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Abstract: In this paper, we have developed a new thermoacoustic model for predicting the resonance
frequency and quality factors of one-dimensional (1D) nanoresonators. Considering a nanoresonator
as a fix-free Bernoulli-Euler cantilever, an analytical model has been developed to show the influence
of material and geometrical properties of 1D nanoresonators on their mechanical response without
any damping. Diameter and elastic modulus have a direct relationship and length has an inverse
relationship on the strain energy and stress at the clamp end of the nanoresonator. A thermoacoustic
multiphysics COMSOL model has been elaborated to simulate the frequency response of vibrating 1D
nanoresonators in air. The results are an excellent match with experimental data from independently
published literature reports, and the results of this model are consistent with the analytical model.
Considering the air and thermal damping in the thermoacoustic model, the quality factor of a
nanowire has been estimated and the results show that zinc oxide (ZnO) and silver-gallium (Ag2Ga)
nanoresonators are potential candidates as nanoresonators, nanoactuators, and for scanning probe
microscopy applications.

Keywords: nanomechanics; nanomaterials; nanoresonators; thermoacoustic modeling; loss factors;
multiphysics finite element modeling

1. Introduction

Human-made mechanical resonators have been around for a thousand years [1]. Early applications
included musical instruments and chronographs operating in millihertz to kilohertz frequencies,
while more recent interest has turned to ultra-high frequency resonators and oscillators suitable
for wireless technologies, mass sensing and even biological applications [2–9]. The trend has
leaned towards small, stiff and low-mass micro-electro-mechanical systems (MEMS), and further
towards nano-electro-mechanical systems (NEMS). There have been examples of reports of using
nano-mechanical resonators for myriad applications including mass sensing, charge detection,
biosensing and radio frequency (RF) communications [2,5,8–13]. While there has been impressive
progress in MEMS and NEMS resonators, these resonators are mostly chip-based and in-plane and are
fabricated using silicon micro and nano-fabrication processes. The development of nanometer scale
out-of-plane high aspect ratio resonators have been slow; an example includes the carbon nanotubes
reported in the past for scanning probe microscopy (SPM) applications [6,14–17].

Atomic force microscopy (AFM) is the most successful SPM technique for characterization and
manipulation of materials at the nanoscale. Since the invention of AFM, it has had tremendous impact
on various disciplines including life sciences [18], molecular metrology and material science [19],
nanolithography [20], semiconductor manufacturing [21] and nanomechanics [22] to name a few.
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The AFM vertical resolution is outstanding, limited to 0.1 nm because of electronic noise from the
detection system and cantilever thermal fluctuations [23]. The in-plane, or lateral, resolution has instead
long been recognized as crucial because of the non-vanishing size of the probe so that a convolution of
tip shape on sample topography has to be expected at large magnifications. This phenomenon lowers
the resolution, i.e., the possibility of distinguishing two points far apart from each other [23]. The final
result is that the AFM broadens peaks and shrinks holes, thereby introducing gross artefacts. Tentative
attempts to overcome this limitation include, for example, the use of single-walled carbon nanotubes
(SWNT) as imaging tip in order to minimize the tip convolution [23–25]. However, manipulation of
SWNT as AFM tips has been difficult due to the flexible nature of the nanotubes and the van der Wals
interaction between tubes resulting in adhesion. To overcome these obstacles, one needs to use
chemical vapor deposition or other techniques to make rigid nanotube probes at the loss of mechanical
properties. New materials that are rigid and have high aspect ratio structures, such as Ag2Ga metallic
nanoneedles [7] and ZnO nanowires and nanobelts [26], may enable better materials for nano-actuation
and SPM applications. While many experiments have reported such nanoresonators, only a few
theoretical reports exist on the modeling and characterization of nanoresonators’ natural frequency
and loss mechanisms [3,27–30].

Bhiladvala et al. suggested two different mechanisms for the interaction between air molecules
and nanoresonator depending on the diameter of nanoresonator and the air pressure [5]. As the
cantilever diameter or width approaching sub-micron size, the size of beam itself is comparable to air
molecules’ mean free path [5]. The Knudsen number (Kn) is the ratio of mean free path of air molecules
to the lateral size of the resonator and it depends on the pressure of the air. Three different regimes
based on the Knudsen number (Kn) were defined [5]. For Kn smaller than 0.01, continuum regime for
air and fluid mechanics equations can be used. For Kn larger than 10, one can use the free molecular
flow regime. A cross-over regime where 0.01 < Kn < 10 was also defined as transient between the
continuum and molecular flow regimes [5]. Variations on the cross-flow regime has also been reported
in the literature [31,32]. For Kn < 10, reports have also used simple continuum models even for the
cross-flow regime [27,33,34].

