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Abstract

In the field of life sciences, delay effects are often modeled with two compartments that
do not model any particular organ. In this paper the use of this double counterpart model
is investigated in Fixed-Point Iteration-based (FPI) Control, which was introduced in
2009 as an adaptive extension to the Computed Torque Control method. This controller
is particularly sensitive to delays and measurement noise due to its iterative nature. It
was recognized that, besides modeling the delay effect, this signal tackling also provided
the controller with some noise filtering ability; the formerly accumulated effects of noise
filtering and formally delayed sampling were avoided. This smeared delay has a noticeable
effect even slightly later in time, making the adaptive method based on it more robust. This
assumption was investigated both on a simulation and experimental basis.

Keywords: computed torque control; adaptive control; fixed point iteration; robust fixed
point transformation; delay; noise filtering

1. Introduction
In most robot applications the manipulator is tasked to follow some designated path

as precisely as possible. Therefore, trajectory tracking is one of the most important and
fundamental problems in field of robotics that is posing significant challenges due to the
complicated, highly nonlinear and time-varying behavior of robotic manipulators. This
fundamental problem has inspired numerous solutions over the years. Among these,
Computed Torque Control (CTC) is a widely used and well established solution that was
developed at the end of the 20th century [1]. This control method utilizes the dynamic
model of the controlled system in a feed forward configuration with some linear error
compensation rule, which is most commonly a PID (Proportional–Integral–Derivative)
controller. Therefore, the effectiveness of the CTC method is limited by the accuracy of the
system model and the precision of feedback signal measurements. In practice, position
and velocity transducers are effected by quantization noise, and it also quickly became
apparent that it presents significant challenges to develop precise enough robot models for
control purposes [2].

However, given its simple structure and computational efficiency in comparison with
certain adaptive and robust control solutions, CTC remained a prevalent approach within
the field of robotics throughout the years, e.g., [3–5]. To address some of the design chal-
lenges, many researchers suggested adaptive or robust variations. For example, in the
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early years, a globally convergent Adaptive CTC method was suggested with a simple
least square estimator in order to fine-tune the dynamic model parameters of the controlled
manipulator [6]. In [7] a CTC was designed with a nonlinear PD (Proportional–Derivative)
controller and an Extended State Observer to estimate external disturbances and modeling
errors due to friction and temperature variations. It was shown that the nonlinear PD
gains significantly improve the responsiveness of the controller, that way better tracking
properties could be achieved for higher speed motion in case of a 6-DoF (Degree of Free-
dom) parallel manipulator. However, nonlinear PID controllers have a greater number
of parameters that require careful tuning, thereby influencing the controller’s behavior
in various unexpected manners. Hence, the use of soft computing methods, e.g., Particle
Swarm Optimization [8,9], has been successfully investigated by many authors for tuning
purposes. In order to ensure desired transient trajectory tracking behavior of a rehabilita-
tion exoskeleton, a novel CTC design was introduced in [10] with a Prescribed Performance
Controller, which is a widely used technique in adaptive control [11,12]. In order to address
the issue of modeling imprecisions, the utilization of a neural network, such as a radial
basis function neural network, was considered in the literature [13,14]. These methods are
capable of compensating for complex nonlinearities and dynamic uncertainties. However,
their practical implementation can be constrained by the high computational cost associated
with online learning, which may not be feasible in real-time applications [15].

A robust iterative variation of the CTC method was developed in 2009 [16] for control-
ling second-order systems with uncertain dynamics, such as robots or CNC machines. The
proposed control strategy does not rely on refining the imprecise dynamic model and it
places the deterministic decrease in the trajectory tracking error in the center of attention.
It adaptively deforms the desired acceleration command—derived from the kinematic
prescription of the CTC controller—in order to ensure accurate trajectory tracking despite
model uncertainties. The adaptive deformation is executed in an iterative manner, with
a single update executed in each control cycle with low computation cost. As a result,
the method is referred to as Robust Fixed-Point Transformation (RFPT)-based adaptive
control. The concept of “adaptive control” has a long development history from the early
nineties to present day. The “Parameter Adaptive” solutions (early prototype is [17]) used
an analytically correct model form with imprecisely known parameters and learned the
exact parameters of this model. The “Signal Adaptive” solutions (early example is, e.g., [18])
applied strong signals in order to make the behavior of the controlled system identical to
that of a “Reference Model”. Recently, good results were achieved by manipulating the
originally available dynamic model by transforming it into a Linear Parameter Varying
form (e.g., [19]). Also, even model-free approaches can be found with Machine Learning
(e.g., [20]). The RFPT-based controller corresponds to an approximate model-based con-
troller that does not wish to “learn” the precise dynamic model. Instead of that, based on
recent observations it applies temporal corrections that do not have a persistent nature.
Consequently it cannot achieve asymptotic convergence. The cost of this deficiency is the
way of easy realization. The convergence of the iteration applied in the RFPT method
and hence the local stability of the control law can be analyzed using Banach’s fixed-point
theorem [21], which states the following:

Let (B, d) be a non-empty complete metric space, and let Φ : B → B be a contractive
self mapping, i.e., there exists a constant 0 < γ < 1 such that d(Φ(x), Φ(y)) ≤ γ d(x, y)
for all x, y ∈ B. Then, for any initial guess x0 ∈ B, the sequence generated by Φ in the form
of {x0, x1 = Φ(x0), x2 = Φ(x1), ..., xn = Φ(xn−1)} converges to a unique x∗ ∈ B such that
Φ(x∗) = x∗.

