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Abstract: In this paper, a novel variable stiffness mechanism is presented, which is capable
of achieving an output stiffness with infinite range and an unlimited output motion, i.e.,
the mechanism output is completely decoupled from the rotor motion, in the zero stiffness
configuration. The mechanism makes use of leaf springs, which are engaged at different
positions by means of two movable supports, to realize the variable output stiffness. The
Euler–Bernoulli leaf spring model is derived and validated through experimental data. By
shaping the leaf springs, it is shown that the stiffness characteristic of the mechanism can
be changed to fulfill different application requirements. Alternative designs can achieve the
same behavior with only one leaf spring and one movable support pin.

Keywords: variable stiffness mechanism; hypocycloid gearing; leaf spring; infinite stiffness
range; unlimited motion

1. Introduction

Traditional robotic systems have stiff structures and are actuated using stiff joints, i.e., they use
different types of electric motors, possibly with a gear reduction. This can be desirable for industrial
applications to achieve a large position control bandwidth and, therefore, high positioning accuracy
and fast operation. However, more and more robotic systems working in cooperation with humans are
developed for which a severe demand on safety is placed. This requires a paradigm shift from stiff robots
to compliant robots, which can be implemented by, for instance, using compliant manipulator segments
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or compliant joints. Embedding compliant behavior in joints was first done using active impedance
control [1], which mimics the behavior of an elastic element through control. A good performance can
be achieved using this strategy for sufficiently slow interaction, but since control bandwidth is always
limited, the controller cannot react to arbitrary high frequency interaction, e.g., shocks and impacts.
Therefore, a physical elastic element has been introduced to realize series elastic actuators (SEA) to
ensure intrinsic compliance [2]. By measuring the deflection of the elastic element, the force that is
generated in a joint can be calculated, and therefore, robust interaction control is possible. Moreover,
the physical elastic element ensures an infinite disturbance bandwidth. A variable stiffness actuator
(VSA) [3] is a further development by being able to adjust the perceived actuator stiffness to meet
requirements imposed by a changing environment or operating condition. Moreover, the intrinsic system
dynamics can be tuned to achieve energy efficiency [4]. This novel actuation concept is necessary for
increased safety and seems highly promising in, for instance, the assistive robotics field [5], which relies
on human-robot interaction.

Many different implementations of VSA mechanisms have been presented in the literature, which can
be roughly classified into three major groups [3], i.e., the spring preload group (of which an antagonistic
realization closely resembles a human joint) [6–8], the group in which the transmission between load and
spring is changed [9–14] and the group where the physical properties of the spring are changed [15–17].
Each design has its own characteristic properties: the spring preload designs rely on adjusting the preload
of elastic elements, which allows them to store a considerable amount of energy, but requires them to
put energy in the elastic elements to change the stiffness, which may not be retrievable [18], while their
stiffness range is finite; the variable transmission between load and spring designs require no energy to
be put in the elastic elements to change the stiffness, but it is more difficult to store a considerable amount
of energy. An infinite stiffness range is, however, possible; the designs where the physical properties of
the spring are changed also require no energy to be put into the elastic elements to change their stiffness,
and a considerable amount of energy can be stored in the elastic elements, although an infinite stiffness
range within this class has not yet been shown in literature.

In this paper, the novel design of a variable stiffness mechanism (VSM) is presented, which fits in the
group in which the transmission between load and spring is changed. The novelty lies in the property
that when the mechanism is in its zero stiffness configuration, the output is completely decoupled from
the input (the rotor) and an unlimited output motion is then possible (unconstrained, infinite rotation).
Therefore, the output behavior will only be a result of the dynamics of the output load. Moreover, the
actuator is capable of achieving an infinite stiffness range (from truly zero stiffness to infinite stiffness,
i.e., the parasitic mechanical stiffness), which was not shown before using leaf springs.

This paper is structured as follows: first, the conceptual design is presented in Section 2. Section 3
elaborates on the mechanism model, and Section 4 shows the experiments performed on a setup very
similar to the prototype mechanism. The paper is concluded with Section 5, and the possible future
research focus is presented in Section 6.
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2. Conceptual Design

This section elaborates on the conceptual design, showing the working principle of the VSM and the
key design features that enable an infinite stiffness range and completely decoupled and infinite output
motion from the input.