Based on this initial paper in reference [5], Biedermann et al. developed a model for calculating
the nanoresonator Q factor. Although they used the same concept and definition for free molecular
flow, crossover and continuum regime, they considered the Ag2Ga nanowire in the free molecular

regime and suggested an equation for Q factor estimation as Qi = ωiρA
4bP

√
πR0T
2Mm

[8,35], where (i)
represents different modes for the lateral vibration of the beam,ωi is the angular natural frequency
of nanoresonator at different modes; ρ is the density of nanoresonator; A is the cross-sectional area
of the nanoresonator; b is the effective area for damping per unit length; P is the pressure; Ro is the
universal gas constant; T is the temperature; and Mm is the molecular weight. Unfortunately, the
results of this equation are not consistent with their experimental Q factor findings using laser Doppler
vibrometry resulting in a large error in estimated Q factors [8,35]. For the first mode, the experimental
Q factors were 1.2, whereas the Q factor using the above-estimated equation was only 0.49, creating an
almost 58% difference between the estimated and the experimental values. The errors are similar in
other modes.

There are also other reports that have estimated the Q factor for nanoresonators [5,27]. Yum et al.
defined the normalized dimension parameter (Dn =

√
3

k2
1

µ√
ρE

L2

Wh2 ) to include nanoresonator geometry

and properties along with fluid viscosity [27], where µ is the viscosity and surrounding medium; W is
the width; and h is the height of nanoresonator. They showed a linear relationship between Dn and
damping coefficient (inverse of quality factor). This equation is just for resonators with a rectangular
cross-section and it is not applicable on cylindrical geometries. Also, this theory is only tested on ZnO
nanobelts and it has not been confirmed for other materials and geometries. The other limitation of
this theory is that it is only for the first mode. It should be noted that while Biedermann et al. claim
that there is a linear relationship between the resonance frequency and Q factor, Yum et al. report, and
our results presented here, show a nonlinear relationship between these two parameters. While these
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methods are interesting, a new model that accurately describes the theoretical and experimental values
of Q factor is in need of further development.

A finite element model (FEM) was previously developed to simulate the behavior of the
nanoresonator using experimental Q factor [36]. However, in this paper, we investigate a new
theoretical and FEM approach based on thermoacoustic modeling (integrating Navier-Stokes equation,
continuity equation, and energy equation) to understand the behavior of nanoresonators and it can
predict the Q factor of vibrating nanoresonator in air. The effect of density, bending modulus, length
and diameter of 1D nanoresonator on the stress at its clamp end and strain energy are presented.
In this thermoacoustic model, we have considered continuum flow for air Kn < 10 and our simulations
show excellent agreement with experimental data. Figure 1 shows the Knudsen number, continuum
and free molecular flow for two resonators that are simulated in COMSOL.
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Figure 1. Effect of nanoresonator size and its surrounding pressure in air on the Knudsen number at
300 ◦·K. The squares show the condition of nanoresonators that are tested in the thermoacoustic model.

2. Analytical Model

This section discusses the lateral vibration of a high aspect ratio nanoresonator without any
damping. The effect of damping has been presented in the next section. Figure 2 presents the schematic
of the base motion of the nanoresonator. In practice, a nanoresonator can be used as a standing
wave stylus for SPM in non-contact mode and it is necessary to avoid any contact forces. Here, the
contact forces on the tip of resonator are neglected to simplify the model. The aim of this section is to
investigate the effect of material properties and geometry of a 1D nanoresonator on its mechanical
behavior. Because of its high aspect ratio, a 1D nanoresonator can be considered as a Bernoulli-Euler
beam, and its natural frequencies at different modes for transverse vibration are [37]:

