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Abstract: To enhance the robustness of the toolface angle control in a fully rotary steerable drilling
tool, a backstepping control law and a drilling fluid flow adaptive law are devised based on the
dynamic model of the stable platform. The Lyapunov function is constructed, and it is proven that
the adaptive backstepping control system of the stabilized platform is stable. Furthermore, in order
to address problems such as the friction dead zone and excessive rotational kinetic energy in the
stabilized platform system, which could cause toolface angle oscillations and the rapid rotation
of the stabilized platform, we additionally propose an online estimation method for the balancing
torque and velocity-angle control switching strategy. By combining the backstepping control law,
drilling fluid flow adaptive law, and velocity-angle control switching strategy, a self-stabilizing
control strategy for the stabilized platform is established. In comparison with the PID control method,
the simulation results show the superiority of the proposed scheme under complex disturbances from
a downhole environment. And the drilling simulation experiment results indicate that the proposed
control method has a good anti-interference capability under various conditions, including drilling
fluid flow rate, inclination angle, and drill collar rotational speed. Therefore, the proposed control
method can improve the robustness of the stabilized platform control system.

Keywords: rotary steerable drilling system; stabilized platform; toolface angle; adaptive backstepping
control; self-stabilizing control strategy

1. Introduction

Since 2012, China’s external dependence on crude oil has reached 71.2%, which is
seriously affecting our country’s energy security and is constraining socio-economic devel-
opment [1,2]. In order to ensure an increase in the reserves and production of crude oil in
our country, rotary steerable drilling technology could effectively enhance drilling speed,
reduce drilling costs, and decrease production accidents [3,4]. Following nearly two decades
of research, it is imperative for the domestic development of rotary steerable tools to enter an
accelerated phase. During the drilling process, the rotary steerable system could ensure that
the wellbore trajectory is drilled at the set angle, and the key technology to achieve this goal is
to achieve the stable control of the stabilized platform at any given angle [5–7].

The stabilized platform of the full rotary steerable drilling system is a complex system
that integrates mechanics, electronics, and hydraulics. Even small disturbance torques
could lead to oscillations or even instability. Therefore, many scholars have conducted
continuous research and exploration to achieve a stable control of the stabilized platform.
Reference [8] proposed a variable structure control method to address the issue of the stabi-
lized platform instability that is caused by external disturbances. Reference [9] designed a
cascaded controller for the stabilized platform, conducted extensive experimental research
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on control algorithms and parameters for an extended period, and achieved a short-term sta-
bility in the stabilized platform system under certain conditions. Reference [10] conducted
numerical simulations based on the nonlinear dynamics model of the stable platform, and
the study also revealed the general impact of the platform structure and disturbance pa-
rameters on platform motion. Reference [11] developed a feedback linearization controller
for the stabilized platform to resolve the instability problem in angle control that arises
from the eccentricity of platform mass distribution and structure. In order to address the
instability issue in stable platform control that is caused by large-range variations in the
drilling fluid flow rate, reference [12] proposed a turbine motor electromagnetic torque
feedforward control method. Reference [13] presented a three-loop compound toolface con-
trol based on the model with an active disturbance rejection control algorithm to ensure the
stabilized platform traces the directional command accurately and rapidly. Reference [14]
established a state observer to estimate the trajectory orientation based on the measurement
of the bottom hole assembly to reduce control errors in practice. Reference [15] proposed
an observer-based, adaptive neural network, and the researchers also used the dynamic
surface control strategy to improve the anti-interference ability of the stabilized platform
control system. Reference [16] established a mathematical and friction model for the stabi-
lized platform in a rotary steerable drilling system, and the researchers also introduced an
improved deep deterministic policy gradient attitude control method with the stabilized
platform attitude control system. Reference [17] devised a disturbance–observer-based
deep deterministic policy gradient control algorithm to address the friction nonlinearity
problem that exists in the rotary steering drilling stabilized platform.

