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Abstract: The condition of a catenary is significant to ensure a high current collection quality. Owing
to the dynamic interaction between the pantograph and the catenary system, the vibration of the
pantograph can be used to analyze the condition of the catenary system. Therefore, we developed a
novel diagnosis system based on the correlation between catenary defects and pantograph vibration.
The proposed system is capable of detecting the type and location of commonly encountered defects
in rigid support catenary systems. Catenary positioning coefficient and enhanced sample entropy
methods were proposed for the extraction of defect features, and subsequently, linear discriminate
analysis was used to diagnose the type and location of the catenary defects. Finally, the proposed
defect detection and diagnosis system was applied to a commercial metro line, and the results verified
the reliability and effectiveness of this diagnosis system.
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1. Introduction

In an electrified railway system, the power supplied by a pantograph–catenary system
is vital for the normal operation of the vehicle [1]. The catenary system is usually classified
into the flexible catenary and the rigid catenary based on their structural differences. The
rigid catenary, which is widely used in metro lines due to its strong durability, convenient
installation, low maintenance cost, low tunnel clearance requirements, and good wind
resistance, operates in a high-frequency and long-term environment [2]. Long-term me-
chanical and electrical impact in harsh working environments leads to the formation of
defects in the rigid catenary that can reduce the service life of the catenary as well as pose
a threat to the safe operation of the vehicle. The online monitoring and defect diagnosis
of the pantograph–catenary system can detect such defects and aid in the efficient elimi-
nation of their associated safety risks during normal operation [3,4]. Therefore, to reduce
maintenance costs and ensure the safe operation of trains, the development of an effec-
tive monitoring and defect diagnosis system is significant and has attracted considerable
attention in academics and industries.

Currently, mechanical sensor-based contact detection technology and vision-based de-
tection technology have been widely utilized in pantograph–catenary systems for condition-
based monitoring and defect diagnosis. Some scholars employ visual-based detection meth-
ods to extract the edges of catenary structures, thereby diagnosing faults in the catenary
structures. In [5], Liu W. et al. located the bracing wire components of a catenary using an
image acquisition system and detected the installation defects of the messenger wire bases
via image processing. Lyu et al. [6] realized generic anomaly detection of catenary support
components using an image-based approach, while Chen [7] proposed a deep learning
model for the diagnosis of catenary current-carrying ring faults. Kang et al. [8,9] proposed
a contact wire support and insulator defect detection system capable of localizing the key
components of a catenary and evaluating its defect status using deep Bayesian segmenta-
tion neural networks and prior geometric knowledge. Liu Y et al. [10] introduced a robust
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image-based semantic segmentation model named ArcMSF for pantograph catenary arcing
detection. While the visual-based detection method is effective in quickly identifying faulty
components, it is limited to visible faults and lacks the ability to continuously monitor the
status of the catenary in real time. Consequently, it cannot accurately detect the gradual
degradation of the catenary status.

The mechanical sensor-based contact detection method utilizes sensors installed on
the pantograph to indirectly monitor the real-time status of the catenary, thus diagnosing
the catenary faults. Song Y et al. [11] presented a method for evaluating the quality of
pantograph–catenary current collection on high-speed railways using the contact line height
variability. Tian SX et al. [12] filtered the acceleration signal of the pantograph head with
white noise using a global default threshold and utilized the characteristic signal to obtain a
Hidden Markov Model for hard-point detection. Wang HR et al. [13] proposed a data-driven
approach using a Bayesian network to integrate inspection data from high-speed railway
catenaries into a key performance indicator for improved condition monitoring. Gao SB
et al. [14] described the detailed architecture of the 6C system for automatic detection and
monitoring of pantograph-catenary systems in China’s high-speed railways.

The objects of these studies are flexible catenaries, while there are limited studies on
fault diagnosis of rigid catenaries.

At present, studies on monitoring and defect diagnosis of rigid catenary have mainly
focused on condition monitoring by detecting the dynamic interaction parameters of the
pantograph–catenary system. Bocciolone M et al. [15] and Carnevale M et al. [16] detected
defects by observing the occurrence of high peaks in the measured contact force and vertical
acceleration values. S. Gregori [17] used a simulation model to generate acceleration data
of pantograph heads under fault conditions and used it to train a neural network model,
achieving state assessment of the contact network and diagnosis of contact wire wear
and irregularities. The condition monitoring of a catenary can realize the abnormal state
detection of a rigid catenary; however, the diagnosis of defects remains a challenge and has
not been effectively resolved as defect identification and separation are quite difficult.