This theorem provides the fundamentals for analyzing the convergence behavior
of the proposed iterative control rule, ensuring that by the proper tuning of only a few



Actuators 2025, 14, 490 3 of 21

parameters, the control signal converges reliably to a stable solution. The optimal tuning
of the control parameters were investigated in [22]. For the actual implementation of the
adaptive deformation a few variations exists. For example, the original idea was extended
for MIMO (Multiple-Input and Multiple-Output) systems in [23,24]. A continuous time
RFPT method was investigated in [25]. The noise sensitivity was addressed in [26] with a
Luenberg observer-inspired solution. Additionally, a geometric formulation was proposed
in [27], where the control signals were transformed into a higher-dimensional vector space,
enabling abstract rotations that simplified the tuning process. A novel FPI control design
was introduced in [28] with a Steffensen accelerator in order to improve the convergence
rate and thereby the tracking precision of the controller. This solution was later extended
to an Adaptive Sliding Mode Control design as well [29,30].

The application of FPI control was suggested across various scientific domains, ranging
from controlling classical mechanical systems [31] to life sciences, such as automated
anesthesiology [32,33] or blood glucose level regulation [34]. However, most of the existing
research has been limited to simulation-based analysis. This limitation has motivated the
authors to pursue further investigation of FPI control through experimental implementation,
which revealed several practical challenges. Notably, in the case of second-order systems
(i.e., industrial robots), the controller requires feedback not only of the first-order derivatives
of the generalized coordinates (i.e., velocities), but also of their second-order derivatives (i.e.,
accelerations), which introduces sensitivity to measurement noise and estimation errors.

In our previous investigations the issues of noise filtering and delay were considered as
formally separated issues, i.e., certain noise filtering techniques were applied for the signals,
and the filtered signals were sampled with some exact delay. In this approach the inevitable
delaying effect of the noise filtering technique was not taken into account, and it had an
accumulated effect with that of the formally delayed sampling. In the present approach
a delay modeling technique was borrowed from life sciences that corresponded to the
application of a complementary, “anatomically not interpreted compartment”, in the state
variable of which the effects of the “harsh”, non-continuous input appeared in a smoothed,
smeared manner. Recognizing that besides modeling the delay effect this signal tackling
also provided the controller with some noise filtering ability, the formerly accumulated
effects of noise filtering and formally delayed sampling were avoided. A complementary
benefit was that while the formally applied delay time must be very precisely specified in
the calculations, this smeared effect was noticeable even slightly later in time, making the
adaptive method based on it more robust.

The main challenge of the investigated problem consists in the fact that the above
listed results related to the FPI-based adaptive solutions were made on the theoretical basis
of Banach’s simple and efficient fixed-point theorem and were illustrated via simulations.
These simulations had certain tacit assumptions that lead to a simplified model of the
operation of the controlled system that cannot precisely cover the reality. While the issue of
measurement noise was placed into the center of the considerations, subtle excerpts such
as the properties of the operating system of the implementation, the cooperation of the
signal measuring system with the control program, and the features of a possible embed-
ded realization were not precisely simulated. This made the experimental investigations
inevitable, which soon revealed differences between the simulation and the measurement
results. The simple assumption of a fixed cycle time of the digital controller certainly is
not realistic for several operating systems that can produce a control signal during longer
or shorter times, depending on its other actual tasks and the computational need of the
problem. Furthermore, the signal measuring system is not in harmony with the cycles of
the controller. Normally it produces signals that are processed via interrupts. Since the
method is based on the observation of the control signal and the observed response to it
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in the near past, timing discrepancies may have critical effects. The measurement results
presented in this paper that the suggested low frequency noise filtering combined with the
use of its inherent, inevitable delay, and a simple delay-smearing technology realized by
common and cheap hardware and software tools are the first very successful experimental
proofs of the real applicability of the adaptive method in a realistic problem. It reveals
that the subtle details neglected in the simulations do not play a significant role in the
system’s operation.

This proof widely extends the expected circle of the practical application of the FPI-
based adaptive controller. For instance, the problem of fixed time stabilization of linear
control systems solved in [35] may be extended to the stabilization of nonlinear ones by
replacing the complicated Lyapunov function-based proofs with that based on the simple
Banach’s theorem. Also, controlling the behavior of connected robots or other nonlinear
systems governed by sophisticated, beyond nearest neighbor rules considered in [36] can
be really tackled by this simpler approach. Formerly, simulation results were presented
by the application of decentralized adaptive control of very imprecisely modeled coupled
dynamic systems in [37], or that in the topologically less complex, “linear arrangement”
of platoons considered in [38] arrived to the phase of physical realization. This adaptive
method can be combined with topologically formulated, more complex and sophisticated
task definitions.

The article is structured in the following manner. In Section 2 some implementation
details of RFPT-based control is presented, including the formulation of the kinematic
prescription and the adaptive deformation. In this section convergence criteria will be
presented as well. Section 3 presents the proposed solution for noise filtering with feedback
delay. In Section 4 some simulation and experimental results are presented. Finally, in
Section 5 the conclusions are summarized.

