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Abstract: The paper reports on flight tests at hovering of the COLIBRI robot. After a short review
of the control model and the stabilization strategy, two different approaches are considered for the
attitude reconstruction from the MEMS Inertial Measurement Unit (IMU): the complementary filter
and the full-state dynamic observer, implemented in a specially designed flight control board. It is
shown that both strategies provide adequate stabilization at hovering in spite of the strong vibration
excitation resulting from the flapping of the wings. Moreover, it is shown that the residual wandering
due to noise, robot imperfection, etc., can be significantly reduced by a cascade control loop based on
the axial and lateral velocities reconstructed by the full-state observer. Experiments show that this
approach based on onboard measurements allows for a station keeping as good as that obtained with
velocities reconstructed from an external tracking system. The paper also reports endurance tests
conducted with two different robot configurations; the maximum flight time observed is 4 min 30 s.

Keywords: hummingbird; COLIBRI; hovering flight; full-state dynamic observer; IMU; attitude
reconstruction; complementary filter; Kalman filter; flapping noise

1. Introduction

Mankind has always been fascinated by the agility of small birds and the hummingbird
in particular, which is the only one capable of hovering, flying backward and sideways.
In the past decade, miniature components (electronic components, MEMS inertial units,
high energy-density batteries) have become available, leading to various research projects
involving robotic hummingbirds. The problem is difficult, because it involves many
different fields such as unsteady aerodynamics, aeroelasticity, mechanism, manufacturing
and control. Not many academic projects went as far as flying. An excellent review of
ongoing studies in the field of flapping-wing micro air vehicles is available in [1] (see
also [2]). Particularly relevant are the impressive Nanohummingbirds [3], developed by
Aerovironment with DARPA funding, and the Konkuk university robot [4,5], with a weight
of only 15.8 g and a flight autonomy of 9 min.

Our project named COLIBRI is tailless with two membrane wings, of the size of a large
hummingbird. A general view of the robot is presented in Figure 1; the left side shows an
early version of the robot [6–8] with the control board on top of the robot [9]. The right side
shows the current configuration where the control board and the two batteries are located
at the bottom of the robot. The wing span is 21 cm, the flapping frequency is 20 Hz and
the weight is around 22–23 g depending on the configuration. The flapping mechanism
and gearbox are documented in [10]. The wings consist of membranes attached to the
leading edge bars (moved by the flapping mechanism) and the control bars used to change
the membrane wings configuration in order to generate the control torques (the technique
called wing twist modulation was pioneered in [3]). All actuators (motor, servos) are low-cost,
off-the-shelf components. The robot structure is 3-D printed. The initial version of the
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COLIBRI robot used a Micro MWC Flight Control Board of Hobbyking with a clock of
16 MHz and a six-axes IMU (three gyro axes and three accelerometer axes), for a weight
of 1.8 gr. A new control board has been developed including a ARM processor with a
clockspeed of 168 MHz and two IMU sensors, one with six axes and one with nine axes,
including a magnetometer. The board also includes a Bluetooth link, for a total weight of
1.4 gr; it is briefly described in [11]. The IMUs are particularly critical components in view
of the noisy environment due to the flapping of the wings; the flapping noise is analysed
in [11].

It is not difficult to imagine the wide range of applications that a robotic hummingbird
could perform if it were available with an agility comparable to that of real birds, particu-
larly the most difficult task of all: reconnaissance in a confined, unstructured environment.
On the military side, drones are taking an increasing role in modern warfare; robotic birds
would bring the highly desirable feature of concealment (camouflage). But prior to this,
one must produce a robot capable of following a trajectory with reasonable accuracy for
a sufficient flight time (for comparison, the Black Hornet, a rotorcraft of the size of a small
bird popular in the military, has a flight autonomy of 25 min, and a price tag of six digits).
The current limit to autonomy is that the mass of existing robotic hummingbirds is still
about twice the mass of their natural counterpart with the same wing span [12].

Figure 1. The robot COLIBRI. Left: early version with the control board on top [7]. Right: current
configuration with the control board at the bottom. (1) Flight control board, (2) batteries, (3) main
motor, (4) gearbox and flapping mechanism, (5) attitude control actuators.

