solve these problems as
above. A miniature pneumatic bending rubber actuator is one of the soft actuators. It is made of silicone
rubber and has a bellows construction on one side. Because of its structure, a miniature pneumatic
bending rubber actuator can be made simply, small and inexpensively (a miniature pneumatic bending
rubber actuator is often called “a micro-hand” because it will be used in three actuators). On the
other hand, this actuator is difficult to model and control due to its nonlinearity. This actuator should
be controlled by without sensors, because it is expected to be used for medical fields, especially in
operations. Moreover, we have no sensor that can attach itself to this actuator directly because this
actuator is too small. Thus, a motion estimation method and nonlinear control system are needed for
this actuator.
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In this paper, support vector regression (SVR) is utilized for output estimation. SVR is a regression
machine that is extended from support vector machine (SVM) [2–4]. SVR has been utilized by many
researchers recently. SVR has some advantages, for example high generalization ability with few
training data and valid for a nonlinear model, etc. SVR uses the kernel method. The kernel method
makes SVR’s calculation easier. If one function satisfies some properties, it can become a kernel function.
Various kernel functions are used for SVR. Especially, the Gaussian kernel, which is applied by the
Gaussian distribution (GD), is mainly used for a kernel function in SVR. However, many distributions
do not follow GD. The distribution of this actuator is also the same. To solve this problem, SVR with the
generalized Gaussian kernel, which is applied from the generalized Gaussian distribution (GGD) [5],
for the estimation of the actuator was proposed [6]. The effectiveness of SVR with the generalized
Gaussian kernel was verified. Thus, this research utilizes GGD for a kernel function. SVR with the GGD
kernel has four parameters. Selecting good parameters is needed to improve the estimation ability
of SVR. In this paper, particle swarm optimization (PSO) [7] is utilized for the parameter selecting
method. In previous research [4], SVR-based estimation and nonlinear control for this actuator are
considered. However, the estimation ability can be improved. Thus, this research considers improving
estimation ability by the method above. To verify the proposed estimation method, an experiment was
conducted with a nonlinear control system based on operator theory [8–12].

2. Structure of a Miniature Pneumatic Bending Rubber Actuator

In this section, the structure of the miniature pneumatic bending rubber actuator [1] is explained.
The actuator is made of silicone rubber without fiber reinforcement and designed by using the
finite element method (FEM). Figure 1 shows the appearance and moving principle of the actuator.
The actuator is bent by providing air pressure. The actuator has a semicircular-shaped tube, and
one side has a bellows construction. Its bellows part extends and contracts greatly by positive
and negative air pressure. Its flat part extends and contracts slightly by positive and negative air
pressure. The difference of the extension and contraction between the bellows and the flat part
cause its bending motion. Because of this structure, the actuator can bend without using fiber
reinforcement. Moreover, the structure of the bellows makes the actuator bend greatly. The actuator
can be made small and inexpensive because a micro-hand has only one tube, and the actuator does not
use fiber-reinforced rubber.

Figure 1. The principle of movement.

In case of providing positive air pressure, the bellows part expands greatly and the flat part
expands slightly. Therefore, the actuator bends with the state for which the bellows part is outside.
On the other hand, in the case of providing negative air pressure, the bellows part shrinks greatly,
and the flat part shrinks slightly. Therefore, the actuator bends with the state for which the flat part is
outside. For the reasons stated above, the actuator can perform two-way bending with only one tube
by providing air pressure. The thickness of silicon rubber and the minimum diameter of the expansion
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chamber were designed to bend efficiently by using nonlinear finite element analysis. Figure 2 shows
the states of movement when air pressure is provided for the actuator.

Figure 2. The states of movement of the actuator.

This can ensure the two-way bending of the actuator according to positive or negative air pressure
being provided. The force characteristics were studied in [1]. The measurement range is from 0 to
40 kPa under positive pressure and from −16 to 0 kPa under negative pressure. The maximum force
are 2.2 mN at 40 kPa and 0.6 mN at −16 kPa.

