
Citation: Su, L.; Mao, Y.; Zhang, F.;

Lin, B.; Zhang, Y. Deviation Sequence

Neural Network Control for Path

Tracking of Autonomous Vehicles.

Actuators 2024, 13, 101. https://

doi.org/10.3390/act13030101

Academic Editor: Keigo Watanabe

Received: 19 January 2024

Revised: 3 March 2024

Accepted: 3 March 2024

Published: 5 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Deviation Sequence Neural Network Control for Path Tracking
of Autonomous Vehicles
Liang Su 1, Yiyuan Mao 2, Feng Zhang 2,* , Baoxing Lin 1 and Yong Zhang 2

1 Xiamen King Long United Automotive Industry Co., Ltd., Xiamen 361021, China
2 College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
* Correspondence: zhangfeng@hqu.edu.cn

Abstract: Despite its excellent performance in path tracking control, the model predictive control
(MPC) is limited by computational complexity in practical applications. The neural network control
(NNC) is another attractive solution by learning the historical driving data to approximate optimal
control law, but a concern is that the NNC lacks security guarantees when encountering new scenarios
that it has never been trained on. Inspired by the prediction process of MPC, the deviation sequence
neural network control (DS-NNC) separates the vehicle dynamic model from the approximation
process and rebuilds the input of the neural network (NN). Taking full use of the deviation sequence
architecture and the real-time vehicle dynamic model, the DS-NNC is expected to enhance the
adaptability and the training efficiency of NN. Finally, the effectiveness of the proposed controller is
verified through simulations in Matlab/Simulink. The simulation results indicate that the proposed
path tracking NN controller possesses adaptability and learning capabilities, enabling it to generate
optimal control variables within a shorter computation time and handle variations in vehicle models
and driving scenarios.

Keywords: path tracking control; neural network control; autonomous vehicles; model predictive
control

1. Introduction

Path planning and tracking control are fundamental and important components of au-
tonomous vehicles (AVs). An investigation in reference [1] highlights that the research topic
of path tracking has significantly grown in recent years. For secure and efficient driving,
autonomous vehicles need to track precisely the reference trajectory generated by the path
planning module. In the past years, to improve the path tracking control performance of
AVs, many significant results have been reported with the applications of advanced linear
and nonlinear control techniques, such as PID [2,3], LQR [4,5], MPC [6,7] and SMC [8,9].
Model predictive control (MPC) is a highly competitive solution with respect to the other
possible control technologies [1]. An advantage is the better tracking performance during
high speed and medium-to-high lateral acceleration conditions, compared to the kinematic
or geometry-based path tracking methods, such as the pure pursuit [10] and Stanley [11]
methods. Furthermore, the capability of managing multi-variable problems and system-
atically considering constraints on states and control actions make it an ideal choice for
multiple-input multiple-output (MIMO) systems, e.g., for AVs with multiple actuators.

Despite its various advantages in path tracking control, MPC is limited by computa-
tional cost of the online solution in real-time applications [12,13]. As the system dimension
and predictive horizon expand, the resulting exponential growth in computational complex-
ity for solving the optimal control problem (OCP) severely consumes computing resources.
The last generations of solvers and control hardware solutions have helped to mitigate the
problem. For example, qpOASES speed-up the QP solution based on tracing the solution
along a linear homotropy between a QP problem with known solution and the QP problem

Actuators 2024, 13, 101. https://doi.org/10.3390/act13030101 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act13030101
https://doi.org/10.3390/act13030101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0001-8765-9032
https://doi.org/10.3390/act13030101
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act13030101?type=check_update&version=1

Actuators 2024, 13, 101 2 of 16

to be solved [14]. In addition, the custom solver can also compute control actions faster
than the conventional method [15,16].

Considering the requirement of real-time, offline methods is another solution for the
path tracking control of AVs. Explicit MPC (EMPC), which determines the control law by
designing a piecewise affine function over polyhedral regions, has been implemented in
various fields [17–19]. Typically, computing the control variable from the piecewise affine
function is faster than solving the QP online. EMPC is verified as the optimal control law
for linear time-invariant (LTI) systems [20]. However, the vehicle dynamic model is not
time-invariant but varies with changes in longitudinal velocity and sideslip angle. The
piecewise affine function cannot cover all conditions and thus, the optimal control solutions
may not be obtained with the piecewise affine function designed by the preset condition.

It is noteworthy that practical AVs involve a large amount of repetitive maneuvers in
certain circumstances, such as racing or parking [21]. Therefore, it is possible to take the
advantages of system repetition and in turn, improve the tracking performance based on the
historical driving data [22], which motivates learning-based control techniques. The general
framework of neural network control (NNC) is shown in Figure 1. In this framework, the
conventional MPC computes the optimal control law and generates the training dataset.
Generally, the training dataset contains system state and corresponding optimal control
variables in each sample time. Next, NN is used to fit training data generated by sampling
the original controller many times and the result is applied “as is” to replace the controller.
The NNC trained on the dataset is expected to simulate the optimal solving process. NNC
offers unique advantages, including employing simple mathematical expressions and
possessing excellent approximation capacity. More importantly, unlike the exponential
increase in computational burden experienced by MPC, the computational demand of
NNC grows moderately as the system complexity rises. Compared to EMPC, NNC does
not use the dynamic model directly. As a result, it alleviates the adverse effect brought by
time-variant parameters.

Actuators 2024, 10, x FOR PEER REVIEW 2 of 18

resources. The last generations of solvers and control hardware solutions have helped to
mitigate the problem. For example, qpOASES speed-up the QP solution based on tracing
the solution along a linear homotropy between a QP problem with known solution and
the QP problem to be solved [14]. In addition, the custom solver can also compute control
actions faster than the conventional method [15,16].

Considering the requirement of real-time, offline methods is another solution for the
path tracking control of AVs. Explicit MPC (EMPC), which determines the control law by
designing a piecewise affine function over polyhedral regions, has been implemented in
various fields [17–19]. Typically, computing the control variable from the piecewise affine
function is faster than solving the QP online. EMPC is verified as the optimal control law
for linear time-invariant (LTI) systems [20]. However, the vehicle dynamic model is not
time-invariant but varies with changes in longitudinal velocity and sideslip angle. The
piecewise affine function cannot cover all conditions and thus, the optimal control solu-
tions may not be obtained with the piecewise affine function designed by the preset con-
dition.

It is noteworthy that practical AVs involve a large amount of repetitive maneuvers in
certain circumstances, such as racing or parking [21]. Therefore, it is possible to take the
advantages of system repetition and in turn, improve the tracking performance based on
the historical driving data [22], which motivates learning-based control techniques. The
general framework of neural network control (NNC) is shown in Figure 1. In this frame-
work, the conventional MPC computes the optimal control law and generates the training
dataset. Generally, the training dataset contains system state and corresponding optimal
control variables in each sample time. Next, NN is used to fit training data generated by
sampling the original controller many times and the result is applied “as is” to replace the
controller. The NNC trained on the dataset is expected to simulate the optimal solving
process. NNC offers unique advantages, including employing simple mathematical ex-
pressions and possessing excellent approximation capacity. More importantly, unlike the
exponential increase in computational burden experienced by MPC, the computational
demand of NNC grows moderately as the system complexity rises. Compared to EMPC,
NNC does not use the dynamic model directly. As a result, it alleviates the adverse effect
brought by time-variant parameters.

Figure 1. General framework of NNC. The black solid arrows represent the NNC program and the
black dotted arrows represent the simulation process of the conventional MPC.