The MEMS inertial unit (IMU) of a flapping wing robot is a critical component because
of the intense flapping noise; this motivated researchers to provide the control board with
two different IMUs with different full-scale ranges. Each of them consists of three rate gyros
measuring the roll-pitch-yaw angular velocity in the robot frame and the three components
of the specific acceleration s = a − g (the absolute vector acceleration a of the IMU unit minus
the gravity vector g). In hovering, a = 0 and the specific acceleration s = (sx, sy, sz)T

indicates the position of the gravity vector in the robot frame, from which the robot attitude
(roll-pitch) can (in principle) be calculated. However, the acceleration and angular velocity
data are subject to intense flapping noise at the flapping frequency and higher harmonics
(the harmonic content of the lift and drag forces and the aerodynamic torque is documented
in [11], together with a brief description of the control board).

At hovering, the dynamics of the pitch and roll axes of a robotic hummingbird are
unstable; they can be stabilized actively if the robot attitude and angular velocities are
available (or can be reconstructed) from the IMU. If the pitch and roll references are set
to 0, the robot will inevitably drift from the starting position and an additional sensor is
required for station keeping (on-board optical flow sensor or external sensor such a video
external attitude tracking system). The present study explores an alternative approach
based on a dynamic state observer reconstructing the linear forward and lateral velocities.

The present paper is organized as follows: Section 2 briefly recalls the equations
governing the cycle-averaged longitudinal and lateral flight dynamics of the robot (they
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are essentially the same as those used in the simulation paper). Section 3 discusses the
feedback stabilization with a PD compensator, assuming a perfect knowledge of the pitch
angle θ and pitch rate q. While the pitch rate is directly available from the gyro, the pitch
attitude angle is not. Section 4 considers two different strategies for attitude reconstruction:
complementary filter and full-state (Luenberger) observer; both strategies are successful
in stabilizing the robot in spite of the strong flapping noise, as reported in the flight tests,
Section 5. Additionally, because of the availability of an estimator of the axial velocity
û in the full-state observer, a PI velocity feedback outer loop significantly improves the
station keeping of the hovering robot, with an accuracy comparable with that of earlier tests
carried out with an external motion tracking system [6]. Section 6 reports on endurance
flights with two different versions of the robot.

2. Flight Dynamics
2.1. Cycle-Averaged Longitudinal Dynamics

Previous studies have shown that, near hovering, the low-frequency dynamics of
the hummingbird robot (say, below 10 Hz) can be modelled as a rigid body and that the
weak coupling between the longitudinal (pitch) and the lateral (roll) dynamics allows to
treat them as independent. The following discussion will be focused on the longitudinal
dynamics; a similar treatment applies to the lateral dynamics (with appropriate values
of the model parameters). Since the flapping frequency is high compared to the robot
dynamics, the complexity of the aerodynamic forces acting on the robot can be ignored and
they may be approximated by their cycle-averaged values; a similar approach was followed
by [13–15]. The rapid change in the aerodynamic moment as well as the lift and drag forces
during a flapping cycle will appear as noise. Note that, if the aerodynamic forces along the
lateral axis are self-balanced within a flapping cycle (due to left-right symmetry), it is not
the case in the longitudinal axis, resulting in a significant pitch torque noise and drag forces.
To alleviate this, Delft university has developed a flapper drone with four wings [16] which
is also self-equilibrated in the longitudinal axis; this architecture increases the lift with the
so-called clap and fling mechanism and it considerably reduces the flapping disturbance.
However, such a morphology does not exist in nature.

2.2. Control Model

The longitudinal dynamics near hovering is governed by the Newton-Euler equations.
Referring to Figure 2, Newton’s equation reads

mu̇ = Xuu + Xqq + mgθ (1)

where m is the mass of the robot, u is the velocity of the center of mass (CG), θ is the pitch
angle (assumed small, so that sin θ ' θ and cos θ ' 1) and q = θ̇ is the pitch velocity. L
is the lift (follower) force; at hovering its vertical component balances the gravity force
L = mg and the component along the body axis XB is mgθ. Xuu + Xqq is the drag force
acting at the center of drag (CD) along the body axis XB.

