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Abstract: In-wheel motor vehicles are gaining attention as a new type of electric vehicle due to their
efficient power units located inside each wheel hub. However, they are more susceptible to wheel
resonance due to the increase in unsprung mass caused by the weight of the motor. This can result in
both decreased ride comfort and driving stability. To resolve this issue, in this study, we aim to apply
an optimal switching controller with a semi-active actuator—a magnetorheological (MR) damper.
For the implementation of the optimal switching controller, road type classification is also carried out.
An acceleration sensor is used for the road type classification, and the control logics include a ride
comfort controller (the linear quadratic regulator (LQR_Paved Road)) and a wheel motion controller
(LQR_Off Road) for improved driving stability. For paved roads, the LQR_Paved Road control input
is applied to the MR damper. However, if a road type prone to wheel resonance is detected, the
control logic switches to the LQR_Off Road. During the transition, a weighted average of both the
LQR_Paved Road and LQR_Off Road control input is applied to the actuator. Computer simulations
are performed to evaluate the vibration control performance, including the ride comfort and driving
stability on various road profiles.

Keywords: in-wheel motor vehicle; vibration control; LQR control; road type classification; long
short-term memory (LSTM); Kalman filter

1. Introduction

A suspension control system design focuses on two main objectives: ensuring
a comfortable ride and maintaining driving stability. To evaluate a suspension system in
terms of these objectives, three measures are commonly used: the vertical acceleration
of the sprung mass, suspension stroke, and tire deflection [1]. The vertical acceleration
of the sprung mass is considered the most important measure for evaluating ride
comfort and is assessed using the international standard ISO 2631-1 to determine its
effects on passengers [2,3]. Driving stability is assessed using the suspension stroke and
tire deflection. The relationship between the two objectives and the three measures has
been well summarized in the literature [4,5]. Ride comfort is related to the motion of
the sprung mass, whereas driving stability is related to the motion of unsprung mass.
However, achieving good ride comfort and driving stability simultaneously is challenging.
Therefore, most studies have focused on the weight for adjusting the objective function or
selecting the performance objective. Numerous controller design methodologies, including
the linear quadratic regulator (LQR) [6], LQ static control [7,8], H∞ control [9,10], fuzzy
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control [11,12], adaptive control [13,14], back-stepping control [15,16], and model predictive
control (MPC) [17,18], have been proposed and applied to vehicle suspension systems.

The control target of this study is an in-wheel motor vehicle, that is, a vehicle with the
motor and power engine of an electric vehicle that can be reduced in size and embedded in
each wheel to compensate for the narrow interior space. This is one of the disadvantages of
existing internal combustion engine vehicles. This is beneficial because modern vehicles
have become multipurpose with recent developments in autonomous driving technology.
Because these in-wheel motor vehicles offer the advantages of improved acceleration and
climbing ability compared to existing vehicles while enabling free steering, many studies
have been conducted on them [19–21].

Compared to conventional vehicles, these in-wheel motor vehicles offer several advan-
tages: the reduction in drivetrain complexity, the reduction in noise due to the drive hub
with no chains or gears, and simplicity of the suspension geometry because there is no need
to accommodate a shaft drive into the swing arm. However, there are some disadvantages
of in-wheel motor vehicles: a higher unsprung mass leads to poor suspension performance,
such as low ride comfort and vehicle stability, and hub motors often have anti-torque arms
to remove and larger axle bolts. Therefore, an appropriate control strategy needs to be
developed to enhance both ride comfort and vehicle stability. To compare the dynamic
characteristics of in-wheel and normal vehicles, the frequency response function is shown
in Figure 1. It is clearly seen in the figure that the resonance frequency for the sprung
mass at 1 Hz is almost the same between normal and in-wheel motor vehicles. However,
a considerable difference occurs close to the resonance frequency of the unsprung mass. This
is because the weight of unsprung mass is increased, and hence, the resonance frequency
value for the unsprung mass is reduced, as given by Equation (1). Wheel resonance can
occur due to critical rotational speeds of the vehicle shafts and the spatial frequency of
the road profile. When the magnitude of the resonance frequency of the unsprung mass
is reduced, it can increase the chance of wheel resonance due to the road profile. This is
because the rotational speed of the vehicle shaft is bigger than the spatial frequency of the
road profile.