2.1. The Variable Stiffness Mechanism and Its Working Principle

The novel VSM, shown in Figure 1, consists of a stator, a rotor and an output. In this VSM, the
compliance is created between the rotor and the output by using two leaf springs that connect to the
output at their ends and connect to the rotor via support pins, fixed on the gears of a hypocycloid
gearing mechanism. These pins can move in between the leaf springs in a straight line, imposed by
the hypocycloid gearing mechanism, allowing variable compliance in between the rotor and the output.
The two planet gears are connected to and rotated by the planet carrier.

Figure 1. The novel variable stiffness mechanism creates compliance between the rotor and
output by means of leaf springs, and it is made variable by means of support pins that can be
moved in between the leaf springs by using a hypocycloid gearing mechanism.

The working principle of the concept (of only one leaf spring) is shown in Figure 2. The principle
is based on the group in which the transmission between load and spring is changed. A force couple,
F , is applied on the undeflected leaf spring (in grey), which causes it to deflect (in black). The location
of the movable supports (with coordinate x0) influences the deflection shape of the entire leaf spring.
For an increasing x0, the transmission between load and spring is changed, and therefore, the perceived
stiffness at the force application points is increasing. When the supports are located at both ends of the
leaf spring, an infinite stiffness is felt. When the supports are joined together in the middle of the leaf
spring, i.e., x0 = 0, a zero stiffness is felt, and moreover, the leaf spring is free to rotate about its center,
due to force couple F . In the VSM, this means that the output is completely decoupled from the rotor
and that the output only shows dynamics imposed by the load. Note that the active length is always the
entire leaf spring, so the entire leaf spring determines the perceived stiffness.
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Note that the device presented here is not yet an actuator in the sense that it has motors and can deliver
power to a load. Currently, it is a conceptual mechanism to which actuators can be connected.

Figure 2. The working principle of the variable stiffness mechanism. The deflection shape of
the leaf spring is varied by changing the location of the supports, and therefore, the perceived
stiffness at the location of the force application points is changed.
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2.2. Support Pins

The support pins, at location x0, have a special shape (the designed shape (note that other pin shapes
similar to this are possible, such as a helical shape) is shown in Figure 3), such that they can join together
in the center of the VSM to form a perfect cylinder, such that the output is decoupled from the input.
This means that the output can rotate infinitely, independent of the input. Note that when the output is
rotated exactly perpendicular to the imaginary line along which the supports move, a singularity occurs,
because of the leaf springs constraining the supports to moving apart. Since the rotor movement is also
independent of the input, a controller should keep track of the output movement during free rotation and
adjust the rotor position accordingly to prevent this singularity from occurring. When moving apart, the
shape of the support pins ensures that the space between the two leaf springs is completely filled, leaving
no room for play, at any location along the leaf springs, which is made explicit in Figure 4.

2.3. Hypocycloid Gearing Mechanism

The supports pins should be moved in a straight line along the leaf spring, which is achieved using
a hypocycloid gearing mechanism (similar to a planetary gearing system, previously proposed in [14])
and shown in Figure 5. It consists of one ring gear and two planet gears, and the supports are fixed to the
planet gears. The ring gear is fixed to the rotor, and the planet gears are fixed to and rotated by the planet
carrier. Because the pitch diameter of the planet gears is half the pitch diameter of the ring gear, a point
on the planet gear pitch diameter tracks a straight line. Note that half of the planet gear teeth should be
removed to allow the two planets to rotate. In the proposed VSA mechanism, there are two leaf springs
placed at a small distance from each other in between which the supports can move. To ensure the leaf
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springs are held together at the same distance and deflect as if they are one leaf spring, they are held
together by small clamps.

Figure 3. The pin used as one of the two supports for the leaf spring.

Figure 4. Schematic representation of the motion of the supports in between the leaf springs.
Contact with both leaf springs is always ensured, because of the pin shape (shown in red).

3. Modeling

This section elaborates on the VSM modeling. A leaf spring was modeled as a beam to analyze
its deflection for specific support locations and applied forces. Although the mechanism consists of
two leaf springs, only one leaf spring is modeled, since an otherwise highly complex model would likely
result from the modeling of the coupling between the leaf springs by the clamps. A finite element model
(FEM) of the support pin was used to analyze the stress on the pins as a result of the actuator torque.
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Figure 5. The hypocycloid gearing mechanism used to move the supports in a straight line
along the leaf spring.