The main damping mechanism is the flapping of the wings. The complex aerodynamic
forces can be modelled by a point force fd proportional to the velocity of the center of drag
located zd above the center of mass (Figure 2). The position of the center of drag is estimated
at a quarter chord from the leading edge at mid-wing. The drag force is proportional to the
velocity of the center of drag:

fd = −K(u + qzd) (2)

with the constant K being a linear function of the flapping frequency. u is the axial velocity
of the center of mass and q is the pitch angular velocity. This model was validated with a
set of pendulum experiments and was found to be very accurate [6,17]. It follows that the
constants appearing in Equation (1) are Xu = −K and Xq = −Kzd.
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Figure 2. Longitudinal (pitch) model of the robot near hovering. Coordinate system, force and
moment diagram.

Similarly, the rotary motion follows the Euler equation:

Iyy q̇ = Muu + Mqq + τa (3)

where Iyy is the moment of inertia about the center of mass; Muu + Mqq is the drag torque
with Mu = −Kzd and Mq = −Kq − Kz2

d. Mq can be estimated also with a pendulum
experiment (with the pendulum axis aligned on the center of mass). Direct and fairly
accurate measurements of Xu and Mq are available while the cross coupling terms Xq and
Mu result from a model and are less accurate; the distance zd between the center of mass
and the center of drag is not known accurately.

The aerodynamic control torque τa results from the wing twisting obtained by the
rotation of the control bars. The latter are operated by servos which can be modelled as
first-order systems, so that the actual control torque τa is related to the requested torque τ
(output of the controller) by

Tτ̇a + τa = τ (4)

where T is the time constant of the servo. In state-space form, the cycle-averaged longitudi-
nal dynamics read

u̇
q̇
θ̇
τ̇a

 =


X̂u X̂q g 0
M̂u M̂q 0 1/Iyy
0 1 0 0
0 0 0 −1/T




u
q
θ
τa

+


0
0
0

1/T

τ +


d/m

tp/Iyy
0
0

 (5)

where X̂u = Xu/m and M̂q = Mq/Iyy are always negative and X̂q = Xq/m and
M̂u = Mu/Iyy are negative if zd > 0, that is if the center of drag is above the center
of mass, and positive if zd < 0. The above equation includes the flapping drag noise d and
the pitch flapping torque noise tp that enter the system at the input. Time-histories of the
lift L, the drag d and the pitch torque tp have been studied in experiments reported in [11].
The signals are periodic but very complex, involving a lot of harmonic components and
peak values at least one order of magnitude larger than their cycle-averaged values. For
example, the RMS value of the aerodynamic torque tp is 0.0273 N·m (2780 gr·mm) while
the (cycle-averaged) control torque that can be achieved by the control bars is limited to
2 N·mm (±200 gr·mm).

Similar considerations apply to the lateral dynamics with significantly lower values of
the drag and torque noise because of the symmetry.
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3. Stabilization

In short, the axial dynamics of the robot can be written in the classical state space form

ẋ = Ax + Bτ + w (6)

where x = (u, q, θ, τa)T . The matrices A and B are given in Equation (5). w repre-
sents the system noise produced by the flapping of the wings, (d/m, tp/Iyy, 0, 0)T , as
discussed above.

The open-loop longitudinal dynamics is unstable and the poles configuration (the
eigenvalues of A) depends strongly of the value of zd. For zd > 0 (center of drag above the
center of mass), the system has two unstable oscillatory poles and two poles on the negative
real axis (blue × in Figure 3). If one considers the system as a SISO system with the control
torque τ as input and the pitch angle θ as output, the system can be stabilized with a PD
compensator, −kθ(1 + Tqs). This adds a zero in the open-loop system; Figure 3 shows the
root locus as a function of the proportional gain kθ . The position of the closed-loop poles
corresponding to Tq = 0.27, zd = 15 mm and kθ = 192× 105 is indicated in red [6].
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Figure 3. Root-locus plot trajectories as a function of the proportional feedback gain kθ for PD control
of the robot τ(s)

θ(s) = −kθ(1 + Tqs) with Tq = 0.27 and zd = 15 mm. The open-loop poles and zero are

the blue ×. The red squares indicate the closed-loop poles location obtained with kθ = 192× 10−5.

4. Attitude Estimation

The PD compensator discussed above looks satisfactory; however, the pitch angle θ is
not directly available because the IMU MEMS unit consists of three rate gyros measuring
the roll-pitch-yaw angular velocity in the robot frame and the three components of the
specific acceleration s = a − g, i.e., the absolute vector acceleration a of the IMU unit minus
the gravity vector g.