ωn =
√

ks/mu. (1)
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Figure 1. Dynamic characteristics of the vehicle suspension system.

As is evident, a shift in the resonance frequency towards lower values is undesirable.
In general road configurations, the roughness of the road surface can increase the wheel
motion, thereby compromising vehicle stability and ride comfort [22,23]. The increase in
wheel mass, particularly in the range of 4–9 Hz, wherein humans are sensitive to vertical
acceleration, induces higher vibrations [23]. The Grzegorz Slaski research team from
Poznan University conducted real-world tests to demonstrate the degradation of ride
comfort in vehicles with increased wheel mass owing to the installation of in-wheel motors.
The results indicated that an increase in wheel mass adversely affected ride comfort and
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driving stability [23]. Therefore, ride comfort and driving stability may deteriorate owing to
the wheel mass, which may be fatal to passengers and could severely impact vehicles. Thus,
this study proposes the use of a road type classification logic designed using data-driven
artificial intelligence algorithms. This logic aims to distinguish between off-roads, which
exhibit a high likelihood of compromised driving stability, and paved roads, where ride
comfort is the primary concern. Based on this classification, separate control strategies are
applied depending on dynamic characteristics, which are different based on the ratio of the
sprung mass to the unsprung mass.

Despite the significant issues in this work, studies on the vibration systems featured in
in-wheel motor vehicles, such as electric cars, are considerably rare compared to the conven-
tional suspension system in which the sprung mass is much higher than the unsprung mass.
Consequently, the main technical contribution of this work is to evaluate the vibration
control performance of in-wheel motor vehicles in which the weighting of the unsprung
mass is crucial for both the ride comfort and steering stability. In order to achieve this
goal, an optimal linear quadratic regulator (LQR) controller is formulated and modified
to switch between paved roads and off-roads, respectively. In addition, in order to reflect
real environmental conditions, road classification is carried out in this work using both
long short-term memory (LSTM) and the Kalman filter to estimate the road roughness, and
hence, achieve high accuracy through an artificial neural network with a multi-input–single
output (MISO) system structure. The proposed control strategy is then simulated using
MATLAB/Simulink, and the classified road type and vibration control performances with
the sprung mass and unsprung mass are evaluated and presented in both the frequency
and time domains.

2. Controller Design
2.1. Controller for Car Body and Wheels

In this work, the suspension controller is designed based on a 2-degrees of freedom
(2-DOF) quarter-car model [11,12]. There are various models available for the dynamic
analysis of vehicles, ranging from simpler to more complex structures. Simple lower-
order models with lumped parameters are often used to analyze vertical dynamics [11].
Specifically, quarter-car models exclusively depict the vertical motion of the chassis. In
Figure 2, a suspension system with two degrees of freedom (2-DOF) is illustrated. This
system consists of two interconnected subsystems, each featuring a spring and a viscous
damper mounted on a mass-containing structure. To represent the vertical motion, sprung
mass (ms) and unsprung mass (mu) are used, respectively. The weight of the unsprung
mass includes those of the wheels, tires, brakes, hub motors, etc. Meanwhile, the sprung
mass includes those of the chassis, car body, interior, passenger, and cargo. The unsprung
mass of a typical vehicle is approximately 40 kg [11]. However, in-wheel motor vehicles
exhibit a significant increase in unsprung mass due to the structural necessities including
the mounting system for the motor rotor and stator, steering mechanism, and suspension
components connected directly to the wheel.
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The dynamic variables zs and zu are the vertical displacements of ms and mu, respec-
tively. The actuator position is parallel to the spring and damper, as shown in Figure 2.
The quarter-car model disturbance zr represents the road profile. The damper, shown in
Figure 2, is a semi-active actuator with a specific damping curve. The damper is considered
linear and has a constant damping coefficient (cs), spring stiffness (ks), and tire stiffness (kt)
during the controller design stage. From Figure 2, the governing equation of the quarter-car
model for an in-wheel motor vehicle can be derived using Equation (2), and the state-space
model is expressed as shown in Equation (3).

ms
..
zs = −ks(zs − zu)−cs

( .
zs −

.
zu
)
+ u.

mu
..
zu = −ks(zu − zs)−cs

( .
zu −

.
zs
)
−kt(zu − zr)− u.

x =
[
zs

.
zs zu

.
zu
]T.