2. On the Implementation of RFPT Control
In case of a second-order systems such as industrial robots, the second-order deriva-

tives of the generalized coordinates can be instantaneously set by some control input, i.e.,
through a force input for linear or through torque for rotational actuators. Meanwhile
lower-order derivatives are changing significantly slower. The idea of the CTC method is
that by the use of some kinematic prescription the error dynamics is defined, which could
be achieved through the implementation of some desired acceleration (q̈Des(t)) command.
The kinematic prescription is usually defined by a linear control rule and the nonlinear
dynamics of the controlled system is decoupled by the use of the inverse dynamic model
(Ψ(·)) such as

Q(t) = Ψ
(

q̈Des(t), q̇R(t), qR(t)
)

, (1)

where Q(t) is the control force, and qR(t) is the realized position; finally, q̇R(t) is the realized
velocity of the system. However, in most scenarios the available dynamic model (Ψ̃(·)) is
neither precise nor complete, which gives an approximate control force

Q̃(t) = Ψ̃
(

q̈Des(t), q̇R(t), qR(t)
)

, that results in (2a)

q̈R(t) = ψ
(

Q̃(t), q̇R(t), qR(t)
)
̸= q̈Des(t), (2b)

where ψ(·) is some response function representing the actual dynamics of the controlled
system. The idea presented in [16] is that by introducing an appropriate deformation
function (G(·))
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q̈De f (t) = G
(

q̈De f (t − δt), q̈R(t − δt), q̈Des(t)
)

, (3a)

Q̂(t) = Ψ̃
(

q̈De f (t), q̇R(t), qR(t)
)

, forces the system to (3b)

q̈R(t) = ψ
(

Q̂(t), q̇R(t), qR(t)
)
≈ q̈Des(t). (3c)

In the RFPT method the approximate control force (3b) is calculated from the deformed
second derivative q̈De f (t) instead of the desired one. In Equation (3) δt denotes some
feedback delay, which is usually the sampling time of the controller. Figure 1 presents the
practical implementation of RFPT-based adaptive controller for a motor control application,
where some nominal trajectory (qN(t), q̇N(t), q̈N(t)) must be precisely followed. In this
example the kinematic prescription is defined using simple PID-type error decrease rule,
which is among the most commonly used formulations. However, the RFPT method is not
limited to this approach; it can also be integrated with alternative control strategies, such
as control Lyapunov function-based methods [39] or Backstepping control [40].

Figure 1. Structure of RFPT-based adaptive control for a DC motor.

2.1. Kinematic Prescription

In case of the CTC method, accurate tracking of the nominal trajectory can be achieved
by shaping the error dynamics of the controlled system. A third-order rule for the decrease
in the integrated trajectory tracking error (eint(t)) is often employed to achieve robustness
against steady-state error and disturbances, i.e., with a constant positive parameter Λ > 0(

Λ +
d
dt

)3
eint(t) = 0, where (4a)

eint(t) =
∫ t

t0

e(τ)dτ and e(t) = qN(t)− qR(t). (4b)

Equation (4a) expands to a third-order ordinary differential equation of the form

Λ3eint(t) + 3Λ2 ėint(t) + 3Λëint(t) +
...
e int(t) = 0. (5)

Equation (5) is obtained from Equation (4a), it must be noted that for differentiable
functions the linear operators Λ and d

dt with a constant parameter Λ commute since

d
dt

(Λ f (t)) = Λ
(

d
dt

f (t)
)

, (6)
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therefore this algebra is commutative as that defined with the real constant numbers
a, b ∈ R: (a + b) f (t), therefore the binomial coefficients can be applied in the same form
for any m ∈ N as (

d
dt

+ Λ
)m

=
m

∑
ℓ=0

m!
ℓ!(m − ℓ)!

Λℓ

(
d
dt

)m−ℓ

. (7)

It is important to note that this algebra is not as associative as that of the multiplication
with real numbers:

a(b f (t)) = (ab) f (t), but
(

d
dt

Λ
)

f (t) ̸= d
dt

(Λ f (t)), (8)

that is, the order of multiplications is strictly determined as a direction from right to
left. Equation (4a)—that is identical to (5)—corresponds to a linear, time-invariant, ho-
mogeneous differential equation with constant coefficients. It is known that any linear
combination of two solutions made by the use of constant coefficients is its solution, too.
Consequently its solutions form a linear space. Since for each m ∈ {0,N}, for the functions
gm(t) := (t − t0)

m exp(−Λ(t − t0)) it holds that(
Λ +

d
dt

)
(t − t0)

m exp(−Λ(t − t0)) = m(t − t0)
m−1 exp(−Λ(t − t0)),

evidently
(

Λ + d
dt

)
q0(t) ≡ 0,

(
Λ + d

dt

)2
q1(t) ≡ 0, and

(
Λ + d

dt

)3
q2(t) ≡ 0, for constant

real C0, C1, and C2 values(
Λ +

d
dt

)3

(C0g0(t) + C1g1(t) + C2g2(t)) ≡ 0.