Even if the above studies provided deep insights into the modeling and control of
the stabilized platform for a rotary steerable drilling system, most of them could only
achieve stability in the rotary steerable drilling tool under specific conditions, and they also
observed poor adaptability to drilling fluid flow rates at large displacements. Due to the
harsh working environment underground, the rotary steerable tool is susceptible to factors
such as vibration, high temperature, and high pressure during the drilling process, which
could easily lead to changes in the structural and electrical parameters of the stabilized
platform system [18,19]. Consider these influences as disturbances and eliminate their
impact on the control of the stabilized platform by improving the robustness of the control
method. How to improve the robustness of the stabilized platform control system under
complex drilling environments motivates the work in this paper.

Among the many nonlinear control methods, the backstepping control method is
the easiest to combine with adaptive techniques. As such, the adaptive backstepping
control approach has good adaptability and robustness for systems with uncertain param-
eters [20–22]. In this paper, we utilized the adaptive backstepping control method and
constructed a suitable Lyapunov function to ensure global asymptotic stability, and this is
expected to improve the robustness of the stabilized platform control system. Specifically,
the main contributions of this paper are highlighted as follows.

(1) Based on the nonlinear mathematical model of the stabilized platform system, the
adaptive backstepping control was designed. Meanwhile, the Lyapunov theorem
ensured the convergence of the stabilized platform control system.

(2) In order to address problems such as the friction dead zone and excessive rotational
kinetic energy in the stabilized platform system, we propose an online estimation
method of the balancing torque and a velocity-angle control switching strategy.

(3) A self-stabilizing control strategy for the stabilized platform is established by combin-
ing the backstepping control law, adaptive control law of drilling fluid flow, and the
velocity-angle control switching strategy. Drilling simulation experiments were used
to verify the effectiveness of the self-stabilizing control strategy.

The rest of the article are organized as follows. The nonlinear state–space model of the
stabilized platform system is deduced in Section 2. The design of the adaptive backstepping
control method and the proof of the stabilized platform control system convergence are demon-
strated in Section 3. The self-stabilizing control strategy of the stabilized platform is established
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and the drilling simulation experiments are implemented to validate the effectiveness of the
proposed control in Section 4. Finally, the conclusions are drawn in Section 5.

2. Nonlinear State–Space Model of the Stabilized Platform System

The principal structure of the stabilized platform is shown in Figure 1. The stabilizer
platform is a cylindrical body supported by bearings inside the drill collar and can rotate
freely. There is a turbine generator at each end of the stabilizer platform. The upper turbine
generator is the power generator for the downhole measurement and control system. The
upper turbine generator is driven by the drilling mud to rotate the rotor of the motor in
order to generate electricity, which is then rectified and stabilized to provide power for
the downhole electronic equipment. The upper turbine generator also serves as a signal
detector for downhole communication. The lower turbine generator is the torque generator
necessary for stabilizing the stabilized platform. The lower turbine generator can generate
a torque opposite to the direction of the drill collar rotation. By controlling the magnitude
of this torque, the torque balance of the stabilized platform is achieved, which allows the
stabilized platform to stabilize at a specified angle.
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Figure 1. The principal structure of the stabilizing platform.

The upper valve is connected to the main shaft of the stabilized platform, so the
movement of the upper valve is identical to the movement of the stabilized platform’s main
shaft. And the upper valve has an arc-shaped hole (high-pressure hole) that serves as a
drilling fluid passage. The lower valve fixed inside the biasing mechanism rotates with the
drilling tool, and it has three overflow holes. When the high-pressure hole of the upper
valve is connected to one or two of the overflow holes of the lower valve, the high-pressure
drilling fluid drives the corresponding plunger action of the biasing mechanism, and the
plunger drives the “Pad” to apply force to the wellbore. The lower turbine generator
generates a torque for the stabilized platform that is opposite to the rotation direction
of the drill collar. By controlling the magnitude of this torque, the stabilized platform
can be controlled at a specified angle. The high-pressure drilling fluid channel of the
biasing mechanism is opened at this specified angle and the executive mechanism’s “Pad”
is pushed against the wellbore at this angle, which generates a lateral force on the drill bit.
In other words, the reactive force of the wellbore on the “Pad” is used to push the drill bit
to change the drilling direction, thereby achieving control over the inclination and azimuth.
The schematic diagram of the upper and lower valves is shown in Figure 2.
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If the mass distribution of the various structural components of the stabilized platform
is uneven or is asymmetrical radially, there will be a deviation between the center of mass
and the geometric axis of the stabilized platform. The main mechanical components of
the platform are axially symmetrically distributed. The circuit boards installed inside the
stabilized platform are generally symmetrically distributed but some are asymmetrical.
The eccentric moment of the mass distribution of the asymmetric part is defined as Mg. We
thus have