3. Mathematical Preliminaries

3.1. Support Vector Regression

In this paper, we utilize support vector regression (SVR) [2–4]. SVR is an extension of SVM for
regression. SVR makes a model from relationship between inputs and outputs. The goal of SVR is
to identify a function f (x) from the training data. SVR is available for nonlinear functions and has
generalization capability. The regression model f (x) is shown as

f (x) = ωTφ(x) + b, (1)

where x means the input vector, ω shows the weight vector, b is the offset and φ(x) is a nonlinear
function that maps the input space into a higher dimensional feature space. In the SVM modeling, the
slack variables are

ξ+i =

{
0 (yi − f (xi) ≤ ε)

yi − f (xi)− ε (yi − f (xi) > ε) and
(2)

ξ−i =

{
0 (yi − f (xi) ≥ −ε)

−ε− yi + f (xi) (yi − f (xi) < −ε),
(3)

where ε is a configuration parameter and (xi, yi) is the training data. Then, the SVR approach defines
an optimization problem as follows.

min
ω,b,ξ

[
1
2

ωTω + C
n

∑
i=1

(ξ+i + ξ−i )] (4)

Subject to equality constraints,
yi −ωTφ(xi)− b ≤ ε + ξ+i , i = 1, · · · n
ωTφ(xi) + b− yi ≤ ε + ξ−i , i = 1, · · · n

ξ+i , ξ−i ≥ 0, i = 1, · · · n,

(5)
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where C controls the penalty associated with deviations larger than ε and n is the number of
training data.

Introducing Lagrange multipliers λ+
i , λ−i , µ+

i and µ−i , Equation (5) can be rewritten as the
following optimization problem,

Lp =
1
2

ωTω + C0

n

∑
i=1

(ξ+i + ξ−i )−
n

∑
i=1

λ+
i

(
ε + ξ+i − yi + ωTφ(xi) + b

)
−

n

∑
i=1

λ−i

(
ε + ξ−i + yi −ωTφ(xi)− b

)
−

n

∑
i=1

(
µ+

i ξ+i + µ−i ξ−i
)

. (6)

Optimum solutions are the points where the partial differentiation of Lp about ω, b, ξ+, ξ− is zero,
so the following equations hold for the optimum solutions.

∂Lp

∂ω
= ω−

n

∑
i=1

(λ+
i − λ−i )φ(xi) = 0 (7)

∂Lp

∂b
=

n

∑
i=1

(λ−i − λ+
i ) = 0 (8)

∂Lp

∂ξ+i
= C0 − λ+

i − µ+
i = 0 (9)

∂Lp

∂ξ−i
= C0 − λ−i − µ−i = 0 (10)

From Equation (7), the vector ω is shown as

ω =
n

∑
i=1

(λ+
i − λ−i )φ(xi). (11)

Equation (1) is rewritten as

f (x) =
n

∑
i=1

(λ+
i − λ−i )φ(xi)

Tφ(x) + b. (12)

An optimization problem holds by substituting Equations (7), (9) and (10) for Equation (6).

maxλ−i ,λ+
i

Lp =maxλ−i ,λ+
i
[− 1

2 ∑n
i=1 ∑n

j=1(λ
+
i − λ−i )(λ

+
j − λ−j )φ(xi)

Tφ(xj) + ∑n
i=1 yi

(
λ+

i − λ−i
)
−∑n

i=1 ε
(
λ+

i + λ−i
)
] (13)

Constraint conditions are shown as follows.
n

∑
i=1

(
λ+

i − λ−i
)
= 0

0 ≤ λ+
i , λ−i ≤ C0

(14)

A kernel function is shown as follows.

K(xi, xj) = φ(xi)
Tφ(xj) (15)

Applying a kernel function, Equation (13) is rewritten as follows.

max
λ−i ,λ+

i

[−1
2

n

∑
i=1

n

∑
j=1

(
λ+

i − λ−i
) (

λ+
j − λ−j

)
K
(
xi, xj

)
+

n

∑
i=1

yi
(
λ+

i − λ−i
)
−

n

∑
i=1

ε
(
λ+

i + λ−i
)
] (16)
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Applying a kernel function, Equation (12) is rewritten as follows.

f (x) =
n

∑
i=1

(
λ−i − λ+

i
)

K(xi, x) + b (17)

The Gaussian kernel is usually used as kernel function and is shown as follows.