Due to the dynamic coupling relationship between the pantograph and the catenary,
the pantograph’s vibration performance is intricately linked to the condition of the cate-
nary. Diverse fault types lead to distinctive vibration patterns, giving rise to distinctive
fluctuations in the dynamic interaction signal. Consequently, this paper introduces a defect
diagnosis system based on pantograph vibrations for a rigid catenary. This system relies on
strain signals as indicators, utilizing defect signature analysis to detect and identify various
defects. This system offers the remarkable ability to pinpoint and synchronously locate
catenary defects accurately, without the need for location equipment. It can be applied in
real time and exhibits relatively high versatility. Furthermore, this system provides insights
into the lifecycle of the catenary, particularly its early stages of degeneration, enabling
defect prognosis and service life prediction.

2. Analysis of Common Defects in Rigid Catenary

Railways have often adopted rigid overhead conductor lines for current collection
in underground lines and tunnels. The rigid catenary is composed of contact wires, the
conductor rails, and the supports (Figure 1). These supports are metal structures that are
typically attached to the tunnel ceiling. The conductor rails are interconnected using bolted
metal inserts, resulting in longer spans called anchoring sections. These mechanically inde-
pendent anchoring sections form the entire catenary, which can minimize displacements
due to thermal expansion or contraction. The overlap, expansion joint, and rigid–flexible
transition are crucial structures that connect independent anchoring sections or different
catenary components.

Metro operators have widely recognized that the majority of unfavorable behaviors
between the pantograph and catenary—such as contact loss, impact, and arcing—tend
to occur in specific sections like the overlap, expansion joint, and support spans. This is
because the stiffness of the catenary varies in these unique spans, leading to an increase in



Actuators 2024, 13, 162 3 of 18

vibrations caused by the interaction between the pantograph and the catenary. Over time,
these intense vibrations can cause loosening, misalignment, and deformation of catenary
components in the overlap, expansion joint, and support spans.
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Figure 1. The main components of a typical rigid catenary.

2.1. Misalignment of Overlap Section

The overlap section is crucial for maintaining electrical continuity in the line and
transferring mechanical load from one catenary section to the next. In the transition span,
the two sections overlap side-by-side, allowing the pantograph to interact with either one
or both sections. When the pantograph travels through the overlap spans, the dynamic
interaction parameters measured will exhibit different fluctuations compared to those in the
normal span. Long-term exposure to pantograph shock and vibration can cause changes
in the vertical displacement of the catenary, leading to vertical misalignment of the two
catenary sections in the overlap. This misalignment of overlap can create hard spots and
more intense impacts on the pantograph–catenary system.

2.2. Deformation of Expansion Joint

The expansion joint is made up of two parallel aluminum alloy plates of the same
size, designed to compensate for any deformation caused by thermal expansion and con-
traction. One aluminum alloy plate is firmly attached, while the other is free to adjust
and compensate for the deformation of the two adjacent conductor rails. However, due
to differences in the length and thermal expansion/contraction forces of the conductor
rails at both ends of the expansion joint, the amount of deformation caused by the ex-
pansion/contraction of the aluminum alloy plates varies. Additionally, the status of the
expansion joints can change over time as a result of mechanical and electrical interactions
within the pantograph–catenary system. Inconsistencies in the deformation can lead to a
shift in the barycenter within the expansion joint after multiple expansions and contractions
caused by temperature. This barycenter offset causes a downward bending deformation
in the contact line at this point, which can impact the pantograph–catenary system and
generate sparks and arcs.

2.3. Loosening of Support

Over the long-term operation of trains, as travel density increases, the energy gener-
ated accumulates, and any excess energy is transferred into the support system. This can
have a noticeable impact on the support system’s performance. A significant amount of
released energy can cause the support system’s threads to slip and other components to
become loose during operation, ultimately leading to the loosening of the support system
and disrupting the smooth operation of the train.

3. Analysis of Defect Characteristic Based on Simulation Test

In order to analyze defect characteristics of misalignment of the overlap section,
deformation of the expansion joint, and the loosening of support, a simulation model
using Finite Element Models (FEM) was established. The pantograph is modeled with a
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rigid–flexible hybrid body, with two strips of the pantograph head as a flexible body and
other parts of the pantograph as a rigid body, as shown in Figure 2a.
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Figure 2. Pantograph–catenary model.

The rigid catenary support devices are simplified to a spring with mass, while the
contact line and conductor rails are represented using the Euler–Bernoulli beam model.
Furthermore, the stagger value is taken into account. The structure and parameters of
the catenary used in this study are taken from a metro line in China. The catenary model
includes two anchors, each 256 m long, connected by expansion joints. There are also
overlapping sections at both ends of the catenary, as illustrated in Figure 2b.