It is also known that the general solution of a third-order differential equation has
three free parameters that are determined by the initial conditions eint(t0), ėint(t0), and
ëint(t0). Therefore the above defined three constants C0, C1, and C2 must determine the
general solution. In other words, the exponentially damped functions g0(t), g1(t), and
g2(t) as basis vectors span the linear space of the general solutions as

eint(t) = (C0 + C1(t − t0) + C2(t − t0)
2) exp(−Λ(t − t0)). (9)

Independently of the initial conditions each basis vector converges to 0 as t → ∞,
consequently if this kinematically formulated strategy is precisely realized, eint(t) → 0,
e(t) → 0, and ė(t) → 0 as t → ∞. with C0 = 0, where the values of the C1 and C2 constants
depend on the initial conditions. The relationship between the initial conditions and the
constant coefficients C0, C1, C2 can be found in a simple recursive manner as follows:

g2(t) = (t − t0)
2 exp(−Λ(t − t0)), g2(t0) = 0

g1(t) = (t − t0) exp(−Λ(t − t0)), g1(t0) = 0

g0(t) = exp(−Λ(t − t0)), g0(t0) = 1

(10)

ġ2(t) = 2g1(t)− Λg2(t), ġ2(t0) = 0

ġ1(t) = g0(t)− Λg1(t), ġ1(t0) = 1

ġ0(t) = −Λg0(t), ġ0(t0) = −Λ

(11)

g̈2(t) = 2ġ1(t)− Λġ2(t), g̈2(t0) = 2

g̈1(t) = ġ0(t)− Λġ1(t), g̈1(t0) = −2Λ

g̈0(t) = −Λg0(t), g̈0(t0) = Λ2

(12)
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From the above equations the following recursion is obtained:

g(t) = C0g0(t) + C1g1(t) + C2g2(t)

C0 = g(t0)

C1 = ġ(t0) + ΛC0

C2 =
1
2

(
g̈(t0)− Λ2C0 + 2ΛC1

)
.

(13)

Since ë(t) = q̈R(t)− q̈N(t), the desired acceleration command, based on Equation (5),
can be chosen as

q̈Des(t) = q̈N(t) + Λ3eint(t) + 3Λ2e(t) + 3Λė(t), (14)

where Λ > 0 is a single design parameter that is equivalent to Ki = Λ3, Kp = 3Λ2, and
Kd = 3Λ PID gains. The q̈Des(t) should be precisely implemented by controller in order to
achieve precise trajectory tracking with exponentially decreasing errors.

2.2. Adaptive Deformation

In the presence of modeling errors the precise implementation of q̈Des(t) is impossible
in a CTC scheme. In RFPT-based adaptive control instead of refining the available dynamic
model for a single input–single output (SISO) system a deformation function is introduced
such as

G(q̈De f (t − δt), q̈R(t − δt), q̈Des(t)) def
=
(

q̈De f (t − δt) + Kc

)[
1 + Bc tanh

(
Ac

(
q̈R(t − δt)− q̈Des(t)

))]
− Kc = q̈De f (t) (15)

and the deformed value is used to calculate the control force with the initial condition
q̈De f (0) = q̈Des(0). The behavior of this construction becomes mathematically more treat-
able if on the basis of Equation (3) an approximate “Response Function” for the deformed
input is introduced as

q̈R(t) = ψ
(

Ψ̃
(

q̇R(t), qR(t), q̈De f (t)
)

, q̇R(t), qR(t)
)
≊ F

(
q̈De f (t)

)
, (16)

in which the “slow drift” of the variables q̇R(t) and qR(t) are neglected. Also, if q̈Des(t) does
not vary in a too hectic manner, it can be written that

q̈De f (t + δt) = G
(

q̈De f (t), F
(

q̈De f (t)
)

, q̈Des(t)
)
≊ G

(
q̈De f (t)

)
. (17)

The fixed point q̈⋆ satisfies the equation q̈⋆ = G(q̈⋆). With this the approximation can
be written that

q̈De f (t + δt)− q̈⋆ ≊ G
(

q̈⋆ + q̈De f (t)− q̈⋆
)
≊ G(q̈⋆) + G′(q̈⋆)

(
q̈De f (t)− q̈⋆

)
− q̈⋆, (18)

that is
q̈De f (t + δt)− q̈⋆ ≊ G′(q̈⋆)

(
q̈De f (t)− q̈⋆

)
. (19)

That is, if |G′(q̈⋆)| < 1, the sequence converges to the fixed point. This evidently
corresponds to Banach’s theorem since it can be written that in the vicinity of the fixed point

|G(x2)− G(x1)| =
∣∣∣∣∫ x2

x1

G′(x)dx
∣∣∣∣ ≤ ∫ x2

x1

∣∣G′(x)
∣∣dx ≤ max(|G′|)|x2 − x1|, (20)

therefore if there exist 0 ≤ γ < 1 so that |G′| ≤ γ, a sequence is obtained that converges
toward the unique fixed point q̈⋆.
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Actually, the function G(·) has two distinct fixed points: one of them is a “false”
stationary fixed point that is q̈De f (t) = −Kc, which results in G(·) = −Kc. The second one
is a “dynamic” fixed point, which evolves with each control iteration. It is only reached when
the realized acceleration matches the desired one, such that q̈R(t − δt) = q̈Des(t). Under
this condition the adaptive deformation function is G(·) = q̈De f (t). It reflects a moving
equilibrium where the control system continuously updates the desired acceleration to
match the realized dynamics, ensuring smooth tracking.