K(xi, x) = exp
(
−‖xi − x‖2

2σ2

)
(18)

3.2. Generalized Gaussian Distribution

The generalized Gaussian distribution (GGD) [5] is used for a kernel function to improve the
ability of generalization in this paper. The generalized Gaussian distribution includes all normal and
Laplace distributions and all continuous uniform distributions on bounded intervals of the real line.
The probability density function (PDF) of GGD with mean µ and shape parameter α is given by

f (x; µ, α, β) =

[
α

2βΓ(1/α)

]
exp

{
−
[
‖x− µ‖

β

]α}
and (19)

β = σ

√
Γ(1/α)

Γ(3/α)
, (20)

where Γ defines the Gamma function given by Γ(z) =
∫ +∞

0 e−ttz−1dt(z > 0). µ, α(> 0) and β denote
the mean, shape and scale parameters, respectively. GGD can match many distribution by changing
shape parameter α. GGD is applied for the kernel function in this paper.

Figure 3 illustrates the PDFs of generalized Gaussian distribution for various α with µ = 0 and
σ = 1. Two special cases are the Laplacian distribution for α = 1 and the Gaussian distribution for
α = 2. For the limited case of α, generalized Gaussian distribution approaches an impulse function
and the uniform distribution as α→ 0 and α→ ∞, respectively.

Figure 3. PDFs of generalized Gaussian distribution (GGD) for α = 0.7, 1.0, 2.0, 100 (µ = 0, σ = 1).

The generalized Gaussian kernel is given as follows.

f (xi, x; α, β) =

[
α

2βΓ(1/α)

]
exp

{
−
[
‖xi − x‖

β

]α}
(21)
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β = σ

√
Γ(1/α)

Γ(3/α)
(22)

3.3. Particle Swarm Optimization

Particle swarm optimization (PSO) [7] is a population-based stochastic approach for solving
continuous and discrete optimization problems. The algorithm of PSO is given as follows.

1. Initialize the particle’s position and velocity in the swarm randomly, and set ranges of position
and velocity.

2. Evaluate positions with the evaluation function.
3. Update the particle’s and global best solution.
4. Update the particle’s velocity and position.

The particle’s velocity and position are updated by the following equations,

vi(t + 1) = ωvi(t) + c1 × rand1 × [pbesti(t)− pi(t)] + c2 × rand2 × [gbest(t)− pi(t)] (23)

pi(t + 1) = pi(t) + vi(t + 1), (24)

where i = 1, 2, ..., n; t is the step; p, v are the particle’s position and velocity; pbest, gbest are the
particle’s and group’s (swarm’s) best value; ω is the inertial weight coefficient; c1, c2 are the acceleration
constants; rand1, rand2 are positive random numbers whose range is [0,1].

The inertial weight w controls the effect of the previous velocity to the current velocity. A larger w
searches a solution with a wider area, and a smaller w searches a narrower area. To balance the effect
of ω, the following equation is used in this paper.

ω = ωmax −
t(ωmax −ωmin)

tend
(25)

4. Modeling and Nonlinear Control System

In this section, the modeling and designing of a nonlinear control system [9] for a micro-hand
are shown.

4.1. Modeling

Modeling of the actuator [4] is done in this section. It is supposed that the actuator curves in
an arc. Bending angle θ ∈ [0, 2π] is defined in Figure 4. The tip of the actuator in the initial state
is regarded as the origin of the coordinates. The horizontal direction is the x-axis, and the vertical
direction is the y-axis. The (x, y) is the coordinate of the tip of the actuator at the time of deformation.
The parameters in Figure 4 are given in Table 1. The following formulas are derived from Figure 4.

L = Rθ (26)

x = R− R cos θ (27)

y = L0 − R sin θ (28)

Table 1. Parameters of the actuator analysis model.

Part of the Actuator Parameter Unit

Natural length of the actuator L0 (m)
Length of the changeless part L1 (m)

Length of the bellows side L (m)
Radius of the approximate circle R (m)

Bending angle θ (rad)
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Figure 4. Simplified diagram of the actuator.