One of the earliest applications of artificial neural networks to the vehicle control
problem was the autonomous land vehicle in a neural network (ALVINN) system by
Pomerleau in 1989 which was first described in [23]. That neural network has a 30 × 32-
neuron input layer, one 4-neuron hidden layer and a 30-neuron output layer. In the AL-
VINN system, the neural network is provided with image information from a camera to-
gether with the steering commands of the human driver and then generates discrete steer-
ing action. The neural networks utilized in early works are significantly smaller when
compared to what is feasible with today’s technology [24]. End-to-end learning, where

Figure 1. General framework of NNC. The black solid arrows represent the NNC program and the
black dotted arrows represent the simulation process of the conventional MPC.

One of the earliest applications of artificial neural networks to the vehicle control prob-
lem was the autonomous land vehicle in a neural network (ALVINN) system by Pomerleau
in 1989 which was first described in [23]. That neural network has a 30 × 32-neuron input
layer, one 4-neuron hidden layer and a 30-neuron output layer. In the ALVINN system,
the neural network is provided with image information from a camera together with the
steering commands of the human driver and then generates discrete steering action. The
neural networks utilized in early works are significantly smaller when compared to what is
feasible with today’s technology [24]. End-to-end learning, where observations are mapped
directly to low-level vehicle control interface commands, is a popular approach for plants
of different complexity. Mariusz et al. [24] trained a convolutional neural network (CNN) to
map raw pixels directly from a single front-facing camera to steering commands. The inputs
for the end-to-end learning network are not limited to image information. For longitudinal
speed control of a vehicle, the error between the speed output command and the actual

Actuators 2024, 13, 101 3 of 16

speed is a reasonable input [25]. Ghoniem et al. [26] introduced a suspension controller
to generate a valve opening signal. Similarly, the input of NNC is the error between road
input and suspension displacement. Direct state information is an effective input, but for
complex tasks, such as autonomous driving, the diversity of the data set should be ensured
if the aim is to train a generalizable model which can drive in all different environments [27].
Furthermore, a concern is that NNC lacks security guarantees when encountering new
scenarios that it has never been trained on. The new scenarios not only represent a different
steering angle and velocity, but also represent different vehicle parameters such as sprung
mass and yaw inertia moment. Feature engineering, where the training data generated by
running the original controller are used to craft artificial features that serve as inputs to the
NN approximation, is a promising approach to improve generalization. The training still
occurs via pure regression and the crafting of features can include the use of inputs that are
not ever presented to the original MPC controller.

For large scale MIMO control problems in the building sector, Drgoňa et al. [28] intro-
duced a versatile framework for mimicry of the behavior of optimization-based controllers.
The approach employs deep time delay neural networks (TDNN) and regression trees (RT)
to derive the dependency of multiple control inputs on parameters. Karg and Lucia [29] con-
sider as input data the parameters of the mixed-integer quadratic programs (MIQPs) and as
output data the first element of the optimal solution. In addition to approaches that directly
redesign the inputs of NN, creating addition features is also effective. Lovelett et al. [30]
used state feedback to project the system’s position in state space onto a latent manifold,
and then estimated the optimal control policy. By leveraging such a lowdimensional struc-
ture of the control policies, simple functions can be found to approximate the control law
using fewer training data points.

Recent studies offer various types of approaches to realize feature engineering. How-
ever, predictive sequence is still an MPC factor that is not fully considered. In this paper,
the deviation sequence neural network control (DS-NNC) is presented for AVs. In order to
enhance the adaptability to a time-variant dynamic model and various scenarios, DS-NNC
separates the vehicle dynamic model from the approximation process and rebuilds the
input of the neural network. Finally, the effectiveness of the proposed controller is verified
through simulations in Matlab/Simulink.

2. Deviation Sequence Neural Network Control
2.1. Reformulation of Approximate Function

Considering a mapping from current vehicle state vector xk (longitudinal velocity and
yaw rate) and reference vehicle state vector rk to control variable uk, a general structure of
NN controller generates the control law with the form below:

uk = F1(xk, rk). (1)

As is shown in Figure 2, this mapping is expected to simulate the optimal solving
process where the vehicle controller generates the optimal control variables. Unfortunately,
the state variable xk is not suitable as an input variable. The reason is that the values of the
vehicle state can vary significantly, making it challenging for the function to accommodate
all the data generated from the optimal control law in simulations. Another concern is
overfitting. Due to the limited availability of abundant training data, the neural network
can only perform well in a few specific scenarios. What is worse, this problem becomes
more severe when the NN is trained perfectly, but solely for that particular dataset. In order
to make it more suitable for a vehicle controller, some improvement is presented as follows.

If one hypothesizes that a multi-layer neural network can approximate F1(xk, rk),
then it is equivalent to hypothesize that they can asymptotically approximate part of this
function, i.e., the following:

uk = F2(E) = F2(H(xk, rk)) (2)

Actuators 2024, 13, 101 4 of 16

where the variable E represents the deviation sequence and the second equation is based
on the explicit calculation process from the discrete system state-space equation to the
deviation sequence. This reformulation is motivated by considering of the known relation-
ship between the current vehicle state vector xk and the reference vehicle state vector rk
to the error sequence vector E. In other words, this improvement integrates prior knowl-
edge (the established vehicle dynamic model) into the architecture of NN control rather
than letting NN approximate the real-time vehicle dynamic model. A similar concept is
physics-informed machine learning (PINN) which integrates (noisy) data and mathematical
models, and can be trained from additional information obtained by enforcing the physical
laws [31,32]. So rather than expect an NN to approximate F1, we explicitly let these layers
approximate the simplified function F2. Although both forms can be asymptotically approx-
imate (as hypothesized), the ease of learning might be different. From another perspective,
the relation between control output and error is similar in different scenarios. Remarkably,
the premise of this assumption is that the vehicle is stable. Therefore, the deviation form
represents more various scenarios compared with the function F1 of which the input is the
current vehicle state and reference vehicle state. It is unlikely that the deviation sequence is
optimal, but our reformulation may help to reduce the impact of model change and extend
the working range of the NN controller.

Actuators 2024, 10, x FOR PEER REVIEW 4 of 18

dataset. In order to make it more suitable for a vehicle controller, some improvement is
presented as follows.

If one hypothesizes that a multi-layer neural network can approximate F1(xk, rk), then
it is equivalent to hypothesize that they can asymptotically approximate part of this func-
tion, i.e., the following:

2 2() ((,))k k ku F E F H x r= = (2)

where the variable E represents the deviation sequence and the second equation is based
on the explicit calculation process from the discrete system state-space equation to the
deviation sequence. This reformulation is motivated by considering of the known rela-
tionship between the current vehicle state vector xk and the reference vehicle state vector
rk to the error sequence vector E. In other words, this improvement integrates prior
knowledge (the established vehicle dynamic model) into the architecture of NN control
rather than letting NN approximate the real-time vehicle dynamic model. A similar con-
cept is physics-informed machine learning (PINN) which integrates (noisy) data and
mathematical models, and can be trained from additional information obtained by enforc-
ing the physical laws [31,32]. So rather than expect an NN to approximate F1, we explicitly
let these layers approximate the simplified function F2. Although both forms can be as-
ymptotically approximate (as hypothesized), the ease of learning might be different. From
another perspective, the relation between control output and error is similar in different
scenarios. Remarkably, the premise of this assumption is that the vehicle is stable. There-
fore, the deviation form represents more various scenarios compared with the function F1
of which the input is the current vehicle state and reference vehicle state. It is unlikely that
the deviation sequence is optimal, but our reformulation may help to reduce the impact
of model change and extend the working range of the NN controller.

Figure 2. General control architecture of the conventional MPC. The solid black arrows and the blue
dotted arrows represent the controller data and the real-time controller parameters, respectively.
The red area represents the optimal mapping approximated by NNC. The blue area represents the
optimal mapping approximated by the proposed DS-NNC.