Considering that q̈R(t − δt) = F(q̈De f (t − δt)) the derivative is expressed as

G′(·) =
(

1 + Bc tanh(Ac(F(·)− q̈Des(t)))
)
+

(
(q̈De f (t − δt) + Kc)Bc AcF′(·)

cosh2(Ac(F(·)− q̈Des(t))

)
. (21)

It is evident if q̈R(t) is in some vicinity of the desired trajectory, i.e., q̈R(t − δt) ≈
q̈Des(t)± ϵ, then the hyperbolic functions can be approximated simply as cosh2(·) ≈ 1,
tanh(·) ≈ 0 and by the proper choice of the sign of Bc—that depends on F′(·)—and setting
the Kc sufficiently large the iteration is expected to converge. Furthermore, the basin of
attraction for the dynamic fixed point is sensitive to the tuning of Ac, which governs the
steepness of the tanh function and thus the responsiveness of the deformation mechanism
to tracking errors. It is important to note that the conditions of convergence normally are
valid only within a bounded basin of attraction. The properties of this basin mainly depend
on the dynamic properties of the controlled system. In Equation (19) the main factor is the
derivative of the response function F′ that should be either positive or negative in the basin
under consideration. In the case of underactuated mechanical systems this property—that
in a more general MIMO case was defined as the sign of each eigenvalue of the symmetric

matrix
(

∂F
∂q̈De f

)T
+ ∂F

∂q̈De f —can vary in model-dependent regions. Where this derivative
yields zero values the system cannot be controlled, and no any mathematical trick can
compensate for this physical property of the controlled system. However, if the system
behaves well, and the adaptive control parameters can be set, the controller can enter into a
“chaotic regime” that was investigated in detail in [41,42]. This chaotic regime can be left
by adjusting the adaptive parameters. It should be noted that in the case of the Lyapunov
function-based control design the typical limiting factors normally are listed in the rigorous
mathematical formulation of the conditions in the proofs. In the case of dynamic control
in practice the nominal trajectory may start from the initial point of the controlled system
with slowly increasing velocity, i.e., small initial acceleration that helps keep the controller
in the stable basin. (For nonlinear systems the step function-like excitations that normally
are applied for the linear models of electrical engineers are not a lucky approach).

2.3. Basic Assumptions in Problem Formulation

Before proceeding with the introduction of the details of the novelties, it is expedient
to summarize the basic assumptions in the problem formulation. There are some common
assumptions for the simulations and the experiments, and there are special ones only for
the simulations, which do not apply to the experimental implementation.

The common assumption is that the iterative adaptive sequence of the deformed
signals can converge in the case of the controlled system. This can be concluded from the
properties of its dynamic model that provides the “Response Function” in Equation (16). In
this simple SISO case that means that dF

dq̈De f is either positive or negative. Then, according to
the detailed considerations it is possible to appropriately set the adaptive control parameters
Ac, Kc, and Bc. For multiple input–multiple output (MIMO) systems in [24] this requirement
was so generalized that the real part of each eigenvector of the quadratic matrix ∂F

∂q̈De f must
be either positive or negative. In [43] these properties were geometrically interpreted
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as “approximately locally direction keeping” or direction reserving functions as the MIMO
generalizations of the monotonic increasing or decreasing functions.

A further tacit common assumption is that the dynamic properties of the nominal
trajectory and that of the desired second time-derivatives influenced by the PID type error
feedback parameters are not too hectic and allow fast enough convergence for the single
adaptive step per one control step adaptation mechanism. This property is important
because this adaptive control does not “learn” an exact model: it works on the basis of the
freshest available observations.

The assumptions that were made only in the simulations were that the digital controller
has a fixed cycle time, and during each control cycle fresh measurement data are available.

3. Modeling Signal Delay at Low Frequency
In life sciences, e.g., in [44], delay effects at low frequency are often modeled with

the insertion of a fictitious “ancillary” compartment that does not model a particular,
anatomically realistic “organ”. Let τ [s] model some time delay. Let u(t) be a noisy signal
to be tackled by the use of two compartments, i.e., S1(t) and S2(t), in which S1(t) is directly
fed by u(t), and S2(t) is fed by S1(t) according to the equations as follows:

Ṡ1(t) = −S1(t)
τ

+ u(t) (22a)

Ṡ2(t) = −S2(t)
τ

+
S1(t)

τ
(22b)

The above linear operations in the frequency domain using the Laplace transform take
the form

sS1(s) = −S1(s)
τ

+ U(s) (23a)

sS2(s) = −S2(s)
τ

+
S1(s)

τ
(23b)

that corresponds to a transfer function for U(s) as

S2(s) =
(1/τ)

(s2 + (2/τ)s + 1/τ2))
U(s) = T(s)U(s). (24)

At s = 0 it yields S2(0) = τU(0). The inverse Laplace transform of this signal is

S2(t) =
1

2πi

∫ +i∞

−i∞
exp(st)T(s)U(s)ds =

1
2π

∫ +∞

∞
exp(iωt + iΦ(iω))|T(iω)|U(iω)dω.