From Equations (27) and (28), R and θ are obtained by

R =
x2 + y2 − 2L0y + L0

2

2x
(29)

θ = 2 cos−1

 L0 − y√
x2 + (L0 − y)2

 . (30)

A cross-section drawing of the actuator is shown in Figure 5. The cross-section radius of the
actuator is a (m). The thickness of the actuator is b (m). The center of the flat side is defined as the
origin of polar coordinate system. The radius vector is r (m), and the argument is φ (rad). Then, it is
supposed that the cross-section shape and the length of the flat side are changeless in order to analyze
the theoretical properties of the actuator. The effect by the shape of the bellows part is considered as
the uncertainty. The mathematical model is derived from the balance between the moment generated
by pneumatic pressure and the one generated by spring force.

Figure 5. Cross-section drawing of the actuator.

The force f1 (N) generated by pneumatic pressure p (Pa) in a small area of the end section of the
actuator is shown as:

f1 = pr dφ dr. (31)

Then, the moment of the force generated by pneumatic pressure M1 (N·m) is shown as:

M1 =
∫ a

0

∫ π

0
f1(r sin φ + b) =

4a3 + 3πa2b
6

p. (32)

The force f2 (N) generated by the spring in a small area of the bellows side is shown as:
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f2 = −Eθ(ra sin φ + b)
L0

bra dφ, (33)

where ra(m) is the length from the origin of polar coordinate to the center of rubber shown as:

ra = a +
b
2

, (34)

and E (Pa) is the Young modulus. It is supposed that the Young modulus changes according to the
extension of rubber equivalently. E(Pa) is shown as

E = E0
L0

L0 + θ(ra sin φ + b)
, (35)

where E0 (Pa) is the initial Young modulus. Then, the moment of the force generated by spring force
M2 (N·m) is shown as

M2 = −
∫ π

0
f2(ra sin φ + b)

= −rabE0θ
∫ π

0

(ra sin φ + b)2

L0 + θ(ra sin φ + b)
dφ. (36)

From the balance between the moment generated by pneumatic pressure and the one generated
by spring force in the end section of the actuator,

M1 + M2 = 0. (37)

Then, the relationship between input p and output θ is obtained from Equations (32), (36) and (37),

4a3 + 3πa2b
6

p = rabE0θ
∫ π

0

(ra sin φ + b)2

L0 + θ(ra sin φ + b)
dφ. (38)

Equation (38) is approximated as follows.

θ = − L0

b

(
1 +

2ra + bπ

γp− 2ra − bπ

)
, (39)

where

γ =
4a3 + 3πa2b

6rabE0
. (40)

4.2. Design for the Operator-Based Robust Nonlinear Control System

The robust nonlinear control system based on robust right coprime factorization for the actuator
is designed in this section [8–12]. Consider the nonlinear feedback system in Figure 6.

Figure 6. Nonlinear feedback control system.
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Nominal plant P is shown as

P(u)(t) = − L0

b

(
1 +

2ra + bπ

γu(t)− 2ra − bπ

)
, (41)

where input u = p, output y = θ and γ is Equation (40). The plant P is factorized into N and D−1:

N(ω)(t) = − L0

b

(
1 +

2(2ra + bπ)

ω(t)− 2(2ra + bπ)

)
and (42)

D−1(u)(t) = 2γu(t), (43)

where N is stable and D is stable and invertible. According to the Bezout identity:

AN + BD = M(ω)(t), (44)

where M is the unimodular matrix. We have

A(y)(t) = (1− K)
(
−2L0(2ra + bπ)

by(t) + L0
+ 2(2ra + bπ)

)
and (45)

B(u)(t) = 2Kγu(t), (46)

where K is the designed controller parameter, A is stable and B is stable and invertible.
The actual plant has the uncertainty derived from the effect by the shape of the bellows and

approximation in modeling. The plant with the uncertainty P + ∆P is shown as

(P + ∆P)(u)(t) = −(1 + ∆)
L0

b

(
1 +

2ra + bπ

γu(t)− 2ra − bπ

)
. (47)

The right factorization of the nonlinear plant is shown as follows.

P + ∆P = (N + ∆N)D−1 (48)

Then, P + ∆P is factorized as follows.

(N + ∆N)(ω)(t) = −(1 + ∆)
L0

b

(
1 +

2(2ra + bπ)

ω(t)− 2(2ra + bπ)

)
(49)

D−1(u)(t) = 2γu(t) (50)

When Equation (44) and

‖(A(N + ∆N)− AN)I−1‖Lip < 1 (51)

are satisfied, the robust stability of the plant with uncertainty P + ∆P can be guaranteed.