Mg= r0mggsinθsinα, (1)

where r0 is the eccentric distance, mg is the mass of the asymmetric part, θ is the toolface
angle of the stabilized platform, and α is the inclination angle.

The processing and installation deviation between the centroid and axis of the platform
will result in an installation eccentricity torque, as shown in Figure 3. The installation
eccentric torque is defined as Mm. Then, we have

Mm = rmmgsinθsinα, (2)

where rm represents the different axis errors and m represents the mass of the stabilized
platform. The two eccentric moment terms in Equations (1) and (2) are combined as

Ma= Mm+Mg= f 1sinθsinα, (3)

where Ma is the equivalent eccentric moment and f 1 is the eccentric moment coefficient.
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Figure 3. Schematic diagram of the installation error between the centroid and axis of the stabilized
platform.

From a control perspective, with the current maximum build-up capacity of 18◦/30 m,
the observable change in the inclination angle is at least on a minute scale [23]. Taking into
account the millisecond-level control action of the stabilized platform, the inclination angle
could be regarded as a constant for a certain period, which is denoted as

α = α0. (4)
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Let the equivalent eccentric moment coefficient be f = f 1sinα0, then Equation (3) can
be further simplified as

Ma= fsinθ. (5)

In [10], Wang et al. provided Equation (6) to represent a nonlinear dynamic equation
of the stabilized platform:

J
..
θ + K1

.
θ + fsinθ = M0+u(t)+∆(t), (6)

where J denotes the moment of inertia of the stabilized platform, K1 is the viscous friction
coefficient of the drilling fluid on the stabilized platform, f represents the equivalent coeffi-
cient of the eccentric moment, M0 is the torque equilibrium point, u(t) is the electromagnetic
torque of the torque motor, ∆(t) is external disturbance torque, and

..
θ and

.
θ are the angular

acceleration and angular velocity of the stabilized platform, respectively.
The relationship expression among the electromagnetic torque of the motor, the flow

rate, and the control action is expressed as

u(t) = (KqQ − Kω

.
θ)uc(t), (7)

where uc(t) represents the control law of the controller, Q denotes the drilling fluid flow
rate, and Kq and Kω denote the flow-torque and speed-torque characteristic coefficients of
the torque motor, respectively.

While ignoring the external disturbance of the stabilized platform system ∆(t), let
x1= θ and x2=

.
θ. According to Equation (6), we have J

.
x2+K1x2+fsinx1= M0+u(t)+∆(t).

Then, the expression of
.
x2 is

.
x2 =

1
J
(−K1x2−fsinx1+M0+u(t)). (8)

Thus, the state–space description of the stabilized platform system is represented by{ .
x1= x2
.
x2 = 1

J (−K1x2−fsinx1+M0+u(t))
. (9)

3. Adaptive Backstepping Controller Design and Stability Proof
3.1. Backstepping Control Law of the Stabilized Platform

The structure of the adaptive backstepping control system of the stabilized platform is
shown in Figure 4, where θd is the desired toolface angle and the dashed box represents the
backstepping controller and drilling fluid flow adaptive law. Through online estimation of
the drilling fluid flow and a subsequent updating of the flow parameters in the backstepping
controller, the aim was to mitigate the influence of changes in the drilling fluid flow on the
stability of platform toolface angle control.
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The backstepping control method’s main idea is in resolving the sophisticated system
into multiple subsystems, where the number of systems is not more than the original
system’s order. Subsequently, the Lyapunov functions are constructed for each subsystem.
Moreover, the error of each subsystem should be one of convergence. Finally, the control
input of the whole system can be obtained through a step-by-step recursion [24,25]. Accord-
ing to the state–space description of the stabilized platform system, the system variables
include the toolface angle and angular velocity, that is, the stabilized platform system is
split into the two subsystems of angle and angular velocity. The control goal of the first
subsystem is to make the error between the actual toolface angle x1 and the desired toolface
angle x1d converge to zero, that is,

lim
t→∞

(x1d(t)− x1(t)) = 0. (10)