(25)

If the excitation signal is an element of function class D, i.e., it has a finite support and
it can be continuously differentiated infinitely many times (e.g., [45]), around ω = 0 where
|T(iω)| ≊ τ, S2(t) can be approximated as

S2(t) ≊
τ

2π

∫ +∞

−∞
exp(iωt + iΦ(iω))U(iω)dω. (26)

The signal delayed by δt > 0, i.e., u(t − δt) in the frequency domain can be
computed as

u(t − δt) =
1

2π

∫ +∞

−∞
exp(iωt − iωδt)U(iω)dω. (27)
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By comparing these equations it can be seen that this signal tackling means a delay

δt = −Φ(iω)

ω
. (28)

Note that after elapsing the contribution of the initial state, in the noise filter only the
effects of the persistent excitation can be considered. No any complementary assumption
is needed to arrive at Equation (28) from Equation (25): only mathematical analogies are
physically interpreted in the following manner. Assume that U(ω) ∈ D has only a very
narrow support around a value ωa as [ωa − ∆, ωa + ∆]. This means that the excitation has
a fixed frequency. For a function T(s) that is continuous along the route of integration
(it has poles only in one half of the complex plane) the integral

∫ ∞
−∞ can be reduced to∫ ωa+∆

ωa−∆ , and the integral can be estimated as |T(iωa)|
∫ ωa+∆

ωa−∆ exp(iωt + iΦ(iωa))U(iω)dω.
In this case Φ(iωa) is the “phase shift” that according to Equation (27) corresponds to a
delay. In other words, the LTI system that is excited with a fixed frequency signal, after
elapsing the effects of the initial conditions, moves with the frequency of the excitation
with an attenuation factor and a phase shift. The technical literature always considers the
“phase shift” due to the traditions made by Bode’s work [46] and does not mention that
the phase shift physically means a delay. For non-monochromatic excitation the output
signal is deformed because its various frequency components are attenuated and delayed
in various manners.

In the motion control of mechanical systems for a fast motion the upper frequency
limit is approximately Ω = 12.0

[
s−1], for which a delay τ = 10−3 [s]; the low frequency

transfer function is depicted in Figure 2.
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Figure 2. The low frequency part of the transfer function.

The transfer function for higher frequencies are depicted in the Bode plot, Figure 3.
While in our previous investigations the issues of noise filtering and delay were con-

sidered separate issues, i.e., certain noise filtering techniques were applied and the filtered
signal was sampled with some exact delay, in the present approach the low frequency delay
was utilized and the high frequency filtering, as an additional service, was directly utilized
too, as in

f (t − 2τ) → S2(t)
τ

. (29)
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In this way, the cumulative effects of noise filtering and formal delay could be avoided
in the FPI-based control. Furthermore, while the formally applied delay time must be
very precisely specified in the calculations, this smeared delay has a noticeable effect even
slightly later in time, making the adaptive method based on it more robust. Such effects
were investigated in the sequel.

Figure 3. The higher frequency part of the transfer function.

It is important to note that this filtering and delaying model is exactly valid in the
application and it is independent of the dynamic model of the controller. Also, in the
control process it is utilized in the time domain via numerical integration. For the composite
array x(t) := [S1(t), S2(t)]

T its equation of motion has the standard “canonical form” of

ẋ(t) = Ax(t) + Bu(t) with constant matrices A =

[
−1
τ 0
1
τ

−1
τ

]
and B =

[
1
0

]
and the

general solution of this equation of motion has the form

x(t) = exp(A(t − t0))x(t0) +
∫ t

t0

exp(A(t − ζ))Bu(ζ)dζ, (30)

with a stable matrix. The first term is the general solution of the homogeneous equation
ẋ = Ax that contains the initial conditions at t0, the second one is a particular solution of
the inhomogeneous one. Due to the stability of the system the first term converges to zero,
therefore its significance soon elapses. The second term corresponds to a persistent excita-
tion that evidently contains delayed effects from the past. In the frequency domain only
the effect of this persistent part was investigated in order to distinguish between the delays
pertaining to the low frequency and the high frequency components of the excitation.

4. Application in FPI-Based Adaptive Control
The block diagram of the RFPT-based adaptive control was presented in Figure 1 and

was implemented with the proposed double counterpart model in both the simulation-
and experiment-based investigations. The noisy measured qR, q̇R signals are filtered with
a double counterpart model using τ = 10−3 [s] in the PID-type tracking strategy, while
q̈R observed realized a second time-derivative and the q̈De f deformed values are filtered
with a similar double compartment model with delay 2τ, while q̈Des is calculated without
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any delay. In both investigations the approximately constant multiplication is taken into
account, too. Essentially the exact “Delay” blocks with the double counterpart model are
replaced. With the above method the adaptive controller works well.