ωi =
k2

i

L2

√
EI
ρA

, k1 = 1.875, k2 = 4.694, k3 = 7.855, . . . , ki ≈
(2i− 1)π

2
(1)

where ki is the constant coefficient of natural frequency for different modes; L is the length; E is the
elastic modulus; and I is the planar second moment of area of the nanoresonator. Figure 2 shows
loading, mechanical properties and free body diagram of a nanoresonator when it is actuated by
transverse base motion. Working in the steady state, the actuator applies constant vibration amplitude
on the clamping end of a nanoresonator. Therefore, a base harmonic mechanical displacement is
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considered as the actuation input (E = D·Sin(ωt)) of nanoresonator instead of force actuation. D is
the input vibration amplitude. This model does not include air damping and it is applicable to high
vacuum conditions. Assuming the nanoresonator as a Bernoulli-Euler beam [38], the equation of
motion is given by:

∂2

∂x2 (EI
∂2y
∂x2 ) = ρA

∂2y
∂t2 (2)

where x is the spatial coordinate; y is the lateral displacement of a nanoresonator; and t represents
time. Considering constant EI, B as the vibration amplitude along the nanoresonator length, and
y = B (x) sin (wt) as the response of harmonic excitation, the deflection of the nanoresonator at the
free end would be:

B (x) = C1sin (λx) + C2cos (λx) + C3sinh (λx) + C4cosh (λx) (3)

where λ is eigenvalues:

λ =
4

√
ω2ρA

EI
(4)

Since Ci are the constants applying the boundary conditions as a clamp-free beam, C1 to C4

will be:
B (0) = D, B′ (0) = 0, B′′ (L) = 0, B′′′ (L) = 0

C1 = D
(

sinh(λL)cos(λL)+cosh(λL)sin(λL)
2+2cos(λL)cosh(λL)

)
C2 = D cosh(λL)

cos(λL)+cosh(λL) −C1
sin(λL)+sinh(λL)
cos(λL)+cosh(λL)

C3 = −C1

C4 = D−C2


(5)
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Because of the nanoresonator’s high aspect ratio, the reaction force and shear stress at the clamp
end is negligible in comparison to the normal stress of bending. For the reaction moment at the clamp
end of the nanoresonator for a cylindrical shape resonator (nanowire) we have:

RM =
∫ L

0 ρA ∂2y(x,t)
∂t2 x·dx

= −ρAω2sin (ωt)
∫ L

0 (C1sin (λx) + C2cos (λx) + C3sinh (λx)
+C4cosh (λx) xdx

= −ρAω2sin(ωt)
λ2 ((C1 + C2 × (λL)) sin (λL)

− (C2 + C1 × (λL)) cos (λL) + (C3 × (λL)−C4) cosh (λL)
+ (C4 × (λL)−C3) sinh (λL))

(6)
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The stress at the clamped end of the nanowire is:

σxx =
RM yc

Ixx
=

RM (d/2)(
πd4/64

) =
32RM
πd3 (7)

where d is the diameter of nanowire. The strain energy because of elastic deformation of vibrating
nanowire is:

V = EI
2

∫ L
0

(
d2y
dx2

)2
dx

= EI
2

∫ L
0

(
−C1λ

2sin (λx)−C2λ
2cos (λx) + C3λ

2sinh (λx) + C4λ
2cosh (λx)

)2
dx

= EIλ4

2

[
(C2

1+C2
2−C2

3+C2
4)

2 L

+ 1
4λ

((
C2

2 −C2
1

)
sin (2λL) +

(
C2

3 + C2
4

)
sinh (2λL)

)
+ 1
λ (C1C2sin2 (λL) + C3C4sinh2 (λL) + (C1C3 −C2C4) cos (λL) sinh (λL)
− (C1C3 + C2C4) sin (λL) cosh (λL)
− (C1C4 + C2C3) sin (λL) sinh (λL) + (C1C4 −C2C3) (cos (λL) cosh (λL)− 1))]

(8)

Bending modulus of nanoresonators should be used in these simulations. In all of above equations,
the dependent variable of harmonic and hyperbolic functions is λL. For the natural frequencies,
considering Equations (1) and (4), we have:

λL =
√

ki (9)

Equation (9) means that for a specific natural frequency, the value of λL is constant. In the
present model, damping and energy loss have not been considered. Consequently, the value of
(2 + 2cos (λL)cosh(λL)) at the resonance frequencies is zero at the denominator of C1 and the values of
C1 to C4 are infinite.