We can define the tracking error of the stabilized platform toolface angle as

e = x1d − x1. (11)

And the derivative e is obtained as

.
e =

.
x1d − x2. (12)

The corresponding Lyapunov function of the tracking error, that is, the Lyapunov
function of the toolface angle error e, can be constructed as

V1 =
1
2

e2. (13)

And the derivative of V1 with respect to time is expressed as

.
V1 = e(

.
x1d − x2). (14)

Then, the error between the desired toolface angular velocity x2d and the actual toolface
angular velocity x2 is defined as ω, and ω is denoted as

ω = x2d − x2. (15)

The derivative of ω is expressed as

.
ω =

.
x2d −

.
x2. (16)

The desired toolface angular velocity x2d can be defined as

x2d =
.
x1d + G1e, (17)

where G1 is the gain coefficient of the toolface angle, which is a positive number; and G1e
represents the virtual control law in the first subsystem.

According to the Lyapunov theorem [26], when V1 > 0 and
.

V1 ≤ 0, then the system
is asymptotically stable, which indicates that the toolface angle of the stabilized platform
can track the desired toolface angle. When substituting Equations (15) and (17) into
Equation (14), Equation (14) can be rewritten as

.
V1 = −G1e2 + eω. (18)

Evidently, if ω = 0, then e will converge asymptotically to zero. Therefore, the control
goal becomes such that

lim
t→∞

(x2d(t)− x2(t)) = 0. (19)
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When substituting Equations (9) and (17) into Equation (16), we have

.
ω =

..
x1d + G1

..
e − 1

J
(−K1x2 − f sinx1 + M0 + u(t)). (20)

The extension of the Lyapunov function that includes the terms e and ω is defined as

V2 =
1
2

e2 +
1
2

ω2. (21)

The derivative of V2 is expressed as

.
V2 = e

.
e + ω

.
ω =

.
V1 + ω

.
ω. (22)

Substituting Equation (18) into Equation (22) yields

.
V2 = −G1e2 + ω(e +

.
ω). (23)

Here, when assuming e +
.

ω is designed, we have

e +
.

ω = −G2ω. (24)

Thus, Equation (23) becomes

.
V2 = −G1e2 − G2ω2, (25)

where G2 is the gain coefficient of the toolface angular velocity, which is a positive number.
Equation (24) proves that

.
V2 is negative definite, which indicates the whole system

is asymptotically stable. When substituting Equations (24) and (9) into Equation (20), the
backstepping control law of the stabilized platform toolface angle based on Lyapunov
stability theory is obtained as

uc(t) =
J

KqQ − Kωx2
(e +

..
x1d + G1

.
e +

K1

J
x2 +

f
J

sinx1 −
1
J

M0 + G2ω). (26)

3.2. Design of the Adaptive Law for Drilling Fluid Flow Rate

In drilling engineering, the drilling fluid flow rate needs to meet various geological
conditions and drilling process requirements. However, the change in the drilling flow rate
causes variations in the turbine motor speed; consequently, the output torque of the turbine
motor also changes, which leads to instability in the control of the stabilized platform.
Hence, designing an adaptive law for the drilling fluid flow rate can not only solve the
instability problem in the stabilized platform control system caused by flow rate changes,
but it can also improve robustness.