.
x = Ax + Bu + Lzr.

(2)

A =


0 1

− ks/ms − cs/ms

0 0
ks/ms cs/ms

0 0
ks/mu cs/mu

0 1
−(k s + kt)/mu −cs/mu


B = [0 1/ms0 − 1/mu]

T

L = [0 0 0 kt/mu]
T

(3)

Active actuators such as hydraulic, electromagnetic, and electromechanical are commonly
used in commercial vehicles [1]. However, they incur high power consumption and contain
cost-intensive components. By contrast, semi-active actuators such as hydraulic shock
absorbers, magnetorheological (MR) dampers [24,25], electrorheological (ER) dampers [26,27],
and electromagnetic dampers [28] offer lower power requirements, high stability, and
more compact form. However, they can only generate force within specific velocity-force
quadrants. Both active and semi-active actuators offer the advantage of an independent
force direction from the velocity sign. However, semi-active actuators, particularly MR
dampers, are preferred owing to their energy efficiency. In this work, a semi-active
MR actuator is adopted to achieve the required damping force based on the flowing
dynamic conditions.

The semi-active condition expressed by Equation (4) is a condition to reflect the
physical properties of the MR damper. Active suspension systems offer control capabilities
across all four quadrants, whereas semi-active suspension systems are restricted to the first
and third quadrants. In general, the active suspension systems provide greater efficacy
in mitigating vibrations. However, due to drawbacks such as the large size of the device
and high cost, semi-active suspension systems have been more commonly studied and
implemented in real vehicles recently [29]

u =

[
u, f or u

( .
zs −

.
zu
)
≥ 0

0, f or u
( .
zs −

.
zu
)
≤ 0

]
. (4)

The parameters of the in-wheel motor vehicles are listed in Table 1. To represent
the in-wheel motor vehicle, the weight of the unsprung mass was selected as 100.908 kg,
and the other values were adopted from the mid-size SUV (Sports Utility Vehicle) of IPG
CarMaker SW [30,31]. By using this vehicle model, the typical control system is displayed
in Figure 3. The MR damper as an actuator with control logic generates the control force to
control the dynamic motion of the vehicle that will be transmitted to the vehicle. In general,
ride comfort and driving stability are mutual trade-offs, making it difficult to achieve both
simultaneously. Therefore, it is common to formulate a control strategy to enhance physical
performance according to each specific objective. To address this issue, this study proposed
a strategy wherein the LQR_Paved Road and LQR_Off Road controllers were dynamically
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selected based on the situation, as illustrated in Figure 4. The road type was classified by
the LSTM algorithm. Then, the proper controller and control input were calculated. This
approach aimed to achieve the simultaneous control of ride comfort and wheel resonance
by transitioning between two switching controllers as follows.

J =
∫ ∞

0

{
ρ1

..
z2

s + ρ2(zs − zu)
2 + ρ3z2

u + ρ4u2
}

dt =
∫ ∞

0

{[
x
u

]T[ Q N
NT R

][
x
u

]}
dt. (5)

Q =


(ks/ms)

2 + ρ2 −(ks/ms)
2 − ρ2

−(ks/ms)
2 − ρ2 (ks/ms)

2 + ρ2 + ρ3
(kscs/ms)

2 −(kscs/ms)
2

−(kscs/ms)
2 (kscs/ms)

2

(kscs/ms)
2 −(kscs/ms)

2

−(kscs/ms)
2 (kscs/ms)

2
(cs/ms)

2 (cs/ms)
2

−(cs/ms)
2 (cs/ms)

2


N =

[
−ks/ms

2ks/ms
2 − cs/ms

2cs/ms
2
]T

R =
(

1/ms
2
)
+ ρ4

ρi =
1
η2

i
, i = 1, 2, 3, 4. (6)

u = −Kx = −[k1 k2 k3 k4]x . (7)

J =
∫ ∞

0

{
ρ1

..
z2

s + ρ2
.
z2

u + ρ3z2
u + ρ4u2

}
dt . (8)

Kpavedroad =
[
−20665.77 841.96 23767.09 828.02

]
Koffroad =

[
−21283.43 696.55 21086.06 95.08

] (9)

Table 1. Parameter values of the 2-DOF quarter-car.