Considering Equation (1), the natural frequencies of a cylindrical nanoresonator with constant
diameter are:

ωi =
ki

L2

√
Eπd4/64
ρπd2/4

=
4kid
L2

√
E
ρ

(10)

The normal stress at the clamp end of a cylindrical nanoresonator for a specific vibration mode
can be calculated using Equations (1), (4), (6), (7) and (9):

σxx =
RM yc

Ixx
=
ρAω2yc

λ2I
×C =

ρAωyc√
ρA
EI I
×C =

ρA ki
L2

√
EI
ρA yc√

ρA
EI I

×C =
Ed
L2 ×

ki

2
C (11)

C is a constant as a result of the integral in Equation (7), where λL is constant at a vibration mode
(Equation (9)). For the strain energy, considering constant λL for a vibration mode in Equations (1), (4),
and (8), we have:

V =
EIλ4

2
(C′) =

EIω
2ρA
EI

2
(
C′
)
=

(
ki
L2

)2 EI
ρAρA

2
(
C′
)
=

E× d4

L4 × πk2
i

128
(
C′
)

(12)

C’ is a constant for each mode equal to the integral of Equation (8).
In practice, there is an actuator with a specific working frequency to oscillate the nanoresonator.

If the resonator has smaller natural frequency, it will be easier to actuate it with sufficient vibration
amplitude. High vibration amplitude makes the virtual tip bigger and it would be easier to move the
nanoresonator close to the target surface in SPM. Another important note is that after the third mode,
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the values of normal stress and strain energy for each mode are increased linearly in logarithmic scale.
Also it should be mentioned that changing the geometric parameters of the needle has more effect on
the characteristics of the resonator rather than its material properties.

Selecting the proper characteristics for the nanoresonator is tricky and it is all about compromising
between parameters. Working in higher modes increases the stored energy and vibration amplification,
but it also increases the stress at the clamp end, which could lead to failure of bonding between the
nanoresonator and its actuator. Higher density decreases the natural frequency but does not influence
the vibration amplitude, stress and stored elastic energy.

3. Thermoacoustic Finite Element Model (FEM)

There are different loss mechanisms that limit the performance of nanoresonators, including
clamping, thermal effects, electrostatic forces, surrounding medium hydrodynamic loading,
van der Waals force, Casmir force and other type of forces depending on the nanoresonator
application [39–41]. Thus far, there have been various models for estimating the Q factor of micro and
nanoresonators [5,28,29,42–44]. Whether or not considering all of these energy loss mechanisms in
the model is necessary depends on the size and environment conditions of the resonator. As an
example, in most of the reported models, in calculating the damping of micro-scale resonators
and MEMS resonators, the thermal loss was not been considered and the model is mostly about
viscous damping [28,39,43,45]. Most of these models are focused on AFM probes. These models have
incorporated the viscous damping as the only mechanism affecting energy loss and, in considering the
inertial forces, these models have calculated the quality factors of the microscale resonators [28,46–48].
However, these models cannot estimate the quality factor and damping of the nanoresonators precisely.
The reason for the inaccuracy is that when one scales down from micro to nanoresonators, the inertial
forces become less important and the thermal loss becomes more important.

Fabricating an individual nanoresonator from different materials and recording its frequency
response function is often time consuming and not practicable. Therefore, collecting experimental data
on damping of the nanoresonators is an expensive and hard way to go; we thus present here a model
to calculate the Q factor of nanoresonators using thermoacoustic simulations for different geometries
and mechanical properties. Thermoacoustic modeling has not been employed to study the mechanical
resonance frequency and quality factor of nanoresonators before and is thus a new tool for high aspect
ratio nanostructures.

Thermoacoustic modeling is a method to investigate energy loss in the viscous, acoustic, and
thermal boundary layers around the nanoresonators. The small fluctuations of air pressure on top
of atmosphere (stationary) pressure due to the vibrations of nanoresonators are acoustic waves.
The wave equation of Helmholtz equation is derived by linearization of fundamental equations of
fluid dynamics including Navier-Stokes equation, continuity equation, and energy equation. Of course
the conservation equations for momentum, mass and energy for the acoustic perturbation has to be
considered. Computational methods can be used to solve these equations numerically while they
are coupled with thermal field. Here a FEM thermoacoustic model is developed using COMSOL
Multiphysics software package (COMSOL Inc., Burlington, MA, USA) to simulate the frequency
response function of 1D nanoresonators vibrating in the air.