Let the estimated value of the uncertain parameter Q be denoted as Q̂, and let us
define the estimation error of drilling fluid flow rate as

Q̃ = Q − Q̂. (27)

Since the drilling fluid flow rate does not change significantly over a short period, it
can be considered a constant. Therefore, the derivative of Equation (27) is expressed by

.
Q̃ = −

.
Q̂. (28)
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When replacing Q with Q̂ in the backstepping control law in Equation (26), the
adaptive backstepping control law is obtained as

uc(t) =
1

KqQ̂ − Kωx2
(e +

..
x1d + G1

.
e +

K1

J
x2 +

f
J

sinx1 −
1
J

M0 + G2ω). (29)

When adding the term Q̃ to Equation (21), the extended Lyapunov function is formed as

V(e, ω, Q̃) =
1
2

e2 +
1
2

ω2 +
1
2

Q̃2. (30)

By deriving V(e, ω, Q̃), we have

.
V(e, ω, Q̃) = −G1e2 + ω(e +

..
x1d + G1

.
e + K1

J x2 +
f
J sinx1

− 1
J M0 − 1

J (KqQ − Kωx2)uc(t))− Q̃
.

Q̂
. (31)

When substituting Equations (27) and (29) into Equation (31), we yield

.
V(e, ω, Q̃) = −G1e2 + ω(e +

..
x1d + G1

.
e + K1

J x2 +
f
J sinx1 − 1

J M0 −
KqQ̂−Kω x2+KqQ̃

KqQ̂−Kω x2
(e

+
..
x1d + G1

.
e + K1

J x2 +
f
J sinx1 − 1

J M0 + G2δ))− Q̃
.

Q̂

= −G1e2 − G2ω2 − Q̃(
Kqδ

KqQ̂−Kω x2
(e +

..
x1d + G1

.
e

+K1
J x2 +

f
J sinx1 − 1

J M0 + G2ω) +
.

Q̂)

(32)

When choosing the adaptive law for drilling fluid flow rate, we have

.
Q̂ =

−Kqδ

KqQ̂ − Kωx2
(e +

..
x1d + G1

.
e +

K1

J
x2 +

f
J

sinx1 −
1
J

M0 + G2ω). (33)

The derivative of V(e, ω, Q̃) is a negative semi-definite. Furthermore, according
to the Lyapunov-like lemma, error e and ω are converge to zero. The final Lyapunov
function Equation (30) guarantees global stability, which indicates the stabilized platform
can successfully track the desired toolface angle x1d.

3.3. Simulation Verification

The stabilized platform experiences the complex effects of the dynamic alternating
torques, including the alternating friction torque from the upper and lower valve; the
hydraulic impact torque; vibration; and the impact-induced impact friction torque from
the main support bearing; as well as the torque due to flexural deformation forces. These
friction torques can be regarded as external disturbances for the stabilized platform system,
and the expression for this is

∆(t) = ∆1(t) + ∆2(t) + ∆3(t)
= b cos(ωt) + ∆2(t) + A · Rand(t)

, (34)

where ∆1(t) represents the alternating friction torque of the upper and lower valve; ∆2(t)
represents the hydraulic impact torque caused by the opening/closing of the overflow
holes when the upper and lower valve move relative to each other; ∆3(t) represents the
dynamic variation of the friction torque of the main supporting bearing caused by the
vibration and impact near the drill bit, as well as the additional torque caused by the lateral
vibration and flexural deformation, which can be regarded as a random disturbance; b is
the maximum value of the variation amplitude of the valve friction torque; and A is the
amplitude of the random disturbance.

We established the nonlinear dynamic model of the stabilized platform based on
Equation (29) using MATLAB. The system parameters of the stabilized platform were
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designated as J = 0.0285 kg·m2, K1 = 0.0008 kg·m2/s, f = 0.5 Nm, Kq = 1/12, Kω = 0.08/π,
and Q = 36 L/s. The controller parameters of the adaptive backstepping method were
tuned as G1 = 11 and G2 = 60. The primary control objective was to track the desired
toolface angle.