3.1. Leaf Spring

The leaf spring is modeled as a doubly-supported, doubly-overhanging rectangular Euler–Bernoulli
beam with a force couple on the ends due to the mechanism output torque (refer to Figure 2). A
Euler–Bernoulli model of this beam is justified versus the use of, for example, the Timoshenko beam
model, taking shear deformation into account, since the leaf spring is relatively thin compared to its
other dimensions. Hence, assuming that a cross-section is always perpendicular to the neutral axis
is justified.

The geometry of the beam and the coordinate frame that is used, which is placed in the center of the
beam, is shown in Figure 6. The beam deflection in the z-direction is a function of the x-coordinate.

Figure 6. Geometry and coordinate usage of a generic beam.
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The general linear Euler–Bernoulli beam equation is given by:

d2

dx2

(
B(x)

d2

dx2
(v(x))

)
= q(x) (1)

where the term B(x) := EIxx(x) is a function of Young’s modulus E (It is assumed that the leaf spring
has uniform density, i.e., Young’s modulus E is constant over the material), the area moment of inertia,
Ixx, v(x), is the beam deflection at coordinate x, and q(x) is the loading profile on the beam.



Actuators 2014, 3 113

Expanding the terms, this equation can be given by:

d2

dx2
EIxx(x)

d2

dx2
v(x) + 2

d
dx
EIxx(x)

d3

dx3
v(x) + EIxx(x)

d4

dx4
v(x) = q(x)

This is a fourth order, first degree, ordinary differential equation with variable coefficients.
For a uniform beam, i.e., a beam with constant geometry EIxx(x) → EIxx, the first two terms are

zero, and the equation becomes:

EIxx
d4

dx4
v(x) = q(x)

This is a fourth order, first degree, ordinary differential equation with constant coefficients.
The beam deflection can be solved by separately taking into account the individual loading segments

and choosing proper boundary conditions to form a continuous solution. However, the loading profile
can also be specified in a way such that it is valid over the complete beam length and solving it for the
complete beam at once. The loading on the leaf spring consists of four forces, as shown in Figure 7.

Figure 7. Force profile on the leaf spring, consisting of four forces: two applied forces, F ,
and two reaction forces on the support pins, Ra and Rb.
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The loading q(x) can be given as:

q(x) := −F · δ(x+ 1

2
lx) +Ra · δ(x+ x0) +Rb · δ(x− x0) + F · δ(x− 1

2
lx)

where F is the force on the ends of the leaf spring due to the output torque, Ra and Rb = −Ra are the
reaction forces at the supports and δ(x− α) is the Dirac pulse located at x = α.

The fourth order differential equation of (1) needs four boundary conditions to solve for the deflection,
v(x). Two boundary conditions are given at the support locations, since there, the deflection is zero.
Figure 8 gives the other two boundary conditions, namely the slope at the ends of the leaf springs should
be coincident with the center of the mechanism. The boundary condition equations are given by:

v(x0) = 0

v(−x0) = 0

d
dx
v(x)
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2
lx

:= φ(
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2
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v(1
2
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1
2
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v(x)
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x=− 1

2
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2
lx) =

v(1
2
lx)

1
2
lx

(2)

The leaf spring bends in the z-direction, so the area moment of inertia, Ixx, for a uniform beam is
given by:

Ixx :=
lyl

3
z

12
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Young’s modulus E depends on the material that is used; in this mechanism, PETGcopolyester with
a Young’s modulus of 1.9 GPa was used.

Figure 8. The leaf spring (thick solid line) is fixed to the output of the variable stiffness
actuator (VSA) mechanism (grey ring), which causes the leaf spring slope at its ends (dashed
line) to be coincident with the mechanism center and perpendicular to the tangent of the
output ring.

τ

When solving the equation in (1) together with the boundary conditions of (2) for a uniform beam,
with lengths lx = 100 mm, ly = 8 mm and lz = 1 mm, the beam shape for different settings of the
support location with coordinate x0 is shown in Figure 9. Indeed, for increasing x0, the beam deflection
decreases at a constant force, F , and therefore, the perceived stiffness increases. Note the particular
beam shape at the ends, caused by clamping the leaf spring in the output.