In COMSOL, air is considered as a continuous gaseous medium and by defining air properties,
COMSOL can simulate its effect on the vibration of nanoresonators. We have three sets of equations,
one set that applies on the resonator as an elastic solid, one set that applies on the air as a fluid, and
one set that links the solid displacement and stress to the surrounding fluid as an acoustic interaction
on the element nodes that are defined as the contact surface. The vibration of the nanoresonator will
create a harmonic displacement in thermoacoustic sphere:

u = iωusolid [49] (13)
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where I is the square root of −1 and usolid is the velocity field of solid elements at the interface. For the
continuity equation we have:

iωρ+ ρ0∇·u = 0 [49] (14)

where ρ is the density of air and ρ0 is the background (initial) density. The momentum equation for
thermoacoustic region would be:

iωρ0u = ∇·
[
−pI + µ(∇u + (∇u)T −

(
2
3
µ− µB

)
(∇·u) I

]
[49] (15)

µ is the dynamic viscosity and µB is the bulk viscosity. The energy conservation would be:

iωρ0CpT = −∇· (−k∇T) + iωα0T0p + Q [49] (16)

Cp represents the heat capacity at constant pressure, k the thermal conductivity, α0 the coefficient
of thermal expansion. And finally the equation of state connects these parameters together:

ρ = ρ0 (βTp− α0T) [49] (17)

βT is the isothermal compressibility. Thermoacoustic model only considers the conduction
for temperature variation. Temperature variation can change the air properties including density,
coefficient of thermal expansion and isothermal compressibility. These values can affect the condition of
acoustic interaction and that is why the local temperature variation around the resonator is important.
Other studies have estimated the thickness of thermal and viscous layer as a function of frequency [50].
For all of the frequencies, the stationary temperature is assumed room temperature (20 ◦C). If the
temperature variation is large, there might be some convective heat transfer outside of thermoacoustic
layer which in long term may cause a change in stationary temperature.

The model consists of a thin cantilever beam with high aspect ratio and there are two spheres
around the beam (Figure 3). The smaller sphere is the thermoacoustic layer that calculates the fluid
dynamics and thermal energy transfer of the nanoresonator. The bigger sphere is transferring the
acoustic field of air in the thermoacoustic layer to the outside boundary. In this way, we can radiate the
loss energy out of medium and consider an infinite volume of air around the resonator as it is. In some
cases, there is a wall or another nanoresonator near the target resonator that will affect the acoustic
field, but for our model, we consider only an individual resonator that is surrounded by air.
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The model has a symmetry plane parallel to the lateral vibrations and resonator axis. For meshing,
a triangular prism element for the resonator and tetrahedron for the surrounding medium have been
considered. To have accurate results, the maximum size of the elements was determined as 20% of the
wavelength. It should be mentioned that there is a boundary viscous and thermal thin layer around
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the resonator; the gradients of velocity and temperature are large, and the mesh size in this region
should be smaller than the thickness of the acoustic boundary layer [49]. Figure 3 presents the meshed
model in COMSOL. Frequency domain analysis was used to develop a frequency response function
(FRF) for the nanoresonator. Clamp-free was considered as the boundary conditions of the beam, and
base motion vibration with ~500 nm amplitude was applied as a mechanical input. The vibration
amplitude at the free end is plotted for different frequencies and the width of the half power point of
experimental and simulated graphs is calculated as the Q factor.

4. Results

To check the accuracy of the model, the results of the FEM model are compared to the results
of reported experimental data on nanoresonators. Based on the results of Section 2, nanoresonators
have been selected as the candidates for a 1D nanomechanical tool: a Ag2Ga nanowire (cylindrical
shape with high density and bending modulus) [35,51] and a zinc oxide (ZnO) nanobelt (square
cross-section) [26,27].

Table 1 shows the properties of the selected nanoresonators. Figure 4 presents the frequency
response function (FRF) resulting from experimental data and thermoacoustic simulations. It should
be mentioned that experimental data has an arbitrary unit and, in Figure 4, each experimental graph
peak has been normalized to the maximum of relative simulated data.

Table 1. Properties of ZnO nanobelt and Ag2Ga nanowire.