We evaluated the robustness of the proposed control method by setting the drilling
fluid flow rates Q(t) as 16 L/s, 36 L/s, 50 L/s, and 70 L/s, thereby maintaining the stabilized
platform toolface angular position setpoint as θd = 0.5π. Meanwhile, we compared the
proposed control method in this paper with the PID control to verify the superiority of the
proposed control method. The dynamic curves are shown in Figure 5.
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Figure 5 gives the dynamic curve of the two control methods in the different flow rates,
respectively. As shown in Figure 5b, under PID control, the oscillation amplitude of the
stabilized platform toolface angle increased with the increasing drilling fluid flow rate. When
the drilling fluid flow rate reached 70 L/s, the oscillation amplitude of the stabilized platform
toolface angle reaches ±60◦, which does not meet the requirements of practical engineering.
However, Figure 5a shows that the system exhibits good dynamic performance under a strong
disturbance with a smooth transition process, no steady-state error, and an adjustment time
of about 0.6 s. From the locally enlarged chart, it was observed that the system had slight
steady-state oscillations with an amplitude of less than ±2◦. Additionally, the response curves
for the different flow rates in the graph nearly overlapped, which indicates that the variations
in drilling fluid flow rate have no impact on the stability control of the stabilized platform, as
well as that our control method outperformed the PID control.

4. Self-Stabilizing Control Strategy
4.1. Drilling Simulation Experiment of the Adaptive Backstepping Control Method

The equipment for the drilling simulation experiments are shown in Figure 6, where
the power distribution cabinet supplied power to the entire system, as well as offered
flexibility to adjust the water flow rate and drilling tool’s rotation speed. The variable
frequency motor and the centrifugal pump were used for water circulation of the test rack,
which is for the functional testing of the stabilized platform. The water tank simulates a
drilling fluid mud pit [27].

The steerable drilling tool was used with an independent dual-CPU structure, which
is responsible for controlling the stabilized platform toolface angle, whereas the other
handles data recording. The control frequency was set to above 300 Hz and the recording
period was 1 s.
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Figure 6. Drilling simulation experiment apparatus.

In each experiment, 12 sets of different controller gain coefficients were selected, and the
experimental time for each set of coefficients was approximately 5 min. During the experiment,
parameters such as the drilling fluid flow rate, rotary speed of the drilling tool, and inclination
angle could be adjusted at any time. The experimental results showed that the platform
toolface angle exhibited rapid rotation and repeated oscillation states, and that stable control
was not achieved. One of the most typical experimental results (partially) is shown in Figure 7.
The drilling simulation experiment conditions represented in Figure 7 are as follows: the
drilling tool speed was about 83 rpm, the drilling fluid flow rate was 56 L/s, the inclination
angle was about 2◦, and the stabilized platform toolface angle set value was 270◦.
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Figure 7. The partial recording of the drilling simulation experiment.

As shown in Figure 7, the experimental results indicated that the toolface angle gradu-
ally converged to the desired trajectory in the first stage using the adaptive backstepping
control method, but this experienced instability in an extremely short time, where it abruptly
changed from approximately 270◦ to about 25◦. In the second stage, after approximately
1 s of rapid adjustment, the toolface angle stabilized at the set value again for about 1 s,
after which the stabilized platform underwent rapid rotation and could not stabilize.
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The instability problem of the toolface angle in a short period of time due to a sudden
change in the stabilized platform speed can be explained by the Stribeck friction model, as
shown in Figure 8, where M0 ∈ ( fN ,− fN), and fN is the maximum static friction torque.
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As shown in Figure 8, to achieve a stabilized platform forward rotation, it is sufficient
to meet

M0 + uc(t) > fN . (35)

Conversely, to achieve a stabilized platform reverse rotation, it is sufficient to meet

M0 + uc(t) < − fN . (36)

However, when M0 + uc(t) ≫ fN , the stabilized platform will rotate rapidly, and also
vice versa. Thus, the root cause of the instability of the stabilized platform in Figure 5 is
excessive control action.

Assuming points c and d are the critical points of the stabilized platform speed tran-
sition, to achieve stable control of the stabilized platform, we have M0 + uc(t) ∈ ( fN , fc)
during a forward rotation and M0 + uc(t) ∈ (− fN , fd) during a reverse rotation. Therefore,
it is necessary to study a method that can estimate M0, uc(t), and the maximum static
friction torque of the stabilized platform.