Description Value

ms Sprung mass of the quarter-car model 451 kg

mu Unsprung mass of the quarter-car model 100.908 kg

ks Spring stiffness of the quarter-car model 25,000 N/m

cs Damping coefficient of the quarter car model 1000 Ns/m

kt Tire stiffness of the quarter-car model 300,190 N/m
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The LQR_Paved Road controller for the vehicle suspension system contains an objective
function, of Equation (5), which uses weight values (ρi) to adjust the importance of each
term. As shown in this equation, the acceleration of the sprung mass was included to
increase ride comfort. These weight values were determined using Bryson’s rule, which
sets the maximum allowable value for each term to select the weight values, as expressed
in Equation (6). The first term of the objective function is the acceleration of the sprung
mass, which is associated with ride comfort. It is assigned a lower weight value (η1) than
the other terms (ηi) such as suspension stroke and tire deflection, which are associated
with road adhesion and cornering performance and given higher weight values (η2 and η3).
The weights (η) used for each controller are summarized in Table 2. Weighting matrices
Q, N, and R were defined based on these weight values. The LQR_Paved Road controller
used full-state feedback to minimize J, and the gain matrix Kpavedroad was calculated using
the Riccati equation with the system matrices (A, B, Q, N, and R). Inconsequently, a four-
element K matrix corresponding to the number of state variables was obtained, as shown
in Equation (7). In addition, to focus on the motion of the wheel, the LQR_Off Road
controller was designed based on the objective function defined in Equation (8). Compared
to Equation (5), the stroke was replaced with the velocity of the wheel. Table 2 lists the
chosen weight values and calculated gain matrix for LQR_Paved Road and LQR_Off
Road. The control gains for LQR_Paved Road(Kpavedroad) and LQR_Off Road(Koffroad),
which were calculated using Equations (5)–(8), are expressed as Equation (9). To enhance
ride comfort, the LQR_Paved Road controller was designed with a focus on optimizing
the movement of the sprung mass. Consequently, it may be less robust in handling the
movement of the unsprung mass. Conversely, the LQR_Off Road controller, optimized for
unsprung mass movement, may encounter challenges in simultaneously optimizing the
ride comfort.

Table 2. Maximum allowable values in LQ objective function.

η1 η2 η3 η4

Paved Road 1.0 m/s2 0.2 m 0.2 m 3000 N

Off Road 1.0 m/s2 0.5 m 0.2 m 3000 N

2.2. Concept of Controller for In-Wheel Motor Vehicle Control Using Road Type Classification Logic

The controllers described in Section 2.1 differ in the required moment depending on the
driving situation. As an in-wheel vehicle requires wheel motion control for driving stability,
this study proposes a decision logic to detect road types. The concept of the proposed
control logic involves switching between a ride-comfort-oriented controller (LQR_Paved
Road) and a wheel-motion-control-oriented controller (LQR_Off Road) to perform control.
If the road type classification logic detects that based on the current road situation, the
comfort and stability of the passengers are more important than the improvement in driving
stability (such as on a paved road). In this way, the LQR_Paved Road controller is used as
the control logic to apply commands to the actuator. Conversely, in the case of off-roading,
wheel motion control through improvement in driving stability is more prioritized than
riding comfort. Therefore, the LQR_Paved Road control logic is switched to the LQR_Off
Road control logic to secure the driving stability of the vehicle. This is intended to improve
both the ride comfort and driving stability of an in-wheel vehicle.