4.1. Output Equation

In hovering, the absolute acceleration a = 0 and the specific acceleration s = (sx, sy, sz)T

indicates the position of the gravity vector in the robot frame, from which the robot attitude
(roll-pitch) can be calculated:

φ = Atan2(−sy,−sz) (7)

θ = Atan2(−sx,
√

s2
y + s2

z) (8)
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For the 1-D model considered here, if the IMU is located at a distance za of the center
of mass (za > 0 if the IMU is above the center of mass and za < 0 if it is below), the x and z
components of the specific acceleration are, respectively,

sx = u̇ + q̇.za − g sin θ sx ' u̇ + q̇.za − gθ (9)

sz = +g cos θ ' g. (10)

At hovering, θ = arctan−sx/sz ' −sx/sz and, because the component sz is subject to the
intense periodic fluctuation of the lift force, θ ' −sx/g may be a more accurate estimator.

From the foregoing discussion, we conclude that the important components of the
IMU outputs are sx (the x component of the accelerometer) and q (the y component of the
gyro). Considering the system equation, Equation (5), the output equation relating the
sensor output y = (sx, q)T to the state vector x = (u, q, θ, τa)T reads

[
sx
q

]
=

[
(X̂u + M̂uza) (X̂q + M̂qza) 0 za/Iyy

0 1 0 0

]
u
q
θ
τa

 (11)

in short, y = Cx. Let us consider two different ways of dealing with the output signal to
estimate the pitch attitude angle θ.

4.2. Complementary Filter

The gyros of the IMU unit provide the pitch rate q = θ̇ that can be integrated to obtain
an estimator of θ. However, it is well known that gyros are prone to drift. This can be
alleviated by high-pass (HP) filtering.

On the other hand, we have just seen that, at hovering, the MEMS accelerometers
provide another estimator, θa ' arctan−sx/g ' −sx/g. The sensitivity to the intense
high-frequency flapping noise can be alleviated by low-pass filtering (LP).

The idea in the Complementary Filter (CF) consists of combining the output of the
two filters above; assuming second order Butterworth filters, the estimator reads

θ̂ =
s2

s2 +
√

2ωcs + ω2
c
· (1

s
) · q +

√
2ωcs + ω2

c

s2 +
√

2ωcs + ω2
c
· θa (12)

where ωc = 2π fc is the corner frequency of the complementary filter, delimiting the
frequency ranges where the accelerometer and the gyro are more reliable. Note that the
sum of the two filters, HP + LP, is an all-pass filter.

The system can be looked at as a SISO system with input θd and output θ; its block
diagram is shown in Figure 4. The return loop involves three low-pass filters, at fg on the
gyro output, at fs on the accelerometer output, and fc in the complementary filter, respec-
tively. fg is particularly important, because its output q̂g is directly used in the construction
of the control torque τ; it has a direct impact on the stability margins. Extensive numerical
studies [11] have shown that fg = 8 Hz offers a good compromise between stability and
noise rejection. The frequencies fs (accelerometer output) and the complementary filter
corner frequency fc are less critical; they have been selected fs = 2 Hz and fc = 0.1 Hz.
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Figure 4. Block diagram of the longitudinal stability control loop with a complementary filter. τ is
the requested control torque, τa is the position of the servo actuator acting on the control bars and τan

is the actual torque produced by the flapping wings, including the periodic noise components.

4.3. Full-State Dynamic Observer

The central assumption in the complementary filter is that of hovering, that is, the
absolute acceleration is a = 0, so that the direction of the gravity vector in the robot
frame can be extracted from the accelerometer signal. Since the robot is subjected to a
strong flapping noise, an alternative approach consists of including the robot dynamics
in the attitude estimation; this approach is advocated by [18] for spacecraft applications.
A solution is given by a full-state dynamic observer (Luenberger observer) provided that a
reasonably accurate linear state space model is available, Equations (6) and (11) in this case.
The reconstructed state x̂ is solution of

˙̂x = Ax̂ + Bτ + L(y− Cx̂) x̂(0) = 0 (13)

This equation assumes that the model is accurate; the error e = x− x̂ follows the equation

ė = (A− LC)e + w− Lv (14)

where L is the observer gain matrix, chosen to achieve adequate filtering properties of the
IMU signals from the gyro and the accelerometer. According to the separation principle, the
closed-loop poles consist of two decoupled sets, corresponding to the full-state feedback
regulator (PD in this case) and the full-state observer; the closed-loop stability is guaranteed
provided the eigenvalues of A− LC have negative real parts. The observer gain matrix
may be obtained by pole placement or as a Kalman-Bucy filter, in short, Kalman Filter (KF),
assuming that the plant noise w and the sensor noise v are white noise of given covariance
matrices, W and V, respectively. This approach is followed here.