2.2. Implementation
The precondition to train the NN controller is the dataset. In this paper, the training

data are sampled from a complete model predictive control process. First, the vehicle dy-
namic model is described, followed by the deviation model and the path tracking control
problem formulation. In addition, some details about the improvement of the proposed
NN controller are illustrated.

For simplicity, the single-track model is used to describe vehicle dynamics. This form
is the most commonly used when designing the vehicle lateral controller because it con-
tains the necessary elements to describe the lateral motion. Figure 3. shows the schematic
of this model. In this model, the vehicle dynamic can be modeled in the non-linear form
of the equations of motion. Because of the complexity of non-linear equations, the design

Figure 2. General control architecture of the conventional MPC. The solid black arrows and the blue
dotted arrows represent the controller data and the real-time controller parameters, respectively. The
red area represents the optimal mapping approximated by NNC. The blue area represents the optimal
mapping approximated by the proposed DS-NNC.

2.2. Implementation

The precondition to train the NN controller is the dataset. In this paper, the training
data are sampled from a complete model predictive control process. First, the vehicle
dynamic model is described, followed by the deviation model and the path tracking control
problem formulation. In addition, some details about the improvement of the proposed
NN controller are illustrated.

For simplicity, the single-track model is used to describe vehicle dynamics. This form
is the most commonly used when designing the vehicle lateral controller because it contains
the necessary elements to describe the lateral motion. Figure 3. shows the schematic of this
model. In this model, the vehicle dynamic can be modeled in the non-linear form of the
equations of motion. Because of the complexity of non-linear equations, the design of an
MPC controller is difficult. In addition, the sideslip stiffness of a turning vehicle changes
greatly and the tire parameters depend heavily on the road surface and environmental
conditions [33]. To estimate the system state accurately, the nonlinear equations derived
from basic principles of dynamics are linearized based on two assumptions, i.e., unchanged
vehicle velocity and linear tire sideslip characteristics. The linear mathematic expression of
the vehicle single-track model is shown as (3):

Actuators 2024, 13, 101 5 of 16

.
vy =

−
(

c f + cr

)
mvx

vy +


(

bcr − ac f

)
mvx

− vx

r +
c f

m
δ f

.
r =

bcr − ac f

Izvx
vy +

−
(

a2c f + b2cr

)
Izvx

r +
ac f

Iz
δ f +

1
Iz

∆Mz

(3)

Here cr is the cornering stiffness of the rear axle, cf is the cornering stiffness of the
front axle, vx and vy are the vehicle longitudinal and lateral velocity respectively, m is the
vehicle mass, r is the yaw rate, a is the distance from the front axis to the center of gravity, b
is the distance from the rear axis to the center of gravity, Iz is the vehicle yaw inertia. The
control variables δf and ∆Mz represent the front wheel steering angle and the additional
yaw moment generated by the differential moment of the wheel, respectively.

As mentioned earlier, the deviation form represents various scenarios. In the path
tracking scenario, the deviation model can better describe the changes in vehicle state. As
shown in the Figure 4, considering a preset reference trajectory, the deviation variables are
built as follows: .

ecg = vy + vxeθ
..
ecg =

.
vy + vx

.
eθ

.
eθ = r − r(s)

..
eθ =

.
r

(4)

where ecg represents the distance between the vehicle centroid and the closest point in the
reference path, eθ represents the error between the heading angle of the vehicle direction
and the heading angle of the closest point, r(s) is the reference yaw rate.

Actuators 2024, 10, x FOR PEER REVIEW 5 of 18

of an MPC controller is difficult. In addition, the sideslip stiffness of a turning vehicle
changes greatly and the tire parameters depend heavily on the road surface and environ-
mental conditions [33]. To estimate the system state accurately, the nonlinear equations
derived from basic principles of dynamics are linearized based on two assumptions, i.e.,
unchanged vehicle velocity and linear tire sideslip characteristics. The linear mathematic
expression of the vehicle single-track model is shown as (3):

() ()

()2 2

1

f r r f f

y y x

x x

f rr f f

y z

z x z x z z

f

f

c c c c c
v v v r

mv mv m

a c b cbc ac ac
r v r M

I v I v I

a

I

b
δ

δ

− + −
= + − +

− +−
= + + + Δ

 
 
 





 (3)

Here cr is the cornering stiffness of the rear axle, cf is the cornering stiffness of the
front axle, vx and vy are the vehicle longitudinal and lateral velocity respectively, m is the
vehicle mass, r is the yaw rate, a is the distance from the front axis to the center of gravity,
b is the distance from the rear axis to the center of gravity, Iz is the vehicle yaw inertia. The
control variables δf and ΔMz represent the front wheel steering angle and the additional
yaw moment generated by the differential moment of the wheel, respectively.

As mentioned earlier, the deviation form represents various scenarios. In the path
tracking scenario, the deviation model can better describe the changes in vehicle state. As
shown in the Figure 4, considering a preset reference trajectory, the deviation variables
are built as follows:

()

cg y x

cg y x

e v v e
e v v e
e r r s
e r

θ

θ

θ

θ

= +
= +
= −

=


  

 

 (4)

where ecg represents the distance between the vehicle centroid and the closest point in the
reference path, eθ represents the error between the heading angle of the vehicle direction
and the heading angle of the closest point, r(s) is the reference yaw rate.

Figure 3. Vehicle lateral and yaw dynamic model (single-track model). Figure 3. Vehicle lateral and yaw dynamic model (single-track model).

By combining Equations (3) and (4), the deviation tracking control model can be
described as follows:

..
ecg =

−
(

c f + cr

)
mvx

.
ecg +

(
c f + cr

)
m

eθ +

(
bcr − ac f

)
mvx

.
eθ

+


(

bcr − ac f

)
mvx

− vx

r(s) +
c f

m
δ

(5)

..
eθ =

bcr − ac f

Izvx

.
ecg +

bcr − ac f

Iz
eθ

+
−
(

a2c f + b2cr

)
Izvx

(.
eθ + r(s)

)
+

ac f

Iz
δ

(6)

Actuators 2024, 13, 101 6 of 16
Actuators 2024, 10, x FOR PEER REVIEW 6 of 18

Figure 4. The schematic of deviation model based on the single-track model and a reference tracking
path.

By combining Equations (3) and (4), the deviation tracking control model can be de-
scribed as follows:

() () ()

()
()

f r f r r f
cg cg

x x

r f f
x

x

c c c c c c
e e e e

mv m mv

c c cb
v

a

r s
a

m

b

mv

θ θ

δ

− + + −
= + +

−
 + − +

 
 
 

  

 (5)

() ()
2 2

()

r f r f
cg

z x z

f r f

z x z

c ac bc ac
e e e

I v I

a c b c ac
e r s

I v I

b
θ θ

θ δ

− −
= +

− +
 + + +

 


 (6)

To facilitate the controller design and analysis, we reformulate Equations (5) and (6)
with the state variables into a linear state-space equation:

()x Ax Bu Cr s= + + (7)

where the state variable vector is modelled as
T

cg cgx e e e eΨ Ψ =    (8)

and the control variable vector is modelled as follows:
T

f zu Mδ = Δ  (9)

The system matrix and input matrix are given by the following:

Figure 4. The schematic of deviation model based on the single-track model and a reference track-
ing path.