The expansion joint used in the experimental circuit in this paper is a dual auxiliary
line expansion joint developed by the Furrer+Frey company from Guangzhou, China.
Hence, we have chosen this specific type of expansion joint as our primary focus for the
simulation. The expansion joint is composed of a fixed end and a movable end, which are
both connected to different sections of the conductor rails. Given that the expansion joint
experiences bending deformation during operation, it is represented as a beam model in
our simulation. The fixed end is securely attached to the front anchor section, while the
movable end is constrained using force elements to allow for a certain degree of freedom of
movement along the conductor rail direction. This setup effectively simulates the thermal
expansion and contraction of the conductor rails.

The expansion joint has a compensation range of 1000 mm, an overall length of
1515 mm, a mass of 60 kg, and a span of 4 m. The self-weight of the expansion joint,
which is significantly heavier than the 6 kg/m mass of the conductor rail, enables sliding
compensation for the conductor rail. However, due to the frequent reciprocating action of
the pantograph and catenary, it is prone to loosening the connection between the expansion
joint and the conductor rail. Coupled with its significant self-weight, this may result in the
movable end of the expansion joint sinking, leading to an impact between the pantograph
and catenary during passage. When the movable end of the expansion joint sinks due to
gravity, the boundary conditions resemble those of a cantilever beam, allowing it to be
equated to such a structure, as shown in Figure 3. Notably, the interaction between the
movable end of the conductor rail and the expansion joint can be likened to a concentrated
force Feq applied to the cantilever beam.

The combined deformation of the free end of the expansion joint, caused by the
interaction of the equivalent force Feq and gravity G, results in the subsidence displacement,
described in:

δ =
GL3

8EI
−

FeqL3

3EI
(1)

where L is the length of the expansion joint, and EI is the bending stiffness of the expansion joint.



Actuators 2024, 13, 162 5 of 18
Actuators 2024, 13, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 3. Equivalent mechanical model of the expansion joint. 

The combined deformation of the free end of the expansion joint, caused by the in-
teraction of the equivalent force Feq and gravity G, results in the subsidence displacement, 
described in: 

33

8 3
eqF LGL

EI EI
δ = −  (1)

where L is the length of the expansion joint, and EI is the bending stiffness of the expansion 
joint. 

At the overlap section, there is no constraint relationship between the front and rear 
anchor sections. By modifying the vertical relative displacement between these two sec-
tions, a fault model with various height differences can be established.  

Under prolonged and repeated vibrations and impacts, the threaded connections 
within the support of the rigid catenary are prone to loosening. In severe cases, this can 
even lead to the detachment of the insulator from the conducting rail. In this paper, the 
support device has been simplified as a spring structure with a mass. To simulate the 
loosening and detachment failures of the support, we adjust the stiffness of the spring. 

We simulated the strain as a train speeds along at 100 km/h. After analyzing the strain 
signal’s spectrum (see Figure 4a), we discovered frequencies that align with the stagger 
(0.116 Hz) and dropper interval (3.47 Hz, 6.94 Hz, 10.41 Hz). This confirms the reliability 
of our simulation model. 

To gain a better understanding of the fault characteristics of the catenary at various 
fault levels, we conducted simulation tests at 100 km/h with various fault levels. Table 1 
outlines the setup of these simulation experiments. 

Table 1. Simulation experiments setup. 

Faults Type Normal Experiments Setup 
Fault Degree   1 2 3 4 

Misalignment displacement of overlap (mm) 0 2 3 4 5 6 
The amount of deformation of expansion joint (mm) 0 1 2 3 4 5 

Stiffness of support (N/m) 37,788,000 377,880 37,788  3778.8 37.788 0 

Figure 4b shows the strain signal, contact force signal, and dynamic pantograph head 
displacement signal results of the simulated defects caused by misalignment of overlap 
(misalignment displacement is 3 mm), loosening of support (stiffness is 37,788 N/m), and 
deformation of expansion joints (the amount of deformation is 3 mm). 

Fixed End

Movable End

X

Z

Y

O

Equivalent Mechanical Model

L

δ 

G

1515mm

205mm

Feq

Figure 3. Equivalent mechanical model of the expansion joint.

At the overlap section, there is no constraint relationship between the front and rear
anchor sections. By modifying the vertical relative displacement between these two sections,
a fault model with various height differences can be established.

Under prolonged and repeated vibrations and impacts, the threaded connections
within the support of the rigid catenary are prone to loosening. In severe cases, this can
even lead to the detachment of the insulator from the conducting rail. In this paper, the
support device has been simplified as a spring structure with a mass. To simulate the
loosening and detachment failures of the support, we adjust the stiffness of the spring.

We simulated the strain as a train speeds along at 100 km/h. After analyzing the strain
signal’s spectrum (see Figure 4a), we discovered frequencies that align with the stagger
(0.116 Hz) and dropper interval (3.47 Hz, 6.94 Hz, 10.41 Hz). This confirms the reliability of
our simulation model.
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Figure 4. Simulation tests. (a) Spectrum analysis of strain signal without defects. (b) Coupled defect
features in different signals.