4.3. Tracking Actuator’s Output for the Target Value

The feedback control system is designed in order to track output y to reference input r0.
A nonlinear feedback control system with the tracking controller is shown in Figure 7.

Tracking controller C is defined as follows.

C(ẽ1)(t) = kI

∫ t

0
ẽ1(τ)dτ + kP ẽ1(t), (52)

where kI and kP are the designed parameters.
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Figure 7. Nonlinear feedback control system with the tracking controller.

5. Proposed Method

In this section, the proposed method is introduced. A pneumatic bending rubber actuator is
difficult to control and make a model of due to its complicated construction. Moreover, there are
no sensors to measure the output of the actuator. The research objective is to estimate the motion
of the actuator and apply it for its control. SVM-based regression (SVR) is employed to estimate
the motion of the actuator. SVR has high generalization ability with few training data and valid for
nonlinear systems. SVR is one of the kernel methods. Thus, SVR uses a kernel function. This kernel
function influences the estimation accuracy of SVR. Various kernel functions were developed so far.
The most used kernel function is the Gaussian kernel in Equation (18). However, most distributions
do not follow the Gaussian distribution. Therefore, the generalized Gaussian kernel (Equation (21))
is employed in this paper. SVR with the generalized Gaussian kernel has four parameters, which
should be optimized. PSO is employed as a parameter optimizing method in this paper. PSO has the
advantage that calculation cost of PSO is not increased with the increasing of the number of optimized
parameters. Four parameters of SVR are optimized by PSO in this paper. The control system [9] is
designed to verify the effectiveness of the proposed method. The control system with SVR estimation
is shown as Figure 8; where y and ỹ are actuator and estimation output, respectively, and A, B and C
are in Equations (45), (46) and (52), respectively.

Figure 8. Control system with SVR estimation.

The proposed method, a motion estimation method for a control system of a pneumatic bending
rubber actuator using the PSO-SVR method with the generalized Gaussian kernel, is verified by using
this system. In the proposed method, four parameters (C, ε, σ, α) should be optimized, where C, ε

are the parameters of SVR and σ, α are the parameters of the generalized Gaussian kernel function.
In order to optimize these parameters, grid search is often used. However, grid search needs a huge
amount of calculating. Thus, PSO is utilized in this paper. If the optimized parameters are increased,
the calculation cost is not increased.

The following is the summary of above.

1. Input training data for SVR with the generalized Gaussian kernel.
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2. Do many tests and evaluations with various parameters.
3. Decide the best parameters.
4. Estimate the actuator’s output by SVR with the optimized parameters.

6. Experiment

6.1. Experimental System

The experimental system is explained in this section. Figure 9 shows the experimental system
and actuator. Figure 10 shows the flowchart of the experimental system.

Figure 9. Experimental system and actuator.

The pump and the electronic vacuum regulator and the vacuum regulator are not used because
the actuator’s moving by only positive pressure is considered in this paper. The following explains
how to move the actuator.

1. Compressed air is made by the air compressor.
2. Air pressure is regulated by the regulator to prevent the actuator from breaking.
3. Controlled air pressure is made to control the actuator by the electro-pneumatic regulator.
4. Air pressure is provided for the actuator, and it moves.

Figure 10. Flowchart of the experimental system.
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The electro-pneumatic regulator is the equipment that converts electric signals into air pressure.
In this paper, ITV0010-0CS (SMC, Tokyo, Japan) is used as the electro-pneumatic regulator. It can
convert 4 to 20 mA into 1 to 100 kPa. The electrical signal is generated by the PC. In this paper,
a camera is used to measure position of the actuator. The camera measures the position of the actuator;
however, the measurement value from the camera is not used as the feedback signal in order to perform
sensorless control. The measurement value is used only to record.

6.2. Experimental Result

The experimental result of the proposed method is shown. First, the selected parameters by PSO
are shown in Table 2.

Table 2. Selected parameters.

Parameter Value

Cost parameter C = 100
Error accuracy parameter ε = 0.001

Variance σ = 39.5712
Shape parameter α = 2.027

Table 3 shows the experimental parameters.

Table 3. Experimental parameters.