Figure 9. The beam shape for several settings of the support location, x0, under a constant
applied force, F . Note the particular beam shape near the ends, caused by clamping the leaf
spring in the mechanism output.

When the leaf spring is not uniform, but either variable over length ly or lz as a function of coordinate
x, Ixx becomes a function of x. This affects the stiffness of the beam, which is a desirable feature of
the proposed mechanism, since a different stiffness characteristic can be very easily achieved by only
adjusting the shape of the leaf spring. When assuming that only length ly is variable over coordinate x,
which is realized more easily than a variable, lz, the area moment of inertia becomes:

Ixx(x) :=
ly(x)l

3
z

12

In Section 4, three different leaf spring shapes are measured to make the shaping of the stiffness
characteristic explicit. Equations (1) and (2) of these non-uniform beams were solved numerically, and
those results are plotted together with the measurements in Section 4.
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Note that the model presented here is based on linear beam theory, and therefore, the model is less
accurate for larger deflections.

3.2. Support Pins

The support pins should have a special shape to allow two of those pins to join together, while still
ensuring that the complete space between two leaf springs in the mechanism is filled, such that there is
no play between the output and the rotor. The support pins should also be able to withstand the forces as
a result of force F on the leaf spring.

The force on a support pin is equal to F when a support is located at x0 = 1
2
lx and increases when x0

decreases. The maximum support force occurs for 0 < x0 � ε, with ε infinitely small, i.e., at a location
infinitely close to zero, but not equal to zero. For a constant output force, F , this would result in an
impossibly large deflection of the leaf spring. Therefore, to calculate the maximum support force, its
deflection needs to be limited. Figure 10 shows the force in one of the supports, for a constant applied
maximum force F = Fmax and for an applied force, F , that causes a certain constant maximum leaf
spring deflection F = Fvmax . For a maximum force Fmax = 200 N (corresponding to an arbitrary
maximum output torque of τ = 10 Nm) and a maximum allowable leaf spring deflection vmax = 1

4
lx,

the maximum support force is calculated to be Ramax = 238.4 N at x0 = 42.0 mm.

Figure 10. Support force Ra as a function of support location x0. Two plots are shown:
F = Fmax shows the support force if always a force F = Fmax is allowed to be applied on
the leaf spring, and F = Fvmax shows the support force when a certain force, F , is applied
with which a certain maximum deflection v(x) = vmax is achieved. Their crossing is the
maximum possible support force, Ramax.

The maximum force, Fmax, on the support pin occurs at a certain support location, x0, and, therefore,
under a certain angle defined by the motion of the hypocycloid gearing mechanism. It is calculated that
this angle for x0 = 42.0 mm is θmax = 32.96◦. That force is applied on a finite element model of the
support pin (refer to Figure 11) to obtain the stress distribution inside the pin. Using regular alloy steel
with a Young’s modulus of 210 GPa and a yield strength of 620 · 106 N/m2, the safety factor using this
particular shape is 3.10.
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Figure 11. The stress analysis of the support pin fixed to a gear of the hypocycloid
gearing mechanism. The applied loading is given by the maximum force on the pin under a
certain angle.

3.3. Hypocycloid Gearing Mechanism

Coordinate x0 is a function of the planet carrier angle in the hypocycloid gearing mechanism
(the angle that the bar to which the two planet gears are fixed makes with respect to the ring gear;
see Figure 5), θpc, and the pitch diameter of the planet gear, Dp, and is given by x0 = Dp sin(θpc). Here,
it is assumed that the bottom right figure of Figure 5 represents a planet carrier angle of θpc = 0 rad, and
the top left figure represents an angle of θpc = 1

2
π rad. Dp is 50 mm in this setup. Readers are referred

to [14] for the full kinematic analysis.