To facilitate the controller design and analysis, we reformulate Equations (5) and (6)
with the state variables into a linear state-space equation:

.
x = Ax + Bu + Cr(s) (7)

where the state variable vector is modelled as

x =
[
ecg

.
ecg eΨ

.
eΨ

]T (8)

and the control variable vector is modelled as follows:

u =
[
δ f ∆Mz

]T (9)

The system matrix and input matrix are given by the following:

A =



0 1 0 0

0 −
c f + cr

mvx

c f + cr

m
lrcr − l f c f

mvx

0 0 0 1

0
lrcr − l f c f

Izvx

lrcr − l f c f

Iz
−

l2
f c f + l2

r cr

Izvx


(10)

B =



0 0
c f

m
0

0 0

l f c f

Iz

1
Iz


(11)

The matrix C comes from the definition of the heading angle error eθ as shown in (4)
and is given by the following:

Actuators 2024, 13, 101 7 of 16

C =



0
lrcr − l f c f

mvx
− vx

0

−
l2

f c f + l2
r cr

Izvx


(12)

To predict the future state, the discrete form of the Equation (7) is as follows:

x(k + 1) = Akx(k) + Bku(k) + Ckr(s) (13)

where Ak and Bk represent the discrete system matrix and control matrix respectively. At
each time step k, the predictive system state sequence vector

Xp
k =

[
x (k + 1|k) T x (k + 2|k) T · · · x (k + p|k) T

]
(14)

can be derived by the p-step recursive calculation of the discrete system transition Equation (13).
The calculation process is shown as follows:

x(k + 1|k) = Akx(k) + Bku(k|k) + Ckr(s)

x(k + 2|k) = A2
k x(k) + AkBku(k

∣∣k) + Bku(k + 1
∣∣k)

+AkCkr(s) + Ckr(s)
...

x(k + p|k) = Ap
k x(k) + ∑

p−1
i=0 Ap−1−i

k Bku(k + i|k)
+∑

p−1
i=0 Ap−1−i

k Ckr(s)

(15)

For simplification, Equation (15) is integrated into the matrix form (16):

Xp
k = Ψxk + Θ1Uk + Θ2r(s) (16)

The matrix Ψ is given by

Ψ =
[
A1

k A2
k · · · Ap

k

]
(17)

The matrix Θ1 is given by

Θ1 =



A1−1
k Bk . . . 0 0

A2−1
k Bk A2−2

k Bk . . . 0

...
...

. . .
...

Ap−1
k Bk Ap−2

k Bk . . . Ap−p
k Bk


(18)

The matrix Θ2 is given by

Θ2 =



A1−1
k Ck . . . 0 0

A2−1
k Ck A2−2

k Ck . . . 0

...
...

. . .
...

Ap−1
k Ck Ap−2

k Ck . . . Ap−p
k Ck


(19)

Actuators 2024, 13, 101 8 of 16

Considering a reference vehicle state sequence

Rp
k =

[
r(k + 1)T r(k + 2)T · · · r(k + p)T

]
(20)

in the next p time step, the predictive deviation sequence

Xp
k − Rp

k = Ψxk + ΘUk + Θ2r(s)− Rp
k (21)

is obtained. Here r is the vector which consists of the reference sideslip angle and the
reference yaw rate. In path tracking, the reference is set to zero to minimize the tracking
deviation. Remarkably, the reference sequence vector must be given before calculating the
control law and is generally generated by route planning.

In the MPC process, the OCP is solved at each time instant to output the control
variable sequence vector Uk:

minJ(Uk) = (Xp
k − Rp

k)
T

Q(Xp
k − Rp

k) + UT
k WUk (22)

subject to the system state transition function (13) and the limits of the actuators

(δ f)min < δ f < (δ f)max

(T)min < T < (T)max
(23)

where T represents the equivalent torque applied to the tires. In the optimization prob-
lem (23),

Uk =
[

u (k|k) T u (k + 1|k) T · · · u (k + p − 1|k) T
]

(24)

is the control output sequence vector which can be the combination of tracking error, control
effort, energy cost, or other factors. The metrics Q and W are used to weigh the deviation
from the state error and the value of the control vector, respectively, when the importance of
state variables is different. Several solution methods exist for the optimization problem (22),
including interior point methods, active set methods, gradient projection methods, and dual
methods. Each method has its advantages and application range, with the choice of method
often depending on the specific problem characteristics, size, and solving requirements.
Among these methods, interior point methods (IPMs) provide advantages in constraint
handling, global convergence, scalability, flexibility, and parameter tuning in MPC. These
advantages make IPMs an effective solution method widely applied in MPC.

In Equation (21), the control variables sequence vector is a variable before the solving
process. Because the variable is not allowed in the input of NN, the control variables
sequence vector Uk should be separated from (21), despite it being the basic element of the
optimal process. The predictive deviation sequences

E = Ψxk + Θ2r(s)− Rp
k (25)

represents theoretically the predictive state sequence when the vehicle is running without
control. This form does not contain any variable and could be calculated by the deviation
model (13) and current vehicle state xk. Finally, Equation (2) is reformulated as follows:

uk = F2(E) = F2(Ψxk + Θ2r(s)− Rp
k) (26)

By learning the mapping F2 from the sample dataset, the proposed DS-NNC ap-
proximates the optimal control variables, namely, the front wheel steering angle and the
additional yaw moment in this work, to track currently the reference path.

In the next section, we show the process of training the neural network and deploy
the trained network on the car to verify the effectiveness.

Actuators 2024, 13, 101 9 of 16

3. Results

First, a closed-loop path, which consists of various scenarios, is designed for the
verification of the proposed path tracking controller. As shown in Figure 5, the test car
starts from the position (0,0) to the positive direction of the X-axis and tracks this path under
the control of the conventional MPC controller. At the end of the path, the MATLAB profiler
is expected to record the simulation data which contain the vehicle state (longitudinal speed
and yaw rate), control variables (front wheel steering angle and additional yaw moment),
and the execution time of each module. The vehicle parameters adopted in simulations are
presented in Table 1. All the simulations are performed in MATLAB2022a on a 16 GB RAM
desktop PC with Intel i5-12490 CPU.

The neural network comprises a three-layer fully connected architecture, each layer
featuring 40 neurons. The input layer receives a p-dimension prediction deviation sequence
vector, where p denotes the predictive horizon length. The output is the control vari-
able vector, encompassing the normalized front wheel steering angle and additional yaw
moment, balanced to the same magnitude scale pre-training to mitigate scale discrepancies.

The dataset sampled from simulation process is divided into two parts for the training
process of the NN controller. Specifically, we train the same NN controller on the whole
dataset, the first half dataset, and the second half dataset, respectively. This design aims at
verification of the guarantee on system safety, especially when the proposed NN controller
encounters a new scenario that has never been trained on. When it is implemented in the
path tracking on the whole path, the NN controller trained on the partial dataset will face
scenarios that it has never experienced. The backpropagation (BP) algorithm is one of the
most commonly used training methods for neural networks with excellent fitting precision,
and was adopted to train the NN in this work.

Table 1. Vehicle parameters.

Parameter Symbol Value

Mass m 1830 kg
Yaw inertia moment Iz 3234 kg·m2

Front wheel base a 1400 mm
Rear wheel base b 1650 mm

Front axle cornering stiffness Cf −125,374 N/rad
Rear axle cornering stiffness Cr −125,374 N/rad

The simulation results are presented in Figures 5 and 6 and Tables 2 and 3. We have
two major observations from this result. First, the vehicle under the control of the three
NN controller tracks the reference path accurately. More importantly, this advantage in
tracking capability does not come at the cost of high computational power consumption.
The trained NN controller could generate the control variables at a speed of ten times or
more than the MPC (Table 3).