To gain a better understanding of the fault characteristics of the catenary at various
fault levels, we conducted simulation tests at 100 km/h with various fault levels. Table 1
outlines the setup of these simulation experiments.

Figure 4b shows the strain signal, contact force signal, and dynamic pantograph head
displacement signal results of the simulated defects caused by misalignment of overlap
(misalignment displacement is 3 mm), loosening of support (stiffness is 37,788 N/m), and
deformation of expansion joints (the amount of deformation is 3 mm).
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Table 1. Simulation experiments setup.

Faults Type Normal Experiments Setup

Fault Degree 1 2 3 4
Misalignment displacement of overlap (mm) 0 2 3 4 5 6

The amount of deformation of expansion joint (mm) 0 1 2 3 4 5
Stiffness of support (N/m) 37,788,000 377,880 37,788 3778.8 37.788 0

As we can see in Figure 4b, there are distinct differences in the waveforms of the faulty
(blue curve) and fault-free (red curve) conditions at the overlap, support, and expansion
joint sections. These variations are due to the distinct structures and failure modes of each
section, which result in different vibration patterns and waveforms when there are defects.
When the misalignment displacement of overlap reaches 3 mm, the simulated pantograph-
head displacement is also approximately 3 mm, thereby verifying the reliability of the
simulation results. By comparing the failure curve (blue curve) with the no-failure curve
(red curve), it becomes evident that during the no-failure period, the pantograph–catenary
vibration at the overlap, support, and expansion joint exhibited relatively regular patterns,
with no notable impact. However, during the failure period, a significant impact was
observed at the location of the failure.

A fault caused by misalignment of the overlap significantly impacts the strain and
contact force signals. It also creates a noticeable difference in the pantograph–catenary
displacement signal, as highlighted in the red box in Figure 4b. Moreover, the fault
characteristics caused by positive misalignment (left red box) and negative misalignment
(right red box) are distinctly different. When the support loosens, the vibration amplitude
at the adjacent support increases, while the amplitude at the faulty support decreases, as
shown in the green box in Figure 4b. Additionally, the deformation of the expansion joint
leads to increased vibration at the faulty expansion joint, as indicated in the orange box.

Furthermore, the faulty features present in strain, contact force, and dynamic pan-
tograph head displacement signals due to defects in the support, expansion joints, and
overlap are highly similar. This suggests that both the contact force and strain demonstrate
a similar level of sensitivity toward dynamic interaction loads. Moreover, the strain signal
is more responsive to the position of the load, particularly the contact point. Vibrations
caused by stagger provide insights into the location of defects, whereas those caused by
coupled contact offer insights into their cause. Therefore, the unique characteristics of the
measured strain signal allowed for the diagnosis of defects.

4. Defect Diagnosis Approach

To monitor the catenary system in real time, we used a method that combines mobile
standard deviation with the mobile Pauta criterion (MMSTD), as detailed in our prior
work [18]. This method allowed us to detect the impact acting on the pantograph–catenary
system for both flexible and rigid catenaries. Subsequently, we introduced a new feature
extraction and defect diagnosis method to analyze the detected impact and pinpoint the
cause and location of failures for rigid catenaries in this paper. Figure 5 provides a schematic
of the diagnosis system.

In this defect diagnosis method, we extract the location feature based on the position-
ing coefficient of the catenary structure. Subsequently, we distinguish various defects based
on their unique signal waveforms using enhanced sample entropy and linear discriminant
analysis. We analyze the online data obtained during defect detection to extract key defect
features. These features are then fed into a pre-trained linear discriminant analysis (LDA)
classifier, which determines the cause and location of the defect. To ensure the accuracy of
the defect diagnosis model, we utilize historical data to train the LDA classifier.
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Figure 5. The architecture of the defect diagnosis system of a rigid catenary.

4.1. Feature Extraction of Defects in Rigid Catenary
4.1.1. Detection of Stagger Arrangement

The stagger in the catenary generates a strain signal trend that contains crucial infor-
mation about the support points of the catenary. The trend of strain variation with the
stagger exhibits a near-sinusoidal waveform, where the peak and valley values of the curve
correspond to the maximum and minimum positions of the catenary stagger, respectively.
By estimating these peak and valley values in the curve, we can pinpoint the location of a
catenary defect between two control supports, significantly narrowing down the potential
range of defects.