4.4. Kalman Filter

From measurements reported in [11], the variance of the drag noise and the pitch
torque noise are estimated: σ2(d/m) ' 2000 (N/kg)2 and σ2(td/Iyy) ' 200,000 (N/kg.m)2

(the components of the plant noise are expressed in different units; in SI units, their ratio is
100). The sensor noise covariance matrix may be estimated from the zero-acceleration out-
put of the accelerometers and the zero-rate output of the gyros, available from the data sheet
of the IMU sensor, 0.30 m/s2 and 0.085 rad/s, respectively, leading to σ2(sx) ' 0.09 (m/s2)2
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and σ2(q) ' 0.008 (rad/s)2, respectively. Thus the ratio σ2(sx)/σ2(q) ' 10. Figure 5 shows
the block diagram of the longitudinal stability control loop with a full-state dynamic observer.

Figure 5. Block diagram of the longitudinal stability control loop with a full-state dynamic observer.
The symbols have the same meaning as in the previous figure.

According to the foregoing discussion, we assume the following form for the plant
noise W and the sensor noise V covariance matrices:

W = diag(2, 200, 0, 0) V = α× diag(10, 1) (15)

where α is a design parameter. A small value of α indicates that low noise measurements
may be trusted. Note that only the ratio between V and W matters (multiplying both
matrices by a scaler leads to the same gain matrix L). The measurement noise acts as an
excitation in the observer error Equation (14), amplified by the observer gain matrix (Lv);
as a result, noisy measurements require moderate gains in the observer.

Figure 6 shows the observer poles for three values of α, 1, 10 and 100, respectively. The
poles of the PD regulator shown earlier in Figure 3 are also shown. The value of α = 1 has
been used in what follows.

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

-8

-6

-4

-2

0

2
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8

Figure 6. Observer poles for α =1, 10 and 100 (the pole on the left side of the real axis is common to
all values of α). The regulator poles of Figure 3 are also shown with red squares.
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5. Flight Tests

The control strategy explained for stabilizing the pitch (X) axis is applied also for the
roll (Y) axis with appropriate values of the parameters of the Kalman filter (the model
parameters for X and Y are slightly different, due to differences in the various drag coeffi-
cients appearing in the control model). The Complementary Filter (CF) and the Kalman
Filter (KF) attitude reconstruction have been implemented in the control board. Attitude
stabilization of the robot has been achieved successfully with both methods as illustrated
by the video [19]. Figure 7 compares the reconstructed pitch angle and pitch rate of the two
filters for a short spell of a stationary flight when the stabilization feedback loop is based on
the Kalman Filter. Notice that the accelerometer output has a RMS amplitude of 4.1 g, while
a pitch angle of 0.1 rad corresponds to an horizontal component of the gravity acceleration
of 0.1 g. This means that the signal to noise ratio is of the order of 1%, which is quite
challenging. We have observed that the reconstructed signal from the KF is systematically
lower than that reconstructed from the CF, and the same trend has been observed when the
stabilization loop is based on CF rather than KF. However, both filters successfully stabilize
the robot and no significant visual difference is observed as illustrated in the video [19].

Figure 7. Comparison of the outputs of the Complementary Filter (CF: θ̂, q̂g in Figure 4) and the
Kalman Filter (KF: θ̂, q̂ in Figure 5) in a short interval of a stationary flight (θd = 0) when the
stabilization feedback loop is based on the Kalman Filter output. The upper figures refer to the IMU
outputs (sx, q).
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5.1. Station Keeping

When the references of the pitch and roll control loops are set to θd = 0, the robot
does not remain exactly at the same place but slowly drifts away from its starting position
due to small inaccuracies in the IMU calibration, the strong flapping noise, the imperfect
symmetry between the forward and backward strokes, etc. [19]. The Kalman filter recon-
structs the full state that includes the forward velocity u (and the lateral velocity v). If
the signal reconstruction is good enough, a cascaded control of the linear velocity may be
implemented as shown in Figure 8. The compensator C(s) transforms the velocity error
into a pitch angle demand θd with a P+I compensator:

C(s) = gu
s + zu

s
(16)

where the parameters gu and zu have been selected after numerical simulations to provide
adequate stability margins [11], and finally adjusted from flight tests. The proposed strategy
looks fairly straightforward, but it was not obvious that it would work in practice, given
the severe flapping noise affecting the IMU sensor. The flight tests have shown that it works
as one can see one the short video [20]. The left side of Figure 9 compares trajectories of the
center of mass of the robot with (in red) and without (in blue) velocity control measured
by an external tracking system. The right side of the figure shows similar measurements
conducted earlier when the velocity used in the feedback was that reconstructed from the
external tracking system [6]. This figure shows similar performances of the two approaches;
the on-board measurements allows to keep the robot within a circle with a radius of about
one wingspan.

Figure 8. Cascaded control on the linear velocity u. The flapping noise includes the drag d and the
pitch torque tp.

5.2. Yaw Control, Trajectory Generation

The control configuration shown in Figure 8 is exactly the configuration needed to
generate the axial and lateral components of the robot trajectories. However, a careful
observation of the videos reveal that the robot slowly rotates about the yaw axis. This is
due to the fact that, to speed-up the research, the current versions of our demonstrator
do not include an actuator to control the yaw axis, which is necessary for a full control of
the trajectory.

The yaw axis is naturally stable (it is damped by the flapping of the wing); its control
has been investigated in [21]. Unlike the pitch and roll torques which are generated by lift
modulation, the yaw torque results from differential drag obtained by modifying slightly
in opposite directions the central position of the left and right control bars. Once this step
is achieved, the magnetometer included in one of the two IMU units in the control board
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can be used to steer the front axis of the robot and generate trajectories. This step remains
to be performed.

Figure 9. Comparison of trajectories with and without velocity control. Left: velocity control based
on the reconstruction from the on-board sensor and Kalman filter. Right: velocity control based on an
external tracking system [6].

6. Endurance Flight

Two prototypes have been built and tested, that differ by the mechanical structure
of the flapping wing mechanism (both have the same kinematics), the gear ratio G of the
gearbox between the d.c. motor and the flapping mechanism and the wing size W (which
affects the lift-frequency relationship and the pitch and roll control moments), Table 1. Two
sets of batteries have been considered with the characteristics of Table 2. In each case, two
batteries are connected in series. All tests were performed with the same d.c. motor with
the characteristics (at room temperature) of Table 3.

Table 1. Characteristics of the prototypes considered in this study.

Prototype Flapping Gearbox Wing Size Weight Flapping

Number Mechanism Ratio G W (mm) L (gr) Frequency f
(Hz)

P1 String 28.9 88 22 18
P2 Gear 39 81 22.6 19

Table 2. Characteristics of the batteries.

Battery Reference Capacity Discharge Weight Max.
Number (mAh) Rate (gr) Current (A)

B1 Hyperion G5 70 25C–30C 2.26 1.75–2.1
LiPo (50C burst)

B2 Honcell 95 15C 2.3 1.425

Table 3. Characteristics of the d.c. motor.

Producer Weight (gr) R(Ω) k (10−4V.s) R/k2 (×108)

Micronwings 3.51 0.76 7.18 0.0147

The two prototypes were first tested on a load cell with an external power supply;
the voltage e and current I necessary to achieve a lift equal to the weight were measured
(Table 4). The average current needed for the control board and the two attitude control
servos was also estimated to 0.19 A, so that the total current supplied by the battery is
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i = I + 0.19 A. Table 4 also provides estimates of the electrical power of the motor Pe = e× I,
the heat power Ph = RI2 and the mechanical power (necessary to produce the lift and
overcome the internal friction in the mechanism and the motor) Pm = Pe − Ph.

Table 4. Flight characteristics of the robots.

Prototype Operating Operating Electrical Heat Mechanical
Number Voltage e Current I Power Pe Power Ph Power Pm

P1 3.2 1.12 3.58 0.95 2.63
P2 3.92 0.97 3.80 0.715 3.08

Figure 10 shows the discharge curve of two batteries B1 connected in series. The ◦
indicate the data from the manufacturer for i = 1.2 A and the continuous lines correspond
to the best-fit Shepherd model [22] for the requested current of the prototypes P1 and P2
(the requested current i is obtained by adding the current needed for the board and attitude
servos to the values given in the third column of Table 4, i = I + 0.19 A). The minimum
voltage to operate the control board and the servos is 6 V, so the expected operating time T0
with a constant current is obtained when the Shepherd model drops below 6 V.