As the baseline controller, the mean tracking error of MPC is 0.2236 m in the whole
path. Here the tracking error is calculated by the following:

ecg =
√
(x − xre f)

2 + (y − yre f)
2 (27)

Comparing with the MPC controller, the proposed NN controller reaches a lower level
of 0.2234 m. Figures 5 and 6 show an interesting result. Despite the partial train data, the
NN controller has a better tracking performance. In the first half of the tracking trajectory,
the average tracking error of the NN trained on the second half dataset (NNSH) is 0.05
less than that of the MPC. Similarly, the NN trained on the first half dataset (NNFH) has
lower error level in the second half of the tracking trajectory. One underlying reason for
this issue is the utilization of root mean square (RMS) as the primary performance metric
during the training process. As a result, when encountering input, which it has never
seen before, the network is inclined to generate outputs based mainly on its experience

Actuators 2024, 13, 101 10 of 16

with similar inputs, potentially limiting its effectiveness in dealing with novel situations.
The phenomenon raises an issue in that only when the coverage rate of conditions is high
enough, can the adaptiveness of NNC be guaranteed. For logical completeness, further
discussion is scheduled in the next case.

Table 2. Comparison of computation time between MPC and NN controller.

Controller Module Computation Time (s)

MPC

Longitudinal controller 11.990
Vehicle dynamic model 5.740

Predictive state calculate 0.988
QP solver 9.502

NNC

Longitudinal controller 12.735
Vehicle dynamic model 5.548

Predictive state calculate 0.754
Network 0.333

Second, compared to the baseline NN trained on the whole dataset, the NNFH and
the NNSH show generalization when encountering a new scenario that has never been
trained on. As is shown in Figure 7, Despite a small discrepancy, the NNFH performs better
in the first half path than in the second half. Similarly, the NNSH has a greater tracking
error when the car is running in the path that has never been trained before. In addition,
the control variables and additional yaw moment, could better illustrate this phenomenon.
As is shown in Figure 8, the additional yaw moment generated by the NNFH has a slight
deviation from the baseline in the second half path tracking process. Although the overall
imitation is good, some discrepancy appears in the expected position. Fortunately, this
deviation has little impact on the tracking control.

Actuators 2024, 10, x FOR PEER REVIEW 11 of 18

Figure 5. NN controller trained on the whole dataset. The initial position is (0,0) and the initial head-
ing angle is 0 rad.

(a) (b)

Figure 6. Comparison of tracking trajectory in case 1. The initial position is (0,0) and the initial head-
ing angle is 0 rad. (a) NN controller trained on the first half dataset; (b) NN controller trained on the
second half dataset. The boxes are enlarged view and show detail.

Table 3. Path tracking error of MPC and NN controller.

Deviation Module Mean Tracking Error

Position

MPC 0.2236 m
NN 0.2234 m

NNFH 0.2052 m
NNSH 0.1912 m

Yaw angle

MPC 0.0299 rad
NN 0.0299 rad

NNFH 0.0300 rad
NNSH 0.0299 rad

-20 0 20 40 60 80

-50

-40

-30

-20

-10

0

Y
 p

os
iti

on
 (m

)

X position (m)

 MPC
 NNFH

-20 0 20 40 60 80

-50

-40

-30

-20

-10

0

Y
 p

os
iti

on
 (m

)

X position (m)

 MPC
 NNSH

Figure 5. NN controller trained on the whole dataset. The initial position is (0,0) and the initial
heading angle is 0 rad.

With the purpose of further security verification of the NN controller in the face of
unknown scenarios, the path and vehicle model are different in the next two cases. As
shown in Figure 9, we design a bigger and more complex closed-loop path and keep the
MPC and the NN controller with the same parameters (predictive horizon and control
weight) as before. The vehicle longitudinal velocity is set to 18 km/h. The simulation
result is shown in Figures 9–11, including the tracking trajectories as well as the tracking
error profiles for the lateral deviation and yaw angle error profiles. From the result of the
tracking trajectories, an observation is that the MPC controller shows a gradually increasing
error when the car runs in the second half of the path, while the NN controller tracks the
reference path more currently. Furthermore, the tracking position error and the yaw angle
error profiles in Figure 10 show a more detailed trend than in the last case. The tracking

Actuators 2024, 13, 101 11 of 16

position error of the NN controller is around 1 m while that of MPC gradually rises to 14 m
at the end of the path. In the different path, the tracking position error of the MPC is more
significant. The increasing error is attributed to the unsuitable parameters. For example,
an excessive predictive horizon can lead to increased sensitivity to model errors and less
reliable control actions. As is mentioned in Section 2, the DS-NNC removes the control
weight from the MPC architecture and reduces the impact of predictive horizon on control
variable generation. Consequently, the DS-NNC can be implemented in various scenarios
without redesigned parameters.

Actuators 2024, 10, x FOR PEER REVIEW 11 of 18

Figure 5. NN controller trained on the whole dataset. The initial position is (0,0) and the initial head-
ing angle is 0 rad.

(a) (b)

Figure 6. Comparison of tracking trajectory in case 1. The initial position is (0,0) and the initial head-
ing angle is 0 rad. (a) NN controller trained on the first half dataset; (b) NN controller trained on the
second half dataset. The boxes are enlarged view and show detail.

Table 3. Path tracking error of MPC and NN controller.

Deviation Module Mean Tracking Error

Position

MPC 0.2236 m
NN 0.2234 m

NNFH 0.2052 m
NNSH 0.1912 m

Yaw angle

MPC 0.0299 rad
NN 0.0299 rad

NNFH 0.0300 rad
NNSH 0.0299 rad

-20 0 20 40 60 80

-50

-40

-30

-20

-10

0

Y
 p

os
iti

on
 (m

)

X position (m)

 MPC
 NNFH

-20 0 20 40 60 80

-50

-40

-30

-20

-10

0

Y
 p

os
iti

on
 (m

)

X position (m)

 MPC
 NNSH

Figure 6. Comparison of tracking trajectory in case 1. The initial position is (0,0) and the initial
heading angle is 0 rad. (a) NN controller trained on the first half dataset; (b) NN controller trained on
the second half dataset. The boxes are enlarged view and show detail.

Table 3. Path tracking error of MPC and NN controller.

Deviation Module Mean Tracking Error

Position

MPC 0.2236 m
NN 0.2234 m

NNFH 0.2052 m
NNSH 0.1912 m

Yaw angle

MPC 0.0299 rad
NN 0.0299 rad

NNFH 0.0300 rad
NNSH 0.0299 rad

Actuators 2024, 10, x FOR PEER REVIEW 12 of 18

(a) (b)

Figure 7. Comparison of vehicle state in case 1. The additional yaw moment generated by controller
reflects the approximate performance. (a) Tracking position error; (b) tracking error of yaw angle.

With the purpose of further security verification of the NN controller in the face of
unknown scenarios, the path and vehicle model are different in the next two cases. As
shown in Figure 9, we design a bigger and more complex closed-loop path and keep the
MPC and the NN controller with the same parameters (predictive horizon and control
weight) as before. The vehicle longitudinal velocity is set to 18 km/h. The simulation result
is shown in Figures 9–11, including the tracking trajectories as well as the tracking error
profiles for the lateral deviation and yaw angle error profiles. From the result of the track-
ing trajectories, an observation is that the MPC controller shows a gradually increasing
error when the car runs in the second half of the path, while the NN controller tracks the
reference path more currently. Furthermore, the tracking position error and the yaw angle
error profiles in Figure 10 show a more detailed trend than in the last case. The tracking
position error of the NN controller is around 1 m while that of MPC gradually rises to 14
m at the end of the path. In the different path, the tracking position error of the MPC is
more significant. The increasing error is attributed to the unsuitable parameters. For ex-
ample, an excessive predictive horizon can lead to increased sensitivity to model errors
and less reliable control actions. As is mentioned in Section 2, the DS-NNC removes the
control weight from the MPC architecture and reduces the impact of predictive horizon
on control variable generation. Consequently, the DS-NNC can be implemented in various
scenarios without redesigned parameters.