To detect the stagger arrangement, we employed a double moving average method
(DMAM), which offers a straightforward algorithm and enables real-time identification of
the stagger arrangement. The moving average method calculates the arithmetic average
of a specified range of data in a time series, analyzing each item in the data column as
the window slides, to generate a moving average. This moving average can be expressed
as follows:

MAM(t) =
1
N ∑(t−N/2)

(i−N/2) x(t) (2)

where N is the number of items for averaging, x(t) is the original signal, and t is time.
The DMAM is expressed as follows:

DMAM(t) =
1
N ∑(t−N/2)

(i−N/2) MAM(t) (3)

Figure 6a displays the detection of the stagger arrangement through the strain signal
of the pantograph head obtained through online tests utilizing the DMAM method. By
utilizing DMAM, the stagger arrangement (depicted in red) was accurately identified from
the strain signal (depicted in black). Subsequently, the control support points (labeled with
numerals) were pinpointed and marked using an extreme value detection approach.
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4.1.2. Catenary Positioning Coefficient

The strain signal from each component in the catenary structure exhibits unique
stagger values, which can be exploited to extract the catenary positioning coefficient. This
coefficient aids in pinpointing the location of defects within the strain signal.

1. Catenary positioning coefficient for overlap
As an important structure to realize the mechanical and electrical segmentation of the

catenary, the overlap is usually installed at the entrance (Overlap A) and exits (Overlap B)
of the train station, as shown in Figure 6a. This is because taking the train’s one-station
spacing as an anchor segment interval can minimize the scope of failures and reduce the
impact of catenary malfunctions on train operation. At the overlap section, the two conduct
rail terminals are installed in parallel and staggered. When the pantograph passes through
this overlap section, it transitions from the previous anchor section terminal to the next
anchor section terminal, causing a sudden change in the stagger value, which is reflected in
the stagger arrangement (as shown in 1-1, 1-2 and 1-13, 1-12 in Figure 6a). Drawing from
these distinctive characteristics, we can establish an overlap positioning coefficient.

We numbered the extreme values detected in the stagger arrangement, with all peaks
numbered 1 and all valleys numbered 2. We detected the overlap section based on the
characteristic that the distance between the two adjacent extrema caused by the sudden
change in the stagger at the overlap is much smaller than that of other segments. Hence,
the judgment method for the overlap is described as:

(a) Judgment method for overlap A (overlap at the entrance of station). If the following
conditions are met, it is detected as overlap A.

• x1−overlapA = x1−1, x2−overlapA = x2−1;

• x2−overlapA − x1−overlapA < 1
N−3

N−2
∑

i=2
(x2−i − x1−i);

where x2−overlapA and x1−overlapA are the abscissa positions of overlap A at the first
detected valley (x2−1) and peak (x1−1) values, respectively; N is the number of detected
peaks, which is also the number of detected valleys. If the above conditions are met, it is
detected as overlap A.

(b) Judgment method for overlap B (overlap at the exit of station). If the following
conditions are met, it is detected as overlap B.

• x1−overlapB = x1−(N−1), x2−overlapB = x2−(N−1);



Actuators 2024, 13, 162 9 of 18

• x2−overlapB − x1−overlapB < 1
N−3

N−2
∑

i=2
(x2−i − x1−i);

where x2−overlapB and x1−overlapB are the abscissa positions of the overlap B at the
valley (x2−(N−1)) and peak (x1−(N−1)) values, respectively; x1−(N−1) and x2−(N−1) are the
abscissa positions of the detected (N−1)th valley and (N−1)th peak, respectively.

By assigning different values to overlap A and overlap B, when the overlap is detected,
the value of the catenary positioning coefficient facilitates the classification of overlap A
and overlap B. Hence, we define the positioning coefficient of the overlap as:

OL =

{
2, Meet the judgment condition for overlap A
3, Meet the judgment condition for overlap B

(4)

2. Catenary positioning coefficient for supports and expansion joints
To describe the locations of all typical catenary structures, we define the catenary

positioning coefficient as:

CatenaryP = c1 · PPDR + c2 · OL (5)

where OL = 2 or 3 (OL = 2 corresponds to overlap A and OL = 3 to overlap B, as described
in Equation (4)). Overlap A is the overlap section where the pantograph moves into a new
anchor, and overlap B is the overlap section where the pantograph moves out of the anchor.
If the defect is caused by an overlap, the coefficient c1 = 0, c2 = 1; otherwise, c1 = 1, c2 = 0.

The peak-to-valley distance ratio (PPDR), as shown in Figure 6b, is evaluated as follows:

PPDR =
xi − xv

xp − xv
=

A
B

(6)

where xi is the abscissa of the defect, xv is the abscissa of the nearest valley position to the
left of xi, and xp is the abscissa of the nearest peak position to the right of xi.