3. Road Type Classification Based on LSTM

There are various road type classification logic methods for controller switching [32,33].
Harikrishnan et al. used the three-axial acceleration sensor of a smartphone to determine
potholes and bumps using a rule-based method in low-speed (15–20 km/h) vehicles and
reported accuracies of at least 65.2–98.4% [32]. Menegazzo et al. performed classification
(dirt, cobblestone, and asphalt) based on artificial neural network algorithms, such as con-
volutional neural networks (CNNs) and LSTM, using various sensors, including the global
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positioning system (GPS) and camera sensors. The accuracy was reported as 95.56% [33].
The LSTM-based classification method exhibits high accuracy through an artificial neural
network with a multi-input–single output (MISO) structure. Thus, using various sensor
values as the input layer data results in a positive effect on classification accuracy [34].
However, securing a large amount of sensor data while ignoring the relationship between
the input sensor data and decision labels increases the system design costs, the dimensions,
and the complexity of artificial neural networks. Therefore, in this study, as shown in
Figure 5, an LSTM-based road type classifier was developed using only two inputs: the pre-
diction results and the acceleration sensor of the sprung and unsprung masses, following
the estimation of the profile of the road using a Kalman filter to estimate the road roughness
using two acceleration sensors and one damper relative displacement sensor.
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This study developed a discrete Kalman with unknown input (DKF-UI) using a tire
normal force estimator [35]. The unknown road roughness values applied to the wheels
of the quarter-car model were estimated using the DKF-UI model, and the road profile
was estimated. Equations (10)–(14) represent the main estimation process of the DKF-UI
algorithm. For more detailed information, please refer to our previous studies [35,36].

The internal structure of the LSTM model is shown in Figure 6. It has a circular
structure similar to that of the recurrent neural network (RNN) and a complex internal
structure. The LSTM cell comprises three gates and one memory cell, where xt denotes
the input, ht denotes the output at time t, ht−1 is the output immediately before t, and l
denotes the order of the LSTM cells. The data flow is depicted in Figure 6 by arrows, and
the operations between the matrix members are indicated by circles. The entire dataset was
divided by window size to obtain the number of cells represented by n.
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- Initialization of parameter at k = 0

x̂0 = E[x0].
ẑ0 = E[z∗0 ].

P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]
.

S0 = E
[
(z∗0 − ẑ∗0)(z

∗
0 − ẑ∗0)

T
]
.

(10)

- Prediction step
x̂(k|k − 1) = Ad x̂(k − 1) + Bdz(k − 1).

P(k|k − 1) = AdP(k − 1)AT
d + Q.

(11)

- Kalman gain calculation

K(k) = P(k|k − 1)CT
(

CP(k|k − 1)CT + R
)−1

. (12)

- Unknown input estimation step

S(k)=
[
DTR−1(I − CK(k))D

]−1
.

ẑ∗(k) = S(k)DTR−1[I − (CK(k))][q(k)− Cx̂(k)].
(13)

- Correction step

x̂(k|k) = x̂(k|k − 1) + K(k)× [q(k)− Cx̂(k|k − 1)− Dẑ∗(k)].
P(k|k) =

[
I + K(k)DS(k)DTR−1C

]
× [I − K(k)C]P(k|k − 1).

(14)

The forward propagation process can be expressed as follows [36]:

- Forget gate

f(l)t = σ
(

W(l)
xf xt + W(l)

hf ht−1 + b(l)f

)
. (15)

- Input gate and new memory

i(l)t = σ
(

W(l)
xi xt + W(l)

hi ht−1 + b(l)i

)
.

∼
c
(l)
t = tanh

(
W(l)

xc xt + W(l)
hc ht−1 + b(l)c

)
.

(16)

- Output gate

o(l)
t = σ

(
W(l)

xo xt + W(l)
ho ht−1 + b(l)o

)
. (17)

- Cell state ct and hidden state ht

c(l)t = f(l)t
◦c(l)t−1 + i(l)t

◦∼c
(l)
t .

h(l)
t = o(l)

t
◦tanh

(
c(l)t

)
.

(18)

The amount of memory cell content retained can be altered using a forget gate. The
forget gate employs a sigmoid function. The weight is multiplied by the output value ht−1
from the previous time, xt enters the LSTM cell at the present moment, and bias bf is then
applied. The input to the sigmoid function is the output value.