Figure 8. Comparison of additional yaw moment in case 1.

Figure 7. Comparison of vehicle state in case 1. The additional yaw moment generated by controller
reflects the approximate performance. (a) Tracking position error; (b) tracking error of yaw angle.

Actuators 2024, 13, 101 12 of 16

Actuators 2024, 10, x FOR PEER REVIEW 12 of 18

(a) (b)

Figure 7. Comparison of vehicle state in case 1. The additional yaw moment generated by controller
reflects the approximate performance. (a) Tracking position error; (b) tracking error of yaw angle.

With the purpose of further security verification of the NN controller in the face of
unknown scenarios, the path and vehicle model are different in the next two cases. As
shown in Figure 9, we design a bigger and more complex closed-loop path and keep the
MPC and the NN controller with the same parameters (predictive horizon and control
weight) as before. The vehicle longitudinal velocity is set to 18 km/h. The simulation result
is shown in Figures 9–11, including the tracking trajectories as well as the tracking error
profiles for the lateral deviation and yaw angle error profiles. From the result of the track-
ing trajectories, an observation is that the MPC controller shows a gradually increasing
error when the car runs in the second half of the path, while the NN controller tracks the
reference path more currently. Furthermore, the tracking position error and the yaw angle
error profiles in Figure 10 show a more detailed trend than in the last case. The tracking
position error of the NN controller is around 1 m while that of MPC gradually rises to 14
m at the end of the path. In the different path, the tracking position error of the MPC is
more significant. The increasing error is attributed to the unsuitable parameters. For ex-
ample, an excessive predictive horizon can lead to increased sensitivity to model errors
and less reliable control actions. As is mentioned in Section 2, the DS-NNC removes the
control weight from the MPC architecture and reduces the impact of predictive horizon
on control variable generation. Consequently, the DS-NNC can be implemented in various
scenarios without redesigned parameters.

Figure 8. Comparison of additional yaw moment in case 1. Figure 8. Comparison of additional yaw moment in case 1.

Actuators 2024, 10, x FOR PEER REVIEW 13 of 18

Figure 9. Comparison of tracking trajectory in case 2. The initial position is (0,0) and the initial head-
ing angle is −1.4 rad.

(a) (b)

Figure 10. Comparison of vehicle state in case 2. The additional yaw moment generated by controller
reflects the approximate performance. (a) Tracking position error; (b) tracking error of yaw angle.

Figure 11. Comparison of additional yaw moment in case 2.

Next, we further explore the adaptiveness of the proposed NN controller for different
vehicle models. Because the calculation of the input of the NN controller, i.e., predictive

Figure 9. Comparison of tracking trajectory in case 2. The initial position is (0,0) and the initial
heading angle is −1.4 rad.

Actuators 2024, 10, x FOR PEER REVIEW 13 of 18

Figure 9. Comparison of tracking trajectory in case 2. The initial position is (0,0) and the initial head-
ing angle is −1.4 rad.

(a) (b)

Figure 10. Comparison of vehicle state in case 2. The additional yaw moment generated by controller
reflects the approximate performance. (a) Tracking position error; (b) tracking error of yaw angle.

Figure 11. Comparison of additional yaw moment in case 2.

Next, we further explore the adaptiveness of the proposed NN controller for different
vehicle models. Because the calculation of the input of the NN controller, i.e., predictive

Figure 10. Comparison of vehicle state in case 2. The additional yaw moment generated by controller
reflects the approximate performance. (a) Tracking position error; (b) tracking error of yaw angle.

Next, we further explore the adaptiveness of the proposed NN controller for different
vehicle models. Because the calculation of the input of the NN controller, i.e., predictive
deviation sequence E, is independent of the network, the changes of the vehicle parameters
can be considered as prior knowledge. In this case, the car is significantly lighter and

Actuators 2024, 13, 101 13 of 16

shorter to ensure differentiation of the system model. The vehicle parameters are shown in
Table 4 The vehicle mass is reduced by approximately 40% and the length is reduced by
approximately 30%. Remarkably, we also use the same MPC controller and NN controller
as before. The simulation result is shown in Figures 12 and 13, including the tracking
trajectories as well as the tracking profiles. Similarly, the MPC cannot still track the reference
path currently as a result of the control parameters. Although the MPC is redesigned based
on the new vehicle dynamic model, the inappropriate control parameters limit its accuracy.
As a comparison, the proposed NN controller has a better tracking performance. At the
end of the tracking trajectory, the tracking position error keeps below 0.5 m. The three
cases show the tracking performance of the proposed DS-NNC. Although NNC can also
approximate the original controller, DS-NNC has more generalization. A brief example in
Figure 14 indicates that advantage.

Actuators 2024, 10, x FOR PEER REVIEW 13 of 18

Figure 9. Comparison of tracking trajectory in case 2. The initial position is (0,0) and the initial head-
ing angle is −1.4 rad.

(a) (b)

Figure 10. Comparison of vehicle state in case 2. The additional yaw moment generated by controller
reflects the approximate performance. (a) Tracking position error; (b) tracking error of yaw angle.

Figure 11. Comparison of additional yaw moment in case 2.

Next, we further explore the adaptiveness of the proposed NN controller for different
vehicle models. Because the calculation of the input of the NN controller, i.e., predictive

Figure 11. Comparison of additional yaw moment in case 2.

Table 4. Vehicle parameters.

Parameter Symbol Value

Mass m 1140 kg
Yaw inertia moment Iz 1020 kg·m2

Front wheel base a 1165 mm
Rear wheel base b 1165 mm

Front axle cornering stiffness Cf −29,517 N/rad
Rear axle cornering stiffness Cr −29,517 N/rad

Actuators 2024, 10, x FOR PEER REVIEW 14 of 18

deviation sequence E, is independent of the network, the changes of the vehicle parame-
ters can be considered as prior knowledge. In this case, the car is significantly lighter and
shorter to ensure differentiation of the system model. The vehicle parameters are shown
in Table 4 The vehicle mass is reduced by approximately 40% and the length is reduced
by approximately 30%. Remarkably, we also use the same MPC controller and NN con-
troller as before. The simulation result is shown in Figures 12 and 13, including the track-
ing trajectories as well as the tracking profiles. Similarly, the MPC cannot still track the
reference path currently as a result of the control parameters. Although the MPC is rede-
signed based on the new vehicle dynamic model, the inappropriate control parameters
limit its accuracy. As a comparison, the proposed NN controller has a better tracking per-
formance. At the end of the tracking trajectory, the tracking position error keeps below 0.5
m. The three cases show the tracking performance of the proposed DS-NNC. Although
NNC can also approximate the original controller, DS-NNC has more generalization. A
brief example in Figure 14 indicates that advantage.

Table 4. Vehicle parameters.

Parameter Symbol Value
Mass m 1140 kg

Yaw inertia moment Iz 1020 kg·m2
Front wheel base a 1165 mm
Rear wheel base b 1165 mm

Front axle cornering stiffness Cf −29,517 N/rad
Rear axle cornering stiffness Cr −29,517 N/rad

Figure 12. Comparison of tracking trajectory in case 3. The initial position is (0,0) and the initial
heading angle is 0 rad.
Figure 12. Comparison of tracking trajectory in case 3. The initial position is (0,0) and the initial
heading angle is 0 rad.

Actuators 2024, 13, 101 14 of 16
Actuators 2024, 10, x FOR PEER REVIEW 15 of 18

(a) (b)

Figure 13. Comparison of tracking performance in case 3. (a) Additional yaw moment; (b) tracking
position error.