Material Length (µm) Cross-Section Bending Modulus (GPa) Density (kg/m3)

ZnO nanobelt [27] 31.6 Rect. (228 × 314 nm2) 84.8 5606
Ag2Ga nanowire [35] 60 Circle (dia. 206 nm) 83.2 8960
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Figure 4. Frequency response function of Ag2Ga nanowire and ZnO nanobelt resulted from
experimental data and thermoacoustic model. The results of experimental data and thermoacoustic
model match.

Table 2 compares the experimental and simulated results for the selected nanoresonators.
The simulated values of resonance frequency f and Q factor are very close to their experimental
values [35]. The last column in Table 2 shows the calculated Q factors based on an equation in
reference [35]. The error in the results of the thermoacoustic model is much lower than the estimation
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in reference [35] and it shows the effectiveness of COMSOL multiphysics simulation (thus the physics
is right!).

Table 2. Comparing natural frequencies and Q factors of nanoresonators from experiments
and simulations.

Nanoresonator Vibration
Mode

Natural Frequency
(kHz) From

Equation (10)

Damped
Resonance
fexp (kHz)

Damped
Resonance
fsim (kHz)

∆f (kHz)
(% Error)

Qexp
([35]) Qsim

Estimated
Q ([35])

Ag2Ga nanowire 1st mode 24.7 22.5 23.4 1.1 (4.8) 1.2 0.9406 0.49
Ag2Ga nanowire 2nd mode 154.5 151 149.5 2.5 (1.6) 6.0 4.8362 2.90
Ag2Ga nanowire 3rd mode 432.6 428 428.8 −0.8 (0.1) 12.0 12.1473 8.17
Ag2Ga nanowire 4th mode 847.7 845 844.2 −6.2 (0.7) 22.0 21.4809 16.00

ZnO nanobelt 1st mode 143.44 140.3 3.14 (2.2) 3.85 4.0963 −

Equation (1) calculates the natural frequencies of a nanoresonator when there is no loss. Having
any kind of loss, including viscous and thermal, is like adding a mass to the vibrating system—it can
cause a downshift in resonance frequencies. In other words, the peak frequency in the damped system
is definitely smaller than the natural frequency. The resonance frequency resulted from simulation and
experiments are very close for ambient conditions. However, when that small nanowire is working in
vacuum, we can no longer simulate the air as a continuum fluid (as it is in free molecular flow regime)
with the thermoacoustic model.

Table 3 compares the mechanical response of the Ag2Ga nanowire and ZnO nanobelt. The first
resonance frequency of ZnO nanobelt is close to the second mode of Ag2Ga and the stress at the clamp
end for these two modes are close. However, the vibration amplitude and strain energy for the ZnO
nanobelt is much higher than for the Ag2Ga nanowire, suggesting ZnO nanowires can be better choices
for SPM as a tip. However, there are other deliberations including the fabrication process that should
be considered before final selection.

Table 3. The mechanical response of the Ag2Ga nanowire and Zno nanobelt from a thermoacoustic model.

Mechanical
Response

Ag2Ga 1st Mode
(23.4 KHz)

Ag2Ga 2nd Mode
(149.5 KHz)

Ag2Ga 3rd Mode
(428.8 KHz)

Ag2Ga 4th Mode
(844.2 KHz)

ZnO Nanobelt
(140.3 KHz)

Stress (MPa) 5.9 76.9 286.7 680.3 98.9
Strain energy (J) 2.0474 × 10−17 4.6904 × 10−18 4.0924 × 10−14 2.4916 × 10−14 5.9527 × 10−15