The typical catenary structures, including control supports, expansion joints, supports,
and overlap, were installed at distinct locations with a unique stagger value, as depicted
in Figure 1. Generally, the control supports were situated at the maximum stagger value
(PPDR is 0 or 1), while the expansion joints were positioned where the stagger value is zero
based on their installation requirements. This results in a PPDR of 0.5 for an expansion joint.
However, in actual train operation, due to variations in train speed and the asymmetric
arrangement of control supports, the PPDR of the expansion joint is approximately 0.5,
maybe 0.2~0.8. For this study, the peak-to-valley distance of the expansion joint was
determined based on past experience. Additionally, supports were installed at intervals
of approximately 6–8 m between the two control supports of the catenary to secure the
conduct rails on top of the tunnel. Therefore, the PPDR of the supports are 0 < PPDR < 0.5
or 0.5 < PPDR < 1.

Although it is possible to use the catenary positioning coefficient to classify the control
supports and overlap section, it remains difficult to distinguish between expansion joints
and supports. Therefore, another defect characteristic parameter must be established.

4.1.3. Enhanced Sample Entropy

Sample Entropy (SampEn), which was first proposed by Richman [19] in 2000, is an
improved algorithm for approximate entropy and is used to assess the complexity of time
series data. The calculation of SampEn is independent of the data length. A lower SampEn
value indicates a lower sequence complexity. The formula for SampEn is as follows:

SampEn(m, r, n) = − ln
[

Am(r)
Bm(r)

]
(7)
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where Bm(r) = 1
n−m

n−m
∑

i=1
Bm

i (r) is the probability that two sequences will match for m points

within a tolerance r, whereas Am(r) = 1
n−m

n−m
∑

i=1
Am

i (r) is the probability that two sequences

will match for m + 1 points. n is the length of the time series.
For a time series of n points, X = {x(1), x(2), · · · , x(n)} can be reconstructed to be an

m-dimensional vector:
Xm(1), . . . , Xm(n − m + 1) (8)

where Xm(i) = {x(i), x(i + 1), . . . , x(i + m − 1)}, 1 ≤ i ≤ n − m + 1.
The distance between vectors A and B is defined as the absolute value of the maximum

difference of their corresponding scalar components:

d[Xm(i), Xm(j)] = max
k=0,...,m−1

(|x(i + k)− x(j + k)|) (9)

Let Bi be the number of vectors Xm(j)(1 ≤ j ≤ n − m, j ̸= i) within tolerance r of
Xm(i)(1 ≤ i ≤ n − m). And let Ai be the number of vectors Xm+1(j)(1 ≤ j ≤ n − m, j ̸= i)
within tolerance r of Xm+1(i)(1 ≤ i ≤ n − m). The probability that any vector Xm(j) is
within r of Xm(i) is defined as Bm

i (r), and the probability that any vector Xm+1(j) is within
r of Xm+1(i) is defined as Am

i (r)

Am
i (r) =

Ai
n − m − 1

, Bm
i (r) =

Bi
n − m − 1

(10)

To improve the effectiveness of defect classification and enhance the distinguishabil-
ity of sample entropy between different defect types, an enhanced sample entropy has
been proposed:

ESampEn(m, r, n) = [10 · SampEn(m, r, n)]3 (11)

The catenary defect characteristics can be extracted using the proposed methods:
catenary positioning coefficient and enhanced sample entropy. Subsequently, the classifier
can be trained using existing defect sample data using LDA to identify various defects
based on the extracted catenary defect characteristics.

By analyzing simulation results, the most appropriate value of dimension mode m
is 2, and the similar tolerance r is 0.15. The statistical results of the enhanced sample
entropy of different defects are calculated in Figure 7, while the fault degree from 1 to 4
corresponds to the severity of the fault changes from minor to critical. The experiment
setup of the simulation is described in Table 1. The results show that the defects caused by
the deformation of the expansion joint, the misalignment of the overlap, and the loosening
of control support can be readily differentiated using enhanced sample entropy. Thus,
this method can be used along with the catenary positioning coefficient to assist in defect
feature extraction.
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4.2. Defect Diagnosis

LDA has been successfully used as a dimensionality reduction technique in several
classification problems because of its high computational efficiency and classification
accuracy [20–22]. Through the identification of an appropriate projection matrix, high-
dimensional pattern samples are efficiently projected into the most discriminative vector
space, thereby facilitating the extraction of classification information and effectively com-
pressing the dimensionality of the feature space. The objective of LDA is to identify an
optimal projection matrix that ensures the maximum inter-class distance and the minimum
intra-class distance for samples in the new subspace.

Let ωi =
{

xi
1, xi

2, · · · , xi
N
}

be the defect feature value of defect feature i. The defect
feature vector is [ω1, ω2, · · · , ωi, · · · , ωC], where C is the number of feature classes. The
optimal projection matrix w can be given by maximizing the Fisher criterion:

J(w) =
wTSBw
wTSWw

(12)

where SW = ∑C
i=1 ∑xk∈ωi

Ni(ui − xk)(ui − xk)
T denotes within-class scatter matrices, and

SB = ∑C
i=1 (ui − ũ)(ui − ũ)T denotes between-class scatter matrices.