4.2. Online Estimation of the Balancing Torque of the Stabilized Platform

In the nonlinear dynamic equation of the stabilized platform in Equation (6), when
(θ,

.
θ,

..
θ) = (0, 0, 0), the stabilized platform does not rotate and all of the torque balances,

when neglecting disturbances, are such that

M0 + uc0(t) = 0, (37)

where uc0(t) represents the control action when the stabilized platform speed is zero.
The stabilized platform system is in an open-loop control state. Control is applied

based on the platform speed measured by sensors to stop the stabilized platform rotation.
Then, the control action is gradually increased to initiate a slow forward rotation, which
is denoted as ûc1(t). Similarly, when the platform speed is zero, gradually reducing the
control action causes the stabilized platform to start a slow reverse rotation, which is
denoted as ûc2(t).
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The estimate of the stabilized platform’s balancing torque is

M̂0 =
ûc1(t)− ûc2(t)

2
, (38)

where M̂0 is the estimate of the stabilized platform’s balancing torque, and the control
action ûc1(t) and ûc2(t) represent the magnitude of the maximum static friction torque.
Then, Equation (29) can be rewritten as

ûc(t) = M̂0 +
J

KqQ̂ − Kωx2
(e +

..
x1d + G1

.
e +

K1

J
x2 +

f
J

sinx1 + G2ω). (39)

In considering the existence of errors in the estimation of the stabilized platform’s
balancing torque, it is advisable to reserve a certain redundancy in the control torque output,
which is denoted as R. Let uq(t) = ûc(t)− M̂0, then Equation (39) can be simplified as

ûc(t) = M̂0 + uq(t)(1 + R). (40)

4.3. Velocity-Angle Control Switching Strategy

When addressing issues such as the excessive control action and control system lag,
which make the stabilized platform prone to rapid rotation and repeated oscillation, it
becomes difficult for the stabilized platform to achieve stable control; as such, the velocity-
angle control switching strategy was proposed.

The theorem of rotational kinetic energy for rigid bodies with fixed axes can be
expressed as

Ek =
1
2
(J

.
θ

2
1 − J

.
θ

2
2), (41)

where Ek represents the work conducted by the total external moment on the stabilized platform,
and

.
θ1 and

.
θ2 are the instantaneous angular velocities of the stabilized platform, respectively.

Equation (41) indicates that when the stabilized platform speed (
.
θ1) is high, the

platform speed rapidly switches to speed
.
θ2. So, the stabilized platform will have a

significant amount of energy, which leads to oscillations and the inability to achieve toolface
angle stability.

The energy of the stabilized platform can be reduced by limiting the stabilized platform
speed. Let the allowable value of the stabilized platform speed be θ0. When

∣∣∣ .
θ
∣∣∣ > .

θ0, then
the control mode needs to be switched to speed reduction motion control to reduce the
rotation speed of the stabilized platform. Next, one should switch back to the angle control
mode once the platform speed satisfies the condition.

In angle control mode, to reduce the control intensity, it is only necessary to make
the control output torque slightly higher than the maximum static friction torque. We
introduced the control intensity coefficient kc obtained from Equation (40); thus, kc can be
described as

kc =
uq(t)(1 + R)

ûc(t)
. (42)

A large number of drilling simulation experiments have shown that there is a steady-state
error in the stabilized platform toolface angle. To improve the control precision of the system,
an integral term is added to the angle controller to achieve the effect of eliminating the error.

When combining the backstepping control law, the adaptive law of drilling fluid flow
rate, and the velocity-angle control switching strategy, the self-stabilizing control strategy
of the stabilized platform is formed with the following expression:

u .
θ
(t) = kpω + k .

θ

∫
ωdt,

∣∣∣ .
θ
∣∣∣ > .

θ0

uθ(t) = M̂0 + kcûc(t) + kθ

∫
edt,

∣∣∣ .
θ
∣∣∣ < .