(a) (b)

Figure 14. Comparison of tracking performance. Here the NNC is trained by using a general struc-
ture, as shown in Equation (1). (a) Vehicle dynamic model in Case1; (b) vehicle dynamic model in
case 3.

4. Conclusions
This paper presents a deviation sequence neural network control (DS-NNC) for path

tracking of AVs. The algorithm is based on offline sampling and rich data set, and the real-
time computation time is reduced by 96%. The two significant parts are feature engineer-
ing and the improved structure of NNC, which allow more driving scenarios and provide
more generalization. It can be summarized as follows:
(1) Introducing the deviation sequence into the input structure of neural network control

improves the generalization and reduces the model complexity and the training bur-
den. As is shown in the theory analysis, it contains more driving scenarios and better
future motion tendency and thus can represent multiple states.

(2) The proposed structure separates the vehicle dynamic model from the approxima-
tion process and adds a computation module for the predictive state, making full use
of the real-time vehicle dynamic model. Compared to directly approximating the
mapping of states to control inputs, this structure reduces the complexity of the neu-
ral network training because it does not need to consider the dynamic model during
the approximation process. Additionally, when the dynamic model is changed, an

Figure 13. Comparison of tracking performance in case 3. (a) Additional yaw moment; (b) tracking
position error.

Actuators 2024, 10, x FOR PEER REVIEW 15 of 18

(a) (b)

Figure 13. Comparison of tracking performance in case 3. (a) Additional yaw moment; (b) tracking
position error.

(a) (b)

Figure 14. Comparison of tracking performance. Here the NNC is trained by using a general struc-
ture, as shown in Equation (1). (a) Vehicle dynamic model in Case1; (b) vehicle dynamic model in
case 3.

4. Conclusions
This paper presents a deviation sequence neural network control (DS-NNC) for path

tracking of AVs. The algorithm is based on offline sampling and rich data set, and the real-
time computation time is reduced by 96%. The two significant parts are feature engineer-
ing and the improved structure of NNC, which allow more driving scenarios and provide
more generalization. It can be summarized as follows:
(1) Introducing the deviation sequence into the input structure of neural network control

improves the generalization and reduces the model complexity and the training bur-
den. As is shown in the theory analysis, it contains more driving scenarios and better
future motion tendency and thus can represent multiple states.

(2) The proposed structure separates the vehicle dynamic model from the approxima-
tion process and adds a computation module for the predictive state, making full use
of the real-time vehicle dynamic model. Compared to directly approximating the
mapping of states to control inputs, this structure reduces the complexity of the neu-
ral network training because it does not need to consider the dynamic model during
the approximation process. Additionally, when the dynamic model is changed, an

Figure 14. Comparison of tracking performance. Here the NNC is trained by using a general structure,
as shown in Equation (1). (a) Vehicle dynamic model in Case1; (b) vehicle dynamic model in case 3.

4. Conclusions

This paper presents a deviation sequence neural network control (DS-NNC) for path
tracking of AVs. The algorithm is based on offline sampling and rich data set, and the real-
time computation time is reduced by 96%. The two significant parts are feature engineering
and the improved structure of NNC, which allow more driving scenarios and provide more
generalization. It can be summarized as follows:

(1) Introducing the deviation sequence into the input structure of neural network control
improves the generalization and reduces the model complexity and the training
burden. As is shown in the theory analysis, it contains more driving scenarios and
better future motion tendency and thus can represent multiple states.

(2) The proposed structure separates the vehicle dynamic model from the approximation
process and adds a computation module for the predictive state, making full use
of the real-time vehicle dynamic model. Compared to directly approximating the
mapping of states to control inputs, this structure reduces the complexity of the neural
network training because it does not need to consider the dynamic model during
the approximation process. Additionally, when the dynamic model is changed, an
NN trained offline approximates an out-of-date dynamic model and results in an
incremental tracking error. This error could be avoided.

In this paper, simulation experiments are conducted in two environments with differ-
ent complexity levels in Matlab/Simulink. The simulation results indicate that the proposed

Actuators 2024, 13, 101 15 of 16

path tracking controller possesses adaptability and learning capabilities, enabling it to gen-
erate optimal control variables within a shorter computation time and handle variations in
vehicle models and driving scenarios.

In summary, the path tracking controller based on the proposed DS-NNC can improve
the speed and adaptiveness. However, although most driving scenarios are covered, it is
possible for a real-time controller to reach an unavailable state. Ideally, one would want an
NNC that is a drop-in replacement for the original controller but runs faster and preserves
all of its desirable features. For controllers that can already run in real time, hot starting
has been proved to be a general and effective method with strict guarantee, where a
conventional solver is still being used at every control iteration [34]. By themselves, the
outputs of the network have no guarantees but because all primal variables are predicted,
a simple algebraic check can be performed to assess the feasibility and suboptimality of
the solution. Projecting onto feasible sets is another method [35]. This coercion preserves
the recursive feasibility guarantees of MPC but requires significant overhead to perform
the projection, and computation of the maximal control invariant set which is only feasible
for some problems. These methods increase the computational burden to some extent,
which runs counter to the purpose of neural network control. Additionally, the proposed
DS-NNC loses some information on the weight matrix. In our simulations, general control
parameters are chosen. This prevents the controller from improving to better performance.
A promising approach would be the combination of weight matrix and deviation sequence.
That may improve the performance in a large maneuver.

Author Contributions: Conceptualization, L.S. and Y.M.; methodology, Y.M.; software, Y.M.; valida-
tion, L.S. and Y.M.; formal analysis, F.Z.; investigation, F.Z. and Y.Z.; resources, B.L.; data curation, L.S.;
writing—original draft preparation, Y.M.; writing—review and editing, L.S. and F.Z.; visualization,
B.L.; supervision, F.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Key Research and Development Program of
China (2021YFB2500700).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Authors Liang Su and Baoxing Lin were employed by the company Xiamen
King Long United Automotive Industry Co., Ltd. The remaining authors declare that the research
was conducted in the absence of any commercial or financial relationships that could be construed as
a potential conflict of interest.

References
1. Stano, P.; Montanaro, U.; Tavernini, D.; Tufo, M.; Fiengo, G.; Novella, L.; Sorniotti, A. Model predictive path tracking control for

automated road vehicles: A review. Annu. Rev. Control 2022, 55, 194–236. [CrossRef]
2. Han, G.; Fu, W.; Wang, W.; Wu, Z. The lateral tracking control for the intelligent vehicle based on adaptive PID neural network.

Sensors 2017, 17, 1244. [CrossRef]
3. Al-Mayyahi, A.; Wang, W.; Birch, P. Path tracking of autonomous ground vehicle based on fractional order PID controller

optimized by PSO. In Proceedings of the 2015 IEEE 13th International Symposium on Applied Machine Intelligence and
Informatics (SAMI), Herl’any, Slovakia, 22–24 January 2015; pp. 109–114.