The optimal projection matrix can be solved using the Lagrange multiplier method:

w =
C

∑
i=1

S−1
W (ui − ũ) (13)

where Ni denotes the number of defect feature values, and ui and u are the mean of the ωi
and all classes, respectively.

When obtaining defect feature values, it is possible to partition the original values
into training and testing datasets. The training data are utilized for deriving the projection
matrix, while the discriminating feature matrix can be extracted by:

YT = w ×
{

xi
1, xi

2, · · · , xi
N

}
(14)

To verify the effectiveness of the proposed catenary diagnosis method, an analysis of
simulation results was conducted. The fault characteristics of expansion joints, overlap
A, and various fault locations of supports were identified. The detected fault features,
CatenaryP and ESampEn, were fed into the LDA classifier. The projection process and
classification detection outcomes resulting from LDA analysis are depicted in Figure 8. The
projection matrix of expansion joints and support, expansion joints and overlap A, and
overlap A and support are obtained as:

wes = [0.108, 8.609], woe = [85.348,−5.463], wos = [85.456, 3.146] (15)

According to Figure 8, through the application of the optimal projection matrix, LDA
has effectively mapped the fault features into a one-dimensional space. It is noteworthy that
the fault features of the expansion joint, support, and overlap exhibit the largest interclass
distance and the smallest within-class distance. These findings indicate that defects caused
by expansion joint deformation, overlap misalignment, and control support loosening have
been effectively distinguished. Consequently, it confirms the effectiveness of our proposed
defect diagnosis method.
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Figure 8. Defect diagnosis results based on simulation tests.

5. Experiments Results and Analysis

The catenary defect diagnosis system proposed in this study implements condition-
based monitoring, impact detection, and defect diagnosis. As illustrated in Figure 9a,
lightweight and compact optic fiber strain sensors were embedded into the inner surface
of a pantograph aluminum support. Given that significant fluctuations in contact strip
temperature can compromise the measurement accuracy of optic fiber strain sensors, four
reference temperature sensors were installed in close proximity to the strain sensors for
temperature compensation. For further details, please refer to our previously published
paper [18].
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Figure 9. The experiment setup and collected strain signals on underground rails. (a). The experiment
setup (b). Comparison of strain signals collected from DATE1 and DATE2.

Data from online tests utilizing the proposed monitoring system were collected
from the metro line, with preprocessing employed to eliminate measurement noise and
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temperature-related drifts from the pantograph strain values obtained. To verify the
reproducibility of experimental outcomes, two tests were conducted on the same line,
separated by half a month. The Mann–Whitney U test and the Kruskal–Wallis test were
utilized to analyze the correlation between these two tests. The correlation analysis re-
sults are summarized in Table 2. Additionally, we analyzed two distinct rigid catenary
segments, as represented in Figure 9b (Case1 and Case2). Notably, strain signals collected
on DATE1 (30June) and DATE2 (15 July) exhibited highly similar trends and amplitudes.
However, the amplitude of the strain signal on DATE2 was slightly greater than that on
DATE1. This observation suggests that half a month of operation slightly degraded the
catenary’s condition.

Table 2. Correlation analysis of strain signals from DATE1 and DATE2.

Method Sensor 1
(DATE1/DATE2)

Sensor 2
(DATE1/DATE2)

Sensor 3
(DATE1/DATE2)

Sensor 4
(DATE1/DATE2)

Average Case1 −0.38/0.17 0.37/−0.07 0.06/−0.36 −0.52/−0.13
Case2 0.04/0.17 0.02/−0.41 0.16/−0.01 −0.16/−0.06

Standard deviation
Case1 5.72/6.06 5.88/6.20 6.46/7.14 5.81/5.96
Case2 4.82/5.09 5.90/6.29 5.74/5.81 5.91/5.97

Pearson correlation coefficient
Case1 0.72 0.78 0.78 0.78
Case2 0.83 0.89 0.89 0.87

Mann–Whitney U test Case1 ID ID ID ID
Case2 ID ID ID ID

Kruskal–Wallis test
Case1 ID ID ID ID
Case2 ID ID ID ID

The correlation coefficient analysis demonstrates a strong linear correlation between
the strain signals obtained on the two dates. Furthermore, the Mann–Whitney U test and
Kruskal–Wallis test confirm that the two datasets exhibit identical distributions (ID) and
significant correlation. These findings validate the reliability and reproducibility of the
experimental results.

The strain signals obtained from two distinct rigid catenary segments (Case1 and
Case2) were analyzed using the proposed defect diagnosis method. Figure 10 presents the
strain signals captured by the four optic fiber strain sensors and the corresponding impact
detection outcomes. The schematic of the corresponding rigid catenary segment (Case1)
is provided at the top of Figure 10. This configuration comprises two overlap sections
(highlighted in a red box), ten expansion joints, and eleven midpoint anchors.