Figure 5 shows the mode shapes and temperature variation for the first four modes of the
Ag2Ga nanoneedle. As is shown, the radius of the thermal boundary layer decreases as the frequency
increases. For example, the diameter of temperature variation for the fourth mode is in the same scale
of the nanoresonator length, but for the first mode, the diameter of temperature variation is almost
twice the length of the nanoresonator. Based on the acoustic effects of MEMS resonators that led to
improved performance [50], we used a similar concept to define the radius of the thermoacoustic sphere.
A smaller thermoacoustic sphere can be used for high frequency modes to make the computations
faster and less expensive. In these simulations, the radius of the thermoacoustic sphere (R) for the
first mode is 50% larger than the resonator’s length (L), but in higher modes, the radius of the
thermoacoustic model and the length of the nanoresonator are equal. Figure 6 compares the results
of the thermoacoustic model for the first resonance mode with different thermoacoustic sphere size.
The results are different when R = L, R = 1.5 L. However, there are no differences between the results of
simulations when R = 1.5 L and R = 2 L. Therefore, if the sphere is large enough that the temperature
variation at outer regions of sphere is zero, the size of sphere is optimum and making the sphere bigger
will not affect the results. Based on these observations for the final results, R = 1.5 L was selected for
the first mode but for modes 2, 3, and 4, R = L was selected as the size of sphere.
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In these simulations, the temperature variation is small and local, but if this is not the case in a
simulation, higher initial temperature should be utilized for the interaction. In Figure 5, as the vibrating
mode is increased, the temperature variation increases and it becomes more local. It should be noted
that, in the frequency domain, the results are for a steady-state situation, and transient conditions are
not available.

Although thermoacoustic simulation works very well at the continuum regime, its results are not
as precise in the free molecular flow regime, low-vacuum conditions, and very small diameter beams;
thermoacoustic simulation can’t predict the Q factor correctly. This suggests that the physics at the
molecular flow regime needs new equations which COMSOL currently does not offer.

Figures 7–14 show the effect of diameter, length, bending modulus, and density on the maximum
stress at the clamp end and elastic stored energy of nanowire in an ambient condition for each
mode. In each figure, the fitted curve on the thermoacoustic results is shown. Except for the relationship
between the diameter and normal stress, the simulated results corroborate the findings of the
analytical model.Actuators 2016, 5, 23  12 of 19 
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Figures 7 and 8 show the effect of diameter on the normal stress at the clamp end and strain
energy of the nanoresonator. In these simulations, 10 µm as length, 90 GPa as bending modulus, and
9000 kg/m3 as the density of the nanoresonator were kept constant, and the results are plotted for
different diameters. While the analytical model (Equation (11)) suggests linear behavior between the
diameter and normal stress, the simulation results show a second-order polynomial fit. As the diameter
of the nanoresonator decreases, it gets closer to the free molecular regime and the thermoacoustic
model fails to simulate the vibration of nanoresonator in this regime accurately. However, Figure 8
shows a fourth-order polynomial fit for strain energy which is consistent with what is suggested in
Equation (12).

Figure 9 shows a linear relationship between bending modulus and stress for the nanoresonators.
Figure 10 also shows the linear effect of bending modulus on strain energy. In these simulations,
the selected measurements for defining the properties of the nanoresonator are: 20 µm length,
200 nm diameter, and 9000 kg/m3 as density. Equations (11) and (12) confirm the same effect for the
bending modulus.

For investigating the effect of length, 200 nm diameter, 20 GPa bending modulus, and 9000 kg/m3

density were kept constant, and length was changed from 10 to 60 µm. The analytical model as well as
Figure 11 shows a second-order fit for stress versus the inverse of length. Figure 12 and Equation (12)
show a fourth-order fit for strain energy versus the inverse of length. Figures 13 and 14 also show the
negligible effect of density on stress and strain energy as it was suggested in Equation (11) and (12).

Now that we are sure that the simulation results are consistent with the experiments, we can use
this model to investigate the effect of nanoresonator properties on its Q factor. Therefore, a series of
simulations were designed to show the effect of the length, diameter, density, and elastic modulus
of a vibrating resonator in air on its Q factor. Equation (18) has been developed based on the results
of simulations.

Q = 74× k1.8
i × d2.5 × E0.45 × ρ0.57

L1.7 (18)

ki is the constant coefficient of natural frequency for different modes, d the diameter, L length, E
elastic modulus, and ρ the density of nanowire. This equation is for an individual nanoresonator as
a fix-free cantilever vibrating in air and it looks like this equation is similar to the one that has been
suggested by Yum et al. [27]. However, by adding the thermal damping, the power of parameters has
been modified in Equation 18 and is more accurate.