In this case, the data move on to the following step after being multiplied by ct-1 while
passing through the sigmoid activation function. At time t − 1, the input gate modifies
the amount of output that is mirrored in the memory cell. Subsequently, it becomes a new
memory and is added to the memory cell if it successfully completes its activation function.
The new memory is then multiplied by ct and passes through the input gate to create ct.
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The newly formed ct is delivered to the following LSTM cell and contains only the required
information: the final step involves choosing the export output. The value of this output is
filtered based on the cell status. First, it selects the portion of ct to output as the input data
for the sigmoid layer. The output of the previously calculated sigmoid gate is multiplied by
ct before being transmitted through the tanh layer. Consequently, output ht of the exported
data only includes the desired section. As shown in Figure 7, the layers used include the
sequence input, bi-LSTM, fully connected, softmax, and classification layers, which were
designed to classify road types into 200 hidden units.
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Table 3 lists the optimal hyperparameters used to train the LSTM artificial neural
network. The corresponding hyperparameters were selected through trial and error. In this
study, the data used for the LSTM training were generated by designing random roads
based on the ISO 8608 standard [37] and were categorized into five grades (A, B, C, D,
and E). The computation of the LSTM model is run under NVIDIA DGX STATION (Future
Automotive Intelligent Electronics Core Technology Center, Republic of Korea). The road
roughness increased from A-class to E-class roads. In particular, the E-class road exhibited
a level of roughness comparable to that of unpaved roads. Therefore, to differentiate the
roads, A-, B-, and C-class roads were labeled as paved roads, emphasizing ride-comfort-
oriented control, whereas D-class and E-class roads were labeled for wheel-motion-oriented
control, resembling unpaved roads.. The descriptions of these labels are summarized in
Table 4. The road classifier, developed after training on the given data, was applied to roads
that were a mixture of wavy roads with amplitudes of 0.02 m and frequencies of 1, 9, and
15 Hz, combined with the roads used for training, to assess its performance and robustness.

Table 3. Selected hyperparameters for LSTM model.

Hyperparameter Selected Value

Solver Adam

Max epochs 5000

Mini-batch size 27

Gradient threshold 0.7

Initial learning rate 0.001

Table 4. Labels for LSTM model.

Label Description

Paved Road
A paved, smooth road requiring ride comfort control,

e.g., asphalt and concrete-paved roads.
(A, B, C-Class Road)

Off Road
Unpaved terrain or rugged roads requiring vehicle stability control,

e.g., gravel and Belgian roads.
(D, E-Class Road)



Actuators 2024, 13, 80 10 of 16

Table 5 presents the results of the artificial neural network derived from the confusion
matrices for road type classification on each validation dataset with optimal hyperparame-
ters in terms of Precision, Recall, and F1 score. These metrics are expressed as follows:

Precision =
True Positive

True Positive + False Positive
. (19)

Recall =
True Positive

True Positive + False Negative
. (20)

F1 =
2

1
Precision + 1

Recall
. (21)

Table 5. Road classification performance.

Road Type Precision Recall F1 Accuracy (%)

Random Road 0.958 0.898 0.927 90.962

Random Road
+ 1 Hz Wavy Road 0.958 0.898 0.927 90.962

Random Road
+ 9 Hz Wavy Road 0.957 0.907 0.931 91.502

Random Road
+ 15 Hz Wavy Road 0.958 0.899 0.927 91.001

Precision is the ratio of what is actually true to what the neural network model predicts
to be true and is also referred to as the positive predictive value. Recall is the ratio of what
the model predicts to be true to what is true and is also referred to as the hit rate. The
harmonic average of these two indicators is the F1 indicator. The higher the number of these
three indicators, the better the result. The average of the three performance indicators for
the LSTM artificial neural network used in this study was 91.10%, which is good compared
with previous studies. As summarized in Table 5, the results indicated that combining
frequencies that are lower (1 Hz) or higher (15 Hz) than the wheel resonance frequency
(9 Hz) yielded consistently good outcomes. This observation was true even when mixing
frequencies on random roads without a specific frequency. Thus, the robustness of the
designed LSTM network, independent of the presence or absence of specific frequency
components, was appropriately demonstrated. Among these results, the confusion matrix
for the road mixture with a wavy road wheel resonance frequency (9 Hz), which is repre-
sentative and has the most significant impact on the target vehicle in this study, is shown
in Figure 8.
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The LSTM model, which is capable of learning the periodicity of time-series data,
demonstrated superior performance in effectively learning the various frequencies present
on random roads. Therefore, it was inferred that the model performed well even on roads
composed of a specific frequency of wavy road combinations.