4.1. Simulation Results

In the Introduction, several factors (the operation and the parallel tasks of the operating
system, interrupts-based processing of the sensor signals, delay in the control electronics)
were mentioned due to which the simulations cannot be made realistic enough to com-
pletely mirror the reality. For this reason a 100% agreement between the measurements
and the simulations cannot be expected. However, it can be shown that the effects of the
neglected subtle details do not cause significant differences between the simulations and
the measurements. For this reason, for the simulation a more complex dynamical system
(the van der Pol oscillator) than the simple one for which the experimental test system was
built up was chosen. The properties of the so-obtained simulation results are in harmony
with that of the measured ones that are presented in this section. A van der Pol Oscillator
modeled in [47] with a dynamic equation

q̈ =
−kq + b1

(
a2 − q2)q̇ − b2q̇ + Q

m
, (31)

in which Q [N] denotes the control force, k [N/m] is the linear spring stiffness, a [m] the
limit value separating the damped/excited operations, b1 [N· s/m3] and b2 [N· s/m] are
damping parameters, and q [m] is the generalized coordinate, that is, the expansion of the
spring. For simulation purposes a formally exact model with some parametric uncertainty
is used, which is shown in Table 1.

Table 1. The parameters of the van der Pol oscillator.

Parameter Approximate Value Exact Value

Spring stiffness k [N/m] 100.0 150.0

Separator a [m] 1.0 1.2

Damping/Excitation coefficient b1 [N · s/m3] 1.0 1.5

Damping coefficient b2 [N · s /m] 2.0 2.5

Mass m [kg] 1.0 1.5

In the simulations the controller was tuned by the trial-and-error method trying to
achieve the best control performance. The design parameter for the kinematic prescription
was set to Λ = 16 [s−1]; meanwhile, the adaptive parameters were Kc = 105, Bc = −1,
and Ac = 0.9

Kc
. The sampling time of the controller was δt = 0.001 s. At first noise-free

simulations are presented. Figure 4 shows the evolution of the generalized coordinates
and its various derivatives in case of a trajectory tracking application with a sinusoidal
nominal trajectory. The delay effect of the double counterpart model is presented here as
well. The delay can be observed in the first- and in the second-order derivatives. Figure 4d
nicely presents the essence of the RFPT-based control method. The deformed values q̈De f (t)
are significantly different from the desired one (q̈Des(t)), which suggests major adaptive
deformation due to model errors. However, the realized trajectory q̈R(t) nicely follows the
desired one as it would be required in the CTC method.
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Figure 4. Progression of the generalized coordinates for RFPT Control of a van der Pol oscillator
with parametric uncertainties, without measurement noise: (a) generalized coordinate, i.e., position
measurement. (b) First derivative of the generalized coordinate, i.e., velocity measurement. (c) Second
derivative of the generalized coordinate, i.e., acceleration measurement. (d) Desired and deformed
second derivatives.

Figure 5 presets the applied control force and the trajectory tracking error for the
same simulations, complemented by some additional results without the counterpart delay
model for the same parameter settings. As far as the simulation without the feedback
delay is considered, after some transient overshoot with maximum error ê ≈ 0.274 m,
the “steady-state” maximum tracking error was êss ≈ 0.082 m. Under these conditions
the proposed counterpart delay model improved the control performance as lower initial
overshoot (ê ≈ 0.147 m) and maximum “steady-state” error (êss ≈ 0.025 m) can be observed.
However, in the initial stage of the control regime, few oscillations can be observed in the
control force in the case of the counterpart feedback delay model.
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Figure 5. Control force (a) and trajectory tracking error. (b) Comparison for RFPT Control of a van
der Pol oscillator with parametric uncertainties, without measurement noise.

In the next simulations some noise was added to the coordinate measurement. It was
simulated as a random signal with normal distributions that have a standard deviation of
σn = 5 × 10−4. The simulation results with the same parameter settings are presented in
Figure 6. Although the noise does not seem that significant in the position measurement,
higher derivatives are majorly affected, especially the acceleration signal that is the most
critical in the case of RFPT-based adaptive control. However, as the counterpart delay model
is fitted in the feedback loop, good noise attenuation was achieved, which is presented in
Figure 6b,c. The same issues can be observed in case of the deformed signal due to the
feedback of the second-order derivative of the generalized coordinates. However, with
the application of the counterpart delay model, sufficiently smooth acceleration command
(q̈SDe f (t)) was achieved, which is presented in Figure 6d. Overall, similar trajectory tracking
error was achieved in the case of the measurement noise that was presented previously. The
trajectory tacking error shown in Figure 6e has similar characteristics to the noise-free case.
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Figure 6. Cont.
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Figure 6. Simulation results for RFPT Control of a van der Pol oscillator with parametric uncertainties,
with measurement noise: (a) position measurement. (b) Velocity measurement. (c) Acceleration
measurement. (d) Desired and deformed second derivatives. (e) Trajectory tracking error. (f) Applied
control force.

4.2. Experimental Results

The proposed solution was experimentally verified in a DC motor control application.
The experimental setup is presented in Figure 7. The control algorithm was implemented
on an ARM Cortex-M7 microprocessor, which was driving an FIT0185 12V DC motor,
through a BTS7960 chip-based dual half bridge drive. The parameters of the motor—which
are available from the manufacturer—are presented in Table 2.

Table 2. FIT0185 DC motor technical parameters.

Parameter Nominal Value

Operating Voltage UN [V] 12

No-load speed N0 [RPM] 83 ± 10%

No-load Current I0 [mA] 350

Start Voltage U0 [V] 21.0
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Table 2. Cont.

Parameter Nominal Value

Stall Torque Ts [kg· cm] 45.0

Stall Current Is [A] 7.0

Gearbox Ratio r 1:131

Encoder Resolution n [CPR] 2096

(a) (b)

Figure 7. Experimental Platform: (a) Electrical components. (b) Mechanical setup.