4. Experiments

Experiments have been performed to measure the stiffness characteristic of the proposed variable
stiffness mechanism. As stated before, the stiffness characteristic that is a function of the support
location, x0, can be changed by shaping the leaf springs. Three different PETG leaf spring shapes
were used during the measurements, namely a uniform shape, a negative parabola cutout and a positive
parabola cutout, as is shown in Figure 12. In 1, the height is 8 mm; in 2 and 3, the height is between 4

and 8 mm. The expectation is that for support locations close to the center, i.e., for small x0, the positive
parabola stiffness is larger than the negative parabola stiffness, but for support locations further from the
center, the positive parabola stiffness increases less steeply compared to the negative parabola stiffness.
The uniform leaf spring should have the highest overall stiffness, since it has the largest dimensions over
its full length. The experimental setup of Figure 13 was used to measure the stiffness characteristic of
the VSM. It is similar to the VSM itself, but now, the output has a handle with which it can be rotated.
On the bottom, an ATI Mini40 force/torque sensor (SI–80–4 calibration) is fixed between the rotor and
the fixed world, and moreover, an AMS5048A magnetic absolute angular encoder with a resolution of
14 bits is placed on top of the setup to measure the output angle. A measurement is done by placing
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the correct leaf springs, setting the correct support location and rotating the output once from its neutral
position in the positive direction, back to its neutral position, in the negative direction and back to its
neutral position. In this way, any non-symmetrical behavior and the possible hysteresis effect are made
explicit. The two sensors are interfaced with MATLAB Simulink, where the force/torque and angle data
are acquired simultaneously and processed further. A deflection/torque diagram can be obtained directly
from such a measurement for certain x0 settings, and a stiffness/support location diagram is obtained by
a linear least squares approximation to this data. The slope is then the compliance, and its reciprocal is
the stiffness at that x0 setting.

Figure 12. Three different leaf spring shapes, shown in the x-y-plane. Leaf Spring 1 is a
uniform beam, and Leaf Springs 2 and 3 are beams with a negative and positive parabola
cutout, respectively.

1

2

3

Figure 13. The experimental setup used to measure the stiffness characteristic of the variable
stiffness mechanism. A magnetic sensor is placed over the device to measure the output
rotation, while a force/torque sensor is placed under the device to measure the applied torque.
The support pins can be placed at predefined locations.

Since the model assumes only one leaf spring, also one leaf spring was first measured in the
setup. Since the mechanism is designed for using a double-leaf spring, a single-leaf spring was
fixed to the output and placed in between the two supports with a slight pretension, such that it is
possible to measure the torque/deflection characteristic in one direction. See Figure 14 for (part of)
the measurement results. Measurement data is shown for five different support location settings. The
simulated torque/deflection data is shown with dashed light grey lines. A dotted line in the same color as
the measurement data indicates the linear least squares approximation to the data. Figure 15 shows the
support location/stiffness plots derived from Figure 14. Again, the dashed light grey line is the simulated
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stiffness, and the solid blue line is the measured stiffness. It can be seen that the experiments show the
same characteristic as the simulations, and the experiments thereby validate the model in Section 3.

Figure 14. Deflection/torque measurement results using a single-leaf spring (for clarity,
only half of the measurements are shown). The dashed line represents the simulated
deflection/torque data, and the dotted line is the linear least squares approximation to the
deflection/torque data. (a) Uniform; (b) negative parabola; (c) positive parabola.

−5 0 5
−1

−0.5

0

0.5

1

Torque [Nm]

D
ef

le
ct

io
n 

an
gl

e 
[r

ad
]

x
0

= 5 mm

x
0

= 20 mm

x
0

= 30 mm

x
0

= 40 mm

x
0

= 45 mm

(a)

−5 0 5
−1

−0.5

0

0.5

1

Torque [Nm]

D
ef

le
ct

io
n 

an
gl

e 
[r

ad
]

x
0

= 5 mm

x
0

= 20 mm

x
0

= 30 mm

x
0

= 40 mm

x
0

= 45 mm

(b)

−5 0 5
−1

−0.5

0

0.5

1

Torque [Nm]

D
ef

le
ct

io
n 

an
gl

e 
[r

ad
]

x
0

= 5 mm

x
0

= 20 mm

x
0

= 30 mm

x
0

= 40 mm

x
0

= 45 mm

(c)