Paramter Value

Natural length of the actuator L0 = 1.35× 10−2 m
Radius of the actuator a = 1.0× 10−3 m

Thickness of the actuator b = 0.15× 10−3 m
Rubber radius ra = 1.075× 10−3 m

Initial Young modulus E0 = 1.43× 106 Pa
Control parameter K = 0.95
Integral parameter kI = 8.0× 10−6

Proportional parameter kP = 5.0× 10−6

The output results of the proposed and previous method [4] are shown in Figures 11 and 12,
respectively. Plant input and robust stability analysis are shown in Figures 13 and 14, respectively.
In this experiment, the desired value is 3.14 rad. The comparison between the proposed and previous
methods is shown in Table 4.
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Figure 11. The result of the proposed method.
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Figure 12. The result of the previous method.

time[s]

0 5 10 15

in
p
u
t 
p
re

s
s
u
re

[P
a
]

×104

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 13. Plant input.
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Figure 14. Robust stability analysis.

Table 4. The comparison of some values.

Proposed Method Previous Method

Number of dataset 1080 5472
Computing time 5.2 s 13.4 s

Fit ratio 86.8% 84.8%
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“Number of dataset” means the number of the training dataset used in SVR. SVR estimates the
actuator’s output value based on this dataset. “Computing time” means the sum of SVR training
time and feedback time. Shorter computing time is better, if the “fit ratios” have the same value.
The following equation is used as the evaluation function called the “fit ratio”:

Fitness =

1−

√√√√ N

∑
k=1

[ỹ(k)− y(k)]2√√√√ N

∑
k=1

[y(k)− ȳ]2

× 100(%), (53)

where y(k), ỹ(k) and ȳ(k) are “actual output or desired value”, “estimation or simulation output” and
the average of “actual output or desired value”, respectively. “Fitness” is the ratio of fitting for the
actual result. The output result could track the desired value of 3.14. The proposed method could
estimate the actuator’s output more accurately than the previous one. Moreover, the number of the
dataset and the computing time of the proposed method were fewer than the previous one. Therefore,
the estimation ability of the proposed method was verified. If the system satisfied Equation (51), the
system can be said to have robust stability. In Figure 14, ‖(A(N + ∆N)− AN)I−1‖Lip < 1 is satisfied.
Thus, the system is a robust stability system.

Other results are shown as follows. The output and estimation results of the proposed and
previous method are shown in Figures 15 and 16, respectively. Plant input and robust stability analysis
are shown in Figures 17 and 18, respectively. The comparison between the proposed and previous
methods is shown in Table 5. The desired value r0 is as follows.

r0 =


2 (0 ≤ t ≤ 20)

2.5 (20 < t ≤ 60)

3 (60 < t ≤ 100)

(54)

The meanings of the “number of dataset”, “computing time” and “fit ratio” are the same as
Table 4. The plant output tracked the desired value, so the effectiveness of the control system is
verified. In Figure 16, the previous method cannot estimate the plant output accurately. In the previous
method, SVR-based estimation depends on experimental time. Thus, estimation ability changes
according to experimental time. On the other hand, the proposed method can estimate the plant output
accurately in Figure 15. This is because the proposed SVR-based method is not related to time, but
position and former position. Therefore, the estimation ability does not depend on the experimental
time. Moreover, the generalized Gaussian kernel and the PSO-based parameter optimization are used
in the proposed method. Therefore, the proposed estimation method can estimate the plant output
accurately. The effectiveness of the estimation method has been verified. Figure 18 shows that the
robust stability of the system is verified.

Table 5. The comparison of some values.

Proposed Method Previous Method

Number of dataset 1437 5414
Computing time 23.5 s 62.8 s

Fit ratio 83.5% −157%
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Figure 15. The result of the proposed method.
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Figure 16. The result of the previous method.
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Figure 18. Robust stability analysis.

7. Conclusions

In this paper, a motion estimation method for a control system of a pneumatic bending
rubber actuator using the PSO-SVR method with the generalized Gaussian kernel was proposed.
The estimation ability of SVR was improved by using the generalized Gaussian kernel, selecting the
parameters by PSO and considering the dataset of SVR. In conclusion, the effectiveness of the proposed
method was proven by the experimental result.
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