5. Discussion and Conclusions

A scanning probe microscopy (SPM) typically employs probe tips of various shapes attached to
short beams that limit the geometry of features that can be probed [52]. In recent efforts to overcome
this, researchers have added a carbon nanotube to the end of an atomic force microscope (AFM) tip [53].
New materials such as Ag2Ga and ZnO nanowires and nanobelts have also been used. In carbon
nanotubes, the shank lengths are only in a region of a few micrometers long and also cause adhesive
effects due to van der Wals forces which can be overcome by using resonating probes. To minimize
this influence, different techniques have been evaluated such as: torsional [54], longitudinal [55],
and lateral vibrations in SPM and AFM [56]. Compared to carbon nanotubes, the Ag2Ga offers a
versatile probe, room temperature probe fabrication and also an ability to grow probes of any length
with high rigidity [7]. These could be useful in places like probing inside a via. In general, these
methods employ a 1D probe tip that is oscillated below the natural frequency of the probe’s shank.
Once the work piece is contacted by the vibrating free end of the probe tip, it causes a shift in the
phase and natural frequency of the probe system [57,58]. All of the earlier solutions do not provide the
capability of rapidly and accurately measuring even high aspect ratio micro-scale features such as vias,
micro-cooling channels, and fiber optic couplers. In particular, for micro scale probes with spherical
contact tips, tip diameters in many cases are larger than 100 µm, which is not effective for holes with
less than 200 µm diameter. Second, probe tips smaller than 100 µm in diameter are relatively short
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and still large compared to the targeted hole diameters such as fuel injector nozzles, chip vias, or
micro cooling channels. Furthermore, the measurement speed is low and probes often function only
in the touch trigger mode. These probes are susceptible to adhesion and thus, after contacting the
work piece, they stick to the measured surface. Procedures to overcome adhesion effects often reduce
repeatability and increased time needed to perform the measurement. Using nanoresonators with
high strain energy to avoid sticking to the target surface is a feature that is desired. The high frequency
vibration can apply large stress at its bonding section to the actuator and make the bonding break.
High amplification can act as a virtual tip to move the nanoresonator close to the target surface.

Table 4 summarizes the effect of material and geometrical parameters on the mechanical response
of a vibrating nanowire. Among these parameters, length is the most influential parameter and density
is the least influential one. To simulate the behavior of vibrating nanoresonator in air, a thermoacoustic
multiphysics model is presented in this report and the results match the experimental data accurately.
A thermoacoustic model only works in the continuum regime, and its results in the free molecular
regime need new physics to describe them in COMSOL. Ag2Ga nanowire and ZnO nanobelt were
selected as the potential candidates due to their use as a stylus in SPM. This model is the first of its
kind and has excellent agreement with the experimental reports in the literature and thus is useful for
predicting the mechanical properties of such 1D nanomaterials. Future developments in this area could
be development of a package in COMSOL to describe the molecular flow regime that can accurately
predict the resonance frequency and quality factors of nanoresonators. New 2D nanomaterials such
as transition metal dichalgogenides (TMDs) with their layered structure and ultra-high strength and
ability to withstand deformation up to 25% could be simulated for their resonance frequency and
quality factors using this model rather than doing expensive experiments in the future.

Table 4. The effect of material and geometrical properties of a vibrating nanoresonator in vacuum on
its mechanical response.

Mechanical Response Effect of
Length

Effect of
Diameter

Effect of Bending
Modulus

Effect of
Density

Normal stress at the clamp end (high vacuum) 1
L2 d E No effect

Normal stress at the clamp end (ambient condition) 1
L2 d2 E No effect

Elastic stored energy (high vacuum) 1
L4 d4 E No effect

Elastic stored energy end (ambient condition) 1
L4 d4 E No effect
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Appendix A. Nomenclature

ωi Angular natural frequency of nanoresonator at different modes
ρ Density of nanoresonator
A Cross-section of nanoresonator
P Pressure
Mm Molecular weight
T Temperature
Ro Universal gas constant
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b Effective area for damping per unit length
ki The constant coefficient of natural frequency for different modes
E Elastic modulus of nanoresonator
L Length of nanoresonator
W Width of nanoresonator
h Height of nanoresonator
I Planar second moment of nanoresonator area
x Special coordinates of nanoresonator
y Lateral displacement of vibrating nanoresonator in time domain
t Time
B (x) Deflection of nanoresonator in special coordinates
e Base excitement of nanoresonator
w Actuating angular frequency
D Amplitude of base excitation
C1, C2, C3, C4, C, C′ Constant
λ Eigenvalue
RM Reaction moment at clamp end of nanoresonator
σ Stress
d Diameter of nanowire
V Elastic strain energy
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