Figure 15. Stiffness/support location plots for a single-leaf spring based on a linear least
squares approximation to the deflection/torque data. (a) Uniform; (b) negative parabola;
(c) positive parabola.
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Using the same measurement procedure, the situation for the regular configuration of two leaf springs
was measured, and these measurements were again used to obtain a support location/stiffness plot.
Modeling the effect of a double-leaf spring constrained by clamps would likely result in a highly
complex model, so this effect was empirically tested by normalizing the double-leaf spring stiffness
at each support location to the stiffness obtained when using only one leaf spring, for every leaf spring
shape. This results in Figure 16. These normalized stiffnesses are approximated by a linear regression
for increasing support location x0, averaged over the three leaf spring shapes, shown in dashed light grey.
With this effect, the model data is adapted to incorporate the coupling to a second leaf spring.
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Figure 17 shows (part of) the torque/deflection plots using a double-leaf spring, presented in Section 2.
Again, the dashed light grey lines are the simulated data, which are now adapted to incorporate the
coupling of the second leaf spring, and the dotted lines in the same color as the measurement data are
the linear least squares approximations. These approximations are used to calculate the stiffness using
a particular leaf spring shape, which is shown in Figure 18. The dashed line is the adapted simulation
data, and it is closely approximated by the experimental data.

Figure 16. Normalized stiffness derived from the double-leaf spring measurement,
normalized to the single-leaf spring measurement, which shows the effect of the double-leaf
spring and clamps. This effect is approximated by a linear regression for increasing support
location x0, averaged over the three leaf spring shapes.
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Figure 17. Deflection/torque measurement results using a double-leaf spring (for clarity,
only half of the measurements are shown). The dashed line represents the simulated
deflection/torque data, and the dotted line is the linear least squares approximation to the
deflection/torque data. (a) Uniform; (b) negative parabola; (c) positive parabola.
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Figure 18. Stiffness/support location plots for a double-leaf spring based on a linear least
squares approximation to the deflection/torque data. The simulated line is adapted using the
measured effect of the double-leaf spring and the clamps with respect to a single-leaf spring.
(a) Uniform; (b) negative parabola; (c) positive parabola.
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Figure 19. Stiffness plots for the three different leaf spring shapes, making the possibility of
shaping the stiffness characteristic of the variable stiffness mechanism (VSM) explicit.
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In Figures 14 and 17, hysteresis can be seen. This is due to the realization of the test setup, which
has friction between the rotatable output and stator, and the stiction of the leaf spring in the groove
that connects it to the output to allow the shortening of the leaf springs under deflection. Hence, this
is not an intrinsic property of the mechanism. Figure 19 overlays the three stiffness plots of Figure 18
to show the ability that the stiffness characteristic of the VSM can be changed easily by shaping the
leaf springs. Although for these shapes, the effect is not that profound, the stiffness shaping possibility
is obviously seen when comparing the two non-uniform leaf springs: the positive parabola starts with
a higher stiffness than the negative parabola, but increases less steeply, such that the negative parabola
stiffness exceeds the positive parabola stiffness at x0 = 27 mm. Moreover, the positive parabola stiffness
for small support locations is the same as the stiffness of the uniform leaf spring, since the positive
parabola has almost equal dimensions for small support locations. This is indeed according to the
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expectation. More leaf spring shapes can be explored, to achieve, for instance, a stiffness characteristic
that is linear over a maximal interval.

5. Conclusions

In this paper, a novel variable stiffness mechanism has been presented, which is capable of an infinite
stiffness range not before encountered in this class of variable stiffness realization and completely
decoupled unlimited output motion with respect to the rotor for safe passive behavior. An important
feature of this mechanism is the ability to easily change the stiffness characteristic by shaping the leaf
springs. A Euler–Bernoulli beam model is proposed to model one of the two leaf springs that are present
in the mechanism. Experiments using PETG copolyester show the validity of this model for single-leaf
springs of various shapes. The stiffness measurement using the double-leaf spring is normalized to the
single-leaf spring stiffness measurement, to measure the effect of coupling a leaf spring by clamps to
another leaf spring. This effect is approximated and used to adapt the model data to correspond to the
double-leaf spring measurements. In this way, a close approximation of the measurements to the model
data is achieved. The result of shaping the leaf springs is shown and agrees with the expectation.

6. Outlook

A different realization of the same concept might be explored in future research, possibly one that
uses only one leaf spring and one circular support with a groove, in which the leaf spring is placed, that
is mounted with a bearing on the planet gear. Furthermore, a fixed support with two quarter cylinder
cut-outs may be possible. Note that these different realizations do not change the properties of the
mechanism, and it should be investigated whether these realizations have advantages over the presented
mechanism. See Figure 20 for a schematic representation.

Figure 20. Alternative realizations of the VSM concept. One uses a pin with a groove; the
other uses a fixed cylindrical pin with two quarter cylinders cut away (white parts).
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