Figure 10. Discharge curve of two batteries B1 in series for a the discharge rate of 1.2 A (data from
manufacturer) and the best-fit Shepherd model. The other curves correspond to the Shepherd model
for the discharge currents of the two prototypes.

In the flight tests, the operator adjusts the duty factor of the PWM of the main motor in
order to keep a nearly constant altitude (lift equal to weight). When the available voltage at
the battery v is larger than the requested voltage e, the duty factor µ of the PWM of the d.c.
motor (i.e., the fraction of time when the full available voltage is applied) is set to µ = e/v.
It follows that the total flight time may be estimated by

T =
∫ T0

0

v
e

dt (17)

Table 5 summarizes the results for the two prototypes and the two sets of batteries. T0
is the constant current discharge time obtained from Shepherd’s model, and T is the flight
time estimate from Equation (17). Tf is the actual flight time measured. P1-B1 refers to the
string mechanism with the first set of batteries; the flight stopped after 106 s because of
overheating of the main motor (the energy of the battery was not exhausted). As a result,
the flight P1-B2 became useless and was canceled. The flight P2-B1 (gear mechanism) lasted
Tf =168 s, well below the estimated T = 265 s; at least part of the discrepancy can be



Actuators 2024, 13, 91 13 of 15

attributed to the fact that the set of batteries B1 had been used for a long time. The flight
P2-B2 is the longest so far, Tf = 265 s (nearly 4 min 30 s).

Table 5. Estimated and measured flight time, specific power Pm/L.

Prototype Shepherd Estimated Actual Pm/L Remark
Battery T0 T Equation (17) Flight Tf (W/kg)

P1-B1 130 s 279 s 106 s 119 Overheating
P1-B2 - - - - -
P2-B1 150 s 265 s 168 s 136 Old batteries

P2-B2 NA NA 265 s 136 Longest
flight

From Table 5, one sees that prototype P1 is subject to overheating in spite of a specific
power Pm/L = 119 W/kg while the prototype P2 flies longer with a specific power of
136 W/kg. The reason lies into the following relation between the heat power Ph and the
mechanical power Pm [10]:

Ph = RI2 =
R
k2 .

1
G2 .(

Pm

2π f
)2 (18)

The first term is motor characteristics (Table 3), the second depends on the gear ratio
G and the third one depends on the flapping frequency f . According to this equation,
Ph ∼ P2

m(G f )−2. On the other hand, previous studies have shown that, for a given lift,
the mechanical power Pm is to a large extent independent on the wing size (see Figure 6
of [10]). This means that a larger gear ratio and smaller wings (leading to a larger flapping
frequency) will reduce heat production. The excess value of the specific power of the
gear mechanism as compared to the string mechanism hints that internal friction could be
reduced by more accurate components and careful assembly.

7. Conclusions

The attitude reconstruction of a hovering flapping wing robot has been analyzed
with a complementary filter and a full-state dynamic observer. Both methods have been
successfully implemented and tested, in spite of the high noise environment due to the
flapping of the wings. In addition, it was found that the full-state observer allows the
reconstruction of the forward and the lateral velocities needed for station keeping and full
control of the robot trajectory.

Endurance tests were conducted with two different robot configurations; the maximum
flight time observed is 265 s (4 min 30 s) in spite of some parasitic friction in the geared
flapping mechanism. Future studies will be devoted to the control of trajectories and
increasing the flight time of the robot.
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Abbreviations

The following abbreviations are used in this manuscript:

ARM Advanced RISC Machine
CD Center of drag
CF Complementary Filter
CG Center of mass
DARPA Defense Advanced Research Projects Agency
HP High Pass filter
IMU Inertial Measurement Unit
KF Kalman Filter
LP Low pass filter
MEMS Micro Electro Mechanical System
NA Non Available
PD Proportional plus Derivative
PI Proportional plus Integral
PWM Pulse Width Modulation
RMS Root Mean Square
SI International System Units
SISO Single Input Single Output
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