4. Xu, S.; Peng, H. Design, analysis, and experiments of preview path tracking control for autonomous vehicles. IEEE Trans. Intell.
Transp. Syst. 2019, 21, 48–58. [CrossRef]

5. Chatzikomis, C.; Sorniotti, A.; Gruber, P.; Zanchetta, M.; Willans, D.; Balcombe, B. Comparison of path tracking and torque-
vectoring controllers for autonomous electric vehicles. IEEE Trans. Intell. Veh. 2018, 3, 559–570. [CrossRef]

6. Peng, H.N.; Wang, W.D.; An, Q.; Xiang, C.L.; Li, L. Path Tracking and Direct Yaw Moment Coordinated Control Based on Robust
MPC With the Finite Time Horizon for Autonomous Independent-Drive Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 6053–6066.
[CrossRef]

7. Tian, Y.; Yao, Q.Q.; Wang, C.Q.; Wang, S.Y.; Liu, J.Q.; Wang, Q. Switched model predictive controller for path tracking of
autonomous vehicle considering rollover stability. Veh. Syst. Dyn. 2022, 60, 4166–4185. [CrossRef]

8. Zhang, X.; Zhu, X. Autonomous path tracking control of intelligent electric vehicles based on lane detection and optimal preview
method. Expert Syst. Appl. 2019, 121, 38–48. [CrossRef]

9. Zhang, Y.; Liu, K.; Gao, F.; Zhao, F. Research on path planning and path tracking control of autonomous vehicles based on
improved APF and SMC. Sensors 2023, 23, 7918. [CrossRef]

https://doi.org/10.1016/j.arcontrol.2022.11.001
https://doi.org/10.3390/s17061244
https://doi.org/10.1109/TITS.2019.2892926
https://doi.org/10.1109/TIV.2018.2874529
https://doi.org/10.1109/TVT.2020.2981619
https://doi.org/10.1080/00423114.2021.1999990
https://doi.org/10.1016/j.eswa.2018.12.005
https://doi.org/10.3390/s23187918

Actuators 2024, 13, 101 16 of 16

10. Gámez Serna, C.; Lombard, A.; Ruichek, Y.; Abbas-Turki, A. GPS-based curve estimation for an adaptive pure pursuit algorithm.
In Advances in Computational Intelligence: 15th Mexican International Conference on Artificial Intelligence, MICAI 2016, Cancún, Mexico,
October 23–28, 2016, Proceedings, Part I; Springer: Cham, Switzerland, 2016; pp. 497–511.

11. Zhu, Q.; Huang, Z.; Liu, D.; Dai, B. An adaptive path tracking method for autonomous land vehicle based on neural dynamic
programming. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10
August 2016; pp. 1429–1434.

12. Siampis, E.; Velenis, E.; Gariuolo, S.; Longo, S. A real-time nonlinear model predictive control strategy for stabilization of an
electric vehicle at the limits of handling. IEEE Trans. Control Syst. Technol. 2017, 26, 1982–1994. [CrossRef]

13. Lee, J.; Chang, H.-J. Analysis of explicit model predictive control for path-following control. PLoS ONE 2018, 13, e0194110. [CrossRef]
14. Ferreau, H.J.; Kirches, C.; Potschka, A.; Bock, H.G.; Diehl, M. qpOASES: A parametric active-set algorithm for quadratic

programming. Math. Program. Comput. 2014, 6, 327–363. [CrossRef]
15. Richter, S.; Jones, C.N.; Morari, M. Real-time input-constrained MPC using fast gradient methods. In Proceedings of the 48th

IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, Shanghai, China,
15–18 December 2009; pp. 7387–7393.

16. Wang, Y.; Boyd, S. Fast model predictive control using online optimization. IEEE Trans. Control. Syst. Technol. 2009, 18, 267–278.
[CrossRef]

17. Gupta, A.; Falcone, P. Low-complexity explicit MPC controller for vehicle lateral motion control. In Proceedings of the 2018 21st
International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2839–2844.

18. Schulze, L.; Bertol, D.W.; Sebem, R. Conventional and Explicit MPC Applied to Robotic Systems: A Computational Cost
Evaluation. In Proceedings of the 2021 29th Mediterranean Conference on Control and Automation (MED), Puglia, Italy, 22–25
June 2021; pp. 861–866.

19. Stanojev, O.; Markovic, U.; Aristidou, P.; Hug, G.; Callaway, D.; Vrettos, E. MPC-Based Fast Frequency Control of Voltage Source
Converters in Low-Inertia Power Systems. IEEE Trans. Power Syst. 2022, 37, 3209–3220. [CrossRef]

20. Bemporad, A.; Morari, M. Robust model predictive control: A survey. In Robustness in Identification and Control; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 207–226.

21. Li, X.; Liu, C.; Chen, B.; Jiang, J. Robust Adaptive Learning-Based Path Tracking Control of Autonomous Vehicles Under Uncertain
Driving Environments. IEEE Trans. Intell. Transp. Syst. 2022, 23, 20798–20809. [CrossRef]

22. Kuutti, S.; Bowden, R.; Jin, Y.; Barber, P.; Fallah, S. A survey of deep learning applications to autonomous vehicle control. IEEE
Trans. Intell. Transp. Syst. 2020, 22, 712–733. [CrossRef]

23. Pomerleau, D.A. Alvinn: An autonomous land vehicle in a neural network. Adv. Neural Inf. Process. Syst. 1988, 1, 305–313.
24. Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, J. End to

end learning for self-driving cars. arXiv 2016, arXiv:07316.
25. Chang, M.-H.; Wu, Y.-C. Speed control of electric vehicle by using type-2 fuzzy neural network. Int. J. Mach. Learn. Cybern. 2021,

13, 1647–1660. [CrossRef]
26. Ghoniem, M.; Awad, T.; Mokhiamar, O. Control of a new low-cost semi-active vehicle suspension system using artificial neural

networks. Alex. Eng. J. 2020, 59, 4013–4025. [CrossRef]
27. Gupta, A.; Murali, A.; Gandhi, D.P.; Pinto, L. Robot learning in homes: Improving generalization and reducing dataset bias. Adv.

Neural Inf. Process. Syst. 2018, 31, 9094–9104.
28. Drgoňa, J.; Picard, D.; Kvasnica, M.; Helsen, L. Approximate model predictive building control via machine learning. Appl.

Energy 2018, 218, 199–216. [CrossRef]
29. Karg, B.; Lucia, S. Deep learning-based embedded mixed-integer model predictive control. In Proceedings of the 2018 European

Control Conference (ECC), Limassol, Cyprus, 12–15 June 2018; pp. 2075–2080.
30. Lovelett, R.J.; Dietrich, F.; Lee, S.; Kevrekidis, I.G. Some manifold learning considerations toward explicit model predictive control.

AIChE J. 2020, 66, e16881. [CrossRef]
31. Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys.

2021, 3, 422–440. [CrossRef]
32. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
33. Spielberg, N.A.; Brown, M.; Gerdes, J.C. Neural Network Model Predictive Motion Control Applied to Automated Driving With

Unknown Friction. IEEE Trans. Control Syst. Technol. 2022, 30, 1934–1945. [CrossRef]
34. Chen, S.W.; Wang, T.; Atanasov, N.; Kumar, V.; Morari, M. Large scale model predictive control with neural networks and primal

active sets. Automatica 2022, 135, 109947. [CrossRef]
35. Chen, S.; Saulnier, K.; Atanasov, N.; Lee, D.D.; Kumar, V.; Pappas, G.J.; Morari, M. Approximating explicit model predictive

control using constrained neural networks. In Proceedings of the 2018 Annual American control conference (ACC), Milwaukee,
WI, USA, 27–29 June 2018; pp. 1520–1527.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TCST.2017.2753169
https://doi.org/10.1371/journal.pone.0194110
https://doi.org/10.1007/s12532-014-0071-1
https://doi.org/10.1109/TCST.2009.2017934
https://doi.org/10.1109/TPWRS.2020.2999652
https://doi.org/10.1109/TITS.2022.3176970
https://doi.org/10.1109/TITS.2019.2962338
https://doi.org/10.1007/s13042-021-01475-6
https://doi.org/10.1016/j.aej.2020.07.007
https://doi.org/10.1016/j.apenergy.2018.02.156
https://doi.org/10.1002/aic.16881
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1109/TCST.2021.3130225
https://doi.org/10.1016/j.automatica.2021.109947

	Introduction
	Deviation Sequence Neural Network Control
	Reformulation of Approximate Function
	Implementation

	Results
	Conclusions
	References