4. Control Results and Discussions

The LSTM-based road type classification and control logic were designed and analyzed
using MATLAB and Simulink. Although the LSTM-based road type classification logic
exhibited high accuracy, controller switching can cause a chattering problem in the control
input. Chattering is an undesirable phenomenon characterized by infinitely fast switching,
which may cause equipment damage in real vehicle systems. To avoid its occurrence, many
solutions such as integration, moving average filter, and saturation function [38,39] have
been reported. A chattering-free strategy based on a moving average filter was applied to
the proposed control architecture. In this study, we also utilized a moving average filter to
prevent excessive chattering and enhance the control performance. To improve the ride
comfort and driving stability of in-wheel motor vehicles, road conditions were determined
through LSTM, and the control was performed by switching the controller based on the
determined road and applying it to the actuator.

The overall flow of the integrated control logic is shown in Figure 4, as explained earlier.
After completing the training, the LSTM network used sensor data and Kalman filter estimates
to assess the wheel resonance. Based on this determination, an appropriate controller was
selected to perform the control. As described in Section 2.2, the controller conversion applied
the LQR_Paved Road controller to paved roads, and the LQR_Paved Road control logic was
switched to the LQR_Off Road control logic to secure driving stability and ride comfort. This
was intended to improve both the ride comfort and driving stability of the in-wheel vehicle.
After the control tests, the results were evaluated using various criteria. First, the ride comfort
control result was evaluated according to the ISO 2631_Wk standard [2] to numerically express
the degree of vibration felt by an occupant while sitting because vertical vibration vibrates
throughout the body, which is derived based on the acceleration of the sprung mass. Driving
stability was evaluated based on tire deflection. Tire deflection is a numerical value indicating
the degree of contact of the wheel with the road, which is calculated as the RMS of the
difference between the displacement of the road profile and the unsprung mass. In the case of
ISO 2631_Wk (ride comfort) and tire deflection results derived after performing the control,
the smaller the number, the better the result that could be obtained.

After performing the controller on the road type classification and control strategy,
the results were interpreted based on various criteria. Results without control input,
control results for LQR_Paved Road and LQR_Off Road, and control results with road
type classification and switching controller were obtained and presented. In addition, the
roads used in the simulation as shown in Figure 9 were set to select A-, B-, C-, D-, and
E-class roads, which could be sequentially applied for 10 s each. The vehicle speed was
derived by fixing it at 40 km/h. The control results of switching controllers using Kalman
filter-based LSTM classification logic, the results of every single controller (LQR_Paved
Road, LQR_Off Road) without road classification logic, and the passive results without
control input in the frequency domain are shown in Figure 10a,b. Figure 10a is the result of
the acceleration of the vehicle body, and Figure 10b is the result of the displacement of the
unsprung mass. With these results, it is possible to confirm the characteristics of the ride
comfort and driving stability of each controller. As can be seen from Figure 10a,b, all results
showed better performance than the passive result of not performing control. This means
that the vehicle modeling and design of all controllers proceeded as intended. However,
LQR_Paved Road occasionally exhibits inferiority to the passive system in unsprung mass
displacement (Figure 10b), being 0.53% worse. Additionally, LQR_Off Road exhibits a 4.53%
deterioration in sprung mass acceleration compared to the passive system, as shown in
Figure 10a. Accordingly, the switch control logic results showed plainly excellent overall
vibration control results.
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Based on the control characteristics of the LQR_Paved Road and LQR_Off Road
controllers, an integrated control logic using switching logic and road type classification
was designed to enhance the control performance. This encompassed both ride comfort
and wheel motion. Typically, the LQR_Paved Road control is performed mainly for riding
comfort, and the road type is classified using an LSTM artificial neural network. The
velocity results of sprung mass and unsprung mass for the control logic (Switch) are shown
in Figure 11a,b, respectively. As can be seen from the graph, excellent results were shown
compared to passive results in most areas, and the effects of classification logic and control
logic could be confirmed. Figure 12 shows the result of the control input of each controller.
Each controller generated a different input force according to each control characteristic.
Furthermore, the force and control performance were not proportional. Nonetheless, as the
input force was smaller, the energy efficiency was better because the control was performed
with a smaller force. As a result, it was confirmed that the LQR_Paved Road controller had
less energy consumption than the LQR_Off Road controller. For the Switch control logic,
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which performs control by combining these controllers, it displayed the median value of
the input force from the two controllers. This indicates that the Switch control logic is
an efficient and satisfying performance controller in terms of energy consumption. Table 6
presents the results of each controller. Because ride comfort is related to the acceleration
of the car body and tire deflection is related to the displacement of the wheel, all control
results related to ride comfort and steering stability are presented. Therefore, when using
a single controller, the overall ride comfort and wheel motion performance under various
road conditions were not consistently favorable, depending on the characteristics of the
controller. However, when the results of this study were applied with a switching logic
that included a filter, positive outcomes were achieved for both ride comfort and driving
stability under all road conditions.
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Table 6. Control results according to control type.