It is evident that the MMSTD (right curve) effectively identified the real impact defects
(1, 2, 3, 4, 5, 6, 7, 8, 9). Subsequently, the feature extraction methods were utilized to extract
the catenary position and enhance the sample entropy of the detected impact defects.
Furthermore, a detailed view (Figure 10c) reveals distinct defect characteristics among
various defects, such as those caused by the deformation of expansion joints and loosening
of control supports. These differences align with the simulation outcomes, highlighting
the feasibility of the proposed diagnosis method to discriminate between different defects
using enhanced sample entropy as a guiding feature.

Figure 11 presents the defect monitoring and feature extraction results of Case1 ob-
tained from DATA 2. The collection time of DATA 2 is half a month later than that of
DATA 1. As evident from the results, the detected defects are consistent, indicating the
reproducibility of the test and the reliability of the experimental data. Following impact
detection, the newly proposed diagnosis method was utilized to analyze the defects, with
the diagnosis outcomes presented in Figure 11b. As can be seen from Figure 11b, the
classification accuracy obtained by feature selection based on LDA is 100%, which can
completely separate the three types of faults.
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Figure 11. Impact detection and defect diagnosis results based on online test (Case1).

In the provided example, Case1 possesses a diverse range of fault categories and
numerous fault points, making it suitable as a training sample. However, in practical appli-
cations, a more extensive statistical analysis of the measured faults in operational catenary
systems should be conducted to enrich the training fault samples further. Subsequently, by
inputting the fault features into the trained LDA classifier, the fault diagnosis results can be
obtained, as illustrated in Figure 12.

For the data collected from Case2, the MMSTD method was utilized to detect the
defects, and a total of four defects were identified in Case2, as presented in Figure 12. The
statistical characteristics of these defects are summarized in Table 3.

The analysis of Case1 and Case2 demonstrates that the fault feature extraction method
proposed in this study renders the three prevalent catenary faults linearly separable. The
findings indicate that the proposed approach enables discrimination between detected
defects and provides information on their type and location. Furthermore, the diagnosis
results were verified by the train operation company and were consistent with manual
detection outcomes. The outcomes of the conducted analyses suggest that the proposed
defect diagnosis method is highly effective.
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Figure 12. Impact detection and defect diagnosis results based on the online test (Case2).

Table 3. Defects feature extraction results from Case2.

Defect No. 2
(DATE1/DATE2)

3
(DATE1/DATE2)

4
(DATE1/DATE2)

5
(DATE1/DATE2)

Catenary P 0.562/0.583 0.604/0.600 0.670/0.686 0.597/0.603
ESampEn-S1 39.39/52.97 27.17/44.15 1.28/2.30 32.62/52.80
ESampEn-S2 24.33/38.41 21.31/29.41 0.40/2.66 51.68/41.71
ESampEn-S3 21.91/50.97 28.64/29.79 0.46/1.05 34.81/27.65
ESampEn-S4 34.77/42.26 46.75/29.02 0.41/0.55 43.55/47.68
Defect Type Expansion Joint Expansion Joint Support Expansion Joint

6. Conclusions

In this study, we present a defect diagnosis system for a rigid catenary based on strain
signals. The system architecture, key methods, and devices of the detection and monitoring
system of the catenary are described in detail. We utilize pantograph head strain as a
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defect indicator, simplifying the detection system. The main conclusions are summarized
as follows:

(1) The defects caused by the deformation of the expansion joint, the misalignment
of overlap, and the loosening of control support result in different vibration patterns and
waveforms in strain signals collected from the pantograph head.

(2) The simulation results show that the feature extraction methods—catenary posi-
tioning coefficient and enhanced sample entropy—can extract effective fault features for
subsequent fault separation and diagnosis.

(3) Two tests that were conducted on the same commercial metro line, separated by
half a month, exhibited highly similar trends and amplitudes. The correlation coefficient
analysis demonstrates a strong linear correlation between the strain signals obtained on
the two dates. Furthermore, the Mann–Whitney U test and Kruskal–Wallis test confirm
that the two datasets exhibit identical distributions (ID) and significant correlation. These
findings validate the reliability and reproducibility of the experimental data.

(4) The fault detection results from two tests on different dates are the same, and
the classification accuracy obtained by feature selection based on LDA is 100%. These
demonstrate that the proposed monitoring system can effectively detect the main defects
in a catenary system caused by expansion joint deformation, overlap misalignment, and
support loosening.

(5) The results are also verified through manual inspection, indicating the high effec-
tiveness of our proposed catenary defect detection and diagnosis method.
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