The control algorithm was implemented as presented in Figure 1. In the place of “Low-
Pass Filter”, blocking the double counterpart delay model was implemented so the filtered
values q̈S, q̇S were obtained from noisy signals that were estimated using second-order
backward difference estimation formulae

q̇R(t) =
3qR(t)− 4qR(t − δt) + qR(t − 2δt)

2δt
, (32a)

q̈R(t) =
2qR(t)− 5qR(t − δt) + 4qR(t − 2δt)− qR(t − 3δt)

δt2 . (32b)

The position measurement qR(t) was obtained from the inbuilt encoder of the DC
motor with quadrature decoding. The double counterpart delay model parameter was set
to τ = 5δt, where δt was the sampling time of the controller that was 0.001 s. The kinematic
prescription was formulated according to Equation (4a) with Λ = 15 s−1. The deformed
signal was obtained from the adaptive deformation function (16) with parameters Bc = 1,
Kc = 106, and Ac =

0.6
Kc

. As detailed specification of the motor was not available a simple
affine model was used by the controller

Q(t) =
(

Am q̈De f (t) + Bm)
)∣∣∣

Am=1,Bm=0
= q̈De f (t), (33)

that was directly used to calculate the PWM output of the controller as

PWM =

255 if |Q(t)| > 255

|Q(t)| if − 255 ≤ Q(t) ≤ 255
. (34)

Essentially Equation (33) corresponds to a “quasi” model free controller, where all the
modeling imprecisions are compensated by the adaptive deformation.
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Measurement results with the DC motor for the load-free case is presented in Figure 8.
The effect of the quantization error is shown in Figure 8a, where the resolution of the
encoder is clearly reflected. This caused significant estimation errors in higher derivatives
(Figure 8b,c). However, the proposed double counterpart delay model effectively attenuates
the quantization noise in the higher derivatives and after a short settling time precise
position and velocity tracking were achieved, as shown by the phase trajectory in Figure 8d.
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Figure 8. Measurement results for RFPT Control of DC motor with model uncertainties, without load:
(a) position measurement. (b) Velocity estimation. (c) Acceleration estimation. (d) Phase trajectory.

In Figure 9a the red dashed horizontal lines show the actuator limits. In the beginning
of the control, excessive control force is observed that is well beyond the actuator limits
due to the insufficient initial conditions. The controller introduced significant adaptive
deformation throughout the full control regime due to the imprecise control model. How-
ever, after a few oscillations precise tracking was achieved as presented in Figure 9b. In
the “steady-state” êss ≈ 0.002 rad maximum tracking error was measured in the case of the
qRes = 0.00075 rad encoder resolution, with the quadrature decoding taken into account.
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Figure 9. Deformed and desired acceleration command signals (a) and trajectory tracking error (b) for
RFPT Control of DC motor with model uncertainties, without load.

In the next measurements a spring was fitted on the motor’s shaft in order to introduce
external disturbance forces into the system. The spring’s stiffness was k = 0.822 N

mm . The
results are presented in Figure 10. The deformed signals that are slightly different for the
loaded case are as shown in Figure 10a. It can be observed that the deformed signal nicely
compensates for the loading torques caused by the spring. The trajectory tracking error
presented in Figure 10b has similar characteristics as of the unloaded case. In the “steady-
state” êss ≈ 0.003 rad the maximum tracking error was measured for the spring-loaded
motor, which is similar to the unloaded case.
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Figure 10. Deformed and desired acceleration command signals (a) and trajectory tracking error
(b) for RFPT Control of DC motor with model uncertainties, with spring load (k = 0.822 N/mm).

5. Conclusions
RFPT-based adaptive control is prone to noise sensitivity due to the feedback of the

second-order derivative of the generalized coordinates in case of a second-order system.
In most practical applications for a mechanical system, the position is measured through
digital encoders that introduce quantization errors in the measurements. That corrupts
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the estimation process of higher-order derivatives resulting in significant noise content in
the feedback signals. In this paper this issue was tackled by a double counterpart delay
model borrowed from life science applications, where it is used to model signal delays
without modeling any particular organ. In previous investigations of the RFPT Control
method the issues of noise filtering and delay were considered formally separated issues,
i.e., certain noise filtering techniques were applied for the signals, and the filtered signals
were sampled with some exact delay. In this approach the inevitable delaying effect of the
noise filtering technique was not taken into account, and it had an accumulated effect with
that of the formally delayed sampling. With this method the adaptive controller works
well. This statement was illustrated by both experimental and simulation-based analysis.

Simulations were carried out with a simple van der Pol oscillator model where only
parametric uncertainty was considered. It was shown that instead of using some exact delay
in signal sampling the proposed controller combined with double counterpart delay model
has more robust behavior. Under the investigated conditions the controller had improved
trajectory tracking performance with lower error, when the noise-free case was considered.
Experimental analysis on a DC motor has shown good noise attenuation in both the first-
and second-order derivatives of the generalized coordinates without significantly limiting
the responsiveness of the controller. The modeling imprecisions were nicely compensated
by the controller and precise trajectory tracking was achieved, even when disturbance
forces were introduced in the form of a spring connected to the motor’s shaft.
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