Control Type Ride Comfort Tire Deflection

Single
(LQR_Paved Road) 0.7195 0.0047

Single
(LQR_Off Road) 0.7401 0.0045

Switch
(LQR_Paved Road /LQR_Off Road) 0.7271 0.0046

Passive
(without control input) 0.7637 0.0048

In terms of ride comfort, all controllers exhibited improvements compared to the
passive system. Among them, the most notable outcome was observed with the LQR_Paved
Road controller, showing a 5.8% reduction compared to the passive system. The Switch
controller also demonstrated results closely resembling those of the LQR_Paved Road
controller. Particularly noteworthy is the observation that the LQR_Off Road controller
achieved a 3.08% reduction compared to the passive system. Therefore, in the context of
ride comfort-oriented control, the Switch controller proved to be superior to the wheel-
motion-centric controller (LQR_Off Road). In terms of vehicle stability, all controllers
exhibited improvements compared to the passive system. Among them, the LQR_Off Road
controller demonstrated a 6.25% enhancement, while the Switch controller showed a 4.17%
improvement compared to the passive system. Furthermore, the vehicle stability results of
the Switch controller surpassed those of the ride comfort-oriented controller, LQR_Paved
Road. This signifies that the Switch controller outperforms the other control logics and
passive controller in all scenarios (ride comfort and vehicle stability). Specifically, for
ride comfort on paved roads, it surpasses LQR_Off Road by 1.76%, and for wheel motion
control on paved roads, it outperforms LQR_Paved Road by 2.13%. Therefore, the optimal
switching control logic proposed in this study has been validated for enhancement of the
robust vibration control performances across various road conditions.

5. Conclusions

This study designed an integrated control logic for improving the ride comfort and
driving stability of in-wheel motor vehicles using an LSTM-based road type classification
and control-mode switching logic according to the road type. A quarter-car model was
constructed based on an in-wheel motor vehicle, and state-space equations were derived.
LQR_Paved Road and LQR_Off Road controllers were designed based on MR semi-active
actuators. The control-mode switching logic was designed using these controllers, and
a road type classification logic with an accuracy of 91.10% was designed. Consequently, the
ride comfort and driving stability under various road profiles were evaluated. Through
this, this study examined the control characteristics of each controller and developed a logic
to determine when ride comfort-oriented or wheel motion-oriented control is needed,
and it designed a controller that can improve driving stability and improve ride comfort
compared to passive by switching the controller.

It is finally noted that the development of a more advanced LSTM neural network
to classify road classes needs to be further explored according to road roughness and
fuzzy control logic that assigns different weights to controllers based on road classes.
Furthermore, in order to assess the practical feasibility of the proposed control strategy,
an experimental realization of the quarter-car should be carried out followed by a full-car
system implementation by CarMaker in the near future.
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