θ0

, (43)
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where u .
θ
(t) is the speed loop control law, kp is the proportional gain coefficient, uθ(t) is the

angle loop control law, and k .
θ

and kθ is the integral gain coefficient.
The parameters kp, k .

θ
, and kθ were tuned by the drilling simulation experiments, and

M̂0 and kc were estimated online by Equations (38) and (42), respectively.

4.4. Drilling Simulation Experiment of the Self-Stabilizing Control Strategy

The self-stabilizing control strategy was programmed, and the drilling simulation
experiments were conducted for the self-stabilizing control strategy under drilling fluid
rate conditions of 40 to 70 L/s and drilling collar speeds of 60 and 120 rpm for the purpose
of safety considerations in the experiments. The data acquisition board recorded the data
from a certain toolface angle control experiment, as shown in Figure 9. The experimental
conditions were a drilling collar speed of approximately 86 rpm, a drilling fluid flow rate
of 57 L/s, and a well inclination of approximately 2◦.
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Figure 9. Drilling simulation experiment of the self-stabilizing control strategy.

As shown in Figure 9, the toolface angle of the stabilized platform remained stable
on [0, 355] and [365, 700], and this can be seen when the stabilized platform toolface angle
jumped from 270◦ to 300◦. Then, the controlled variable converged gradually, stabilized
at the final state with no steady-state error, and exhibited slight oscillations with an am-
plitude of approximately ±10◦. The zoomed-in section of the graph shows an overshoot
of about 15◦, and the adjustment process took about 10 s. The switching of the stabilized
platform toolface angle from 270◦ to 300◦ was achieved, which demonstrates a good control
performance and validates the effectiveness of the self-stabilizing control strategy.

To verify the adaptability of the self-stabilizing control strategy to the drilling fluid
flow rate, an adjustment was made to the drilling fluid flow rate during the experimental
process. The experimental results are illustrated in Figure 10. The experimental conditions
were as follows: a drill collar rotational speed of approximately 88 rpm, a drilling fluid flow
rate of 46 L/s, an inclination angle of approximately 1◦, and the set value of the stabilized
platform toolface angle was 200.7◦. At 238 s, the drilling fluid flow rate was adjusted from
46 L/s to 65 L/s. Subsequently, the toolface angle of the stabilized platform experienced
an oscillation with an amplitude of approximately 25◦. After an adjustment time of about
20 s, the stabilized platform returned to a stable control state. The experimental results
in Figure 8 demonstrate that the self-stabilizing control strategy was able to adapt to the
changes in the drilling fluid flow rate.
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Figure 10. Simulation drilling experiment of the self-stabilizing control strategy under different
drilling fluid flow rates.

5. Conclusions

In this manuscript, the adaptive backstepping control was studied for a stabilized
platform of a rotary steerable drilling system. The state–space model of the stabilized
platform system was first established, and an adaptive backstepping control law was
designed based on this model. Second, an online estimation method of the balancing
torque and the velocity-angle control switching strategy was proposed. In addition, by
combining the backstepping control law, drilling fluid flow adaptive law, and velocity-angle
control switching strategy, the self-stabilizing control strategy of the stabilized platform
was established. Finally, the drilling simulation experiments verified the effectiveness of
the self-stabilizing control strategy. The conclusions of this paper are as follows:

(1) According to the numerical simulation results, the steady-state oscillation amplitude of
the adaptive backstepping control method was about ±2◦, and this did not increase with
an increase in the drilling fluid flow rate, which outperformed the PID control method.

(2) The drilling simulation experiments demonstrated that the self-stabilizing control
strategy could achieve a stable control of the stabilized platform at different toolface
angle set values and drilling fluid flow rates.

Additionally, we must admit that the limitation of the self-stabilizing control strategy was
in the fact that the controller parameters did not adapt to the changes in the mechanical structure.
In the future, the proposed control method could be combined with neural networks; then, the
controller parameters will have the ability to adapt to the effects of external disturbances and
changes of structural parameters, which would further enhance the system’s adaptability.
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