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Abstract: The reset control is a simple nonlinear control approach where the states of the controller
are conducted to zero when a particular condition is satisfied. The PI+CI is a controller that mixes the
simplicity of PI controllers with the benefits of a reset action to mitigate the fundamental limitations
of linear control. However, the tuning of this kind of controller, with three parameters, two for
the linear part and one for the nonlinear one, is not trivial. In this paper, simple tuning rules for
PI+CI are proposed for both tracking and regulation problems, assuming first-order dynamics for
the plant. The resulting control scheme, for which the reset coefficient is computed from exponential
functions, is simulated and compared with an ideal PI+CI where the reset coefficient is obtained using
rules available in the literature. Similar results are obtained for the tracking problem, and optimal
performance based on the Integral Absolute Error (IAE) is also obtained for the regulation problem.
These new rules, in contrast to those already existing in the literature, depend only on closed-loop
specifications. Furthermore, the framework based on the minimization of IAE, used to obtain the
proposed rules, makes it possible to consider for the first time the tracking and regulation problems
simultaneously, i.e., cases where setpoint changes and disturbance arrivals can occur at the same time
before reaching a new steady state. The results are validated using a set of study cases.

Keywords: reset control; clegg integrator; PID; switching; tuning rules; curve fitting

1. Introduction

Reset control systems are a kind of nonlinear controller that are characterized for
forcing the states of the controllers to zero when a specific condition is satisfied. These
controllers contribute to overcome some limitations of linear controllers, such as those
related to sensor noise amplification when the controller gain is increased to augment the
controller phase. With reset controllers, it is possible to increase the phase only slightly,
affecting the gain increase and thus also improving the system stability. In the seminal
work [1], Clegg proposed the first reset system, which was a nonlinear integrator with the
output driven to zero when the input was also equal to zero. This integrator was named
Clegg’s integrator (CI). After that, several works were developed, but it was after the group
of works by Horowitz, Rosenbaum and Krishman [2–4] when reset control systems were
definitely driven by the introduction of the first-order reset element.

Since 1958, around 400 papers have been published on reset control (see [5] for a
detailed chronological review). Many of them had theoretical developments and many
others were of a practical nature. Precision motion, automotive industry, energy, robotics,
chemical industry, and aircrafts are some examples of application domains. New reset
control strategies have recently been developed, in particular, a single structure based
on a combination of the PI controller and Clegg’s integrator, the PI+CI [6], which is the
control algorithm analyzed in this work. This controller combines the simplicity of a PI
controller (present in 90% of industrial applications [7]) with the advantages of reset action.
However, this strategy must be used carefully, because the reset action may make the LTI
control system base unstable [8]. This single nonlinear strategy has been used in different
applications. For example, in [9], it is applied to the temperature control of a heat exchanger;
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in [10], it is used for the pH control of a pilot plant in the food industry and the liquid level
tank control; in [11], it is applied for the regulation of voltage in a DC microgrid with fuel
cell-supercapacitor-based storage elements; and in [12], it is considered to control pH in
an industrial photobioreactor for microalgae production. Nevertheless, stability and/or
decreased performance problems may occur if the PI+CI parameters are not adequately
tuned. For stability analysis, in general, an approximation based on the describing function
is used for the nonlinear PI+CI controller, but this approximation is not necessary for the
case of first-order systems, where closed-loop stability is ensured if the base linear system is
stable [13]. After the first work on the PI+CI control [13], new contributions have appeared
that propose tuning methods for the PI+CI controller. For example, in refs. [14–16], adaptive
strategies based on optimization procedures are used to estimate the optimal values inline
for the controller parameters. Analytical methods have also been used in some papers,
for example, in refs. [17,18], to obtain tuning rules that can be used offline based on the
states of the system at particular times. Other related works use PID compensation with
full reset action, and not partial compensation as the PI+CI controller, such as [19,20].
In refs. [21–23], reset compensation is also applied to control systems without delay.

Therefore, the existing tuning rules are based on optimization approaches or on offline
methods that consider the process parameters and the states of the system that must be
estimated inline to calculate the controller parameters. In this paper, a different approach is
presented based on a systematic method for the design of the PI+CI controller. The solution
is based on analytical rules that are calculated on the basis of the minimization of the
Integral Absolute Error (IAE) of the closed-loop response. The resulting rules depend only
on two closed-loop parameters, the damping factor and the peak time. These rules allow us
to achieve an optimum flat response for first-order systems for both tracking and regulation
problems. The proposed solution is evaluated in simulation in different scenarios to show
its control capabilities.

The paper is organized as follows. The fundamentals of the PI+CI controller are briefly
presented in Section 2. Subsequently, in Section 3, tuning rules for tracking and regulation
problems are derived, and the proposed control algorithm is described. In Section 4,
the discussion on a set of study cases is provided to validate the results. Section 5 presents
an example of a nonlinear system that can be approximated by a first-order model around
an operation point. Finally, the paper ends with conclusions and future works.

2. Fundamentals of PI+CI Controller

The PI+CI is based on a PI controller with a linear integrator connected in parallel with
Clegg’s integrator. So, the PI+CI controller has three terms in parallel: proportional term
(P), integral term (I) and Clegg’s integrator (CI), as shown in Figure 1. The PI controller,
now named the base PI controller, is given by:

u(t) = kp

(
e(t) +

1
τi

∫ t

0
e(υ)dυ

)
, when pr = 0 (1)

where kp is the propotional gain, τi is the integral time, and Clegg’s integrator is given
by [6]: {

u̇CI(t) = e(t) when e(t) ̸= 0,
uCI(t+) = 0 when e(t) = 0

(2)

Thus, the controller parameters are kp and τi, for the base PI controller, and pr (reset
coefficient) to fix the relative weight of the reset action on the control signal with a value
between 0 and 1. When pr is equal to zero, there is no reset action and PI+CI works as a
classical PI, and when pr = 1, the controller will work as a P+CI. For values greater than 0
and less than 1, the aggressiveness of the control signal could be modulated.
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Figure 1. Closed−loop control scheme using a PI+CI nonlinear controller.

In state space, the PI+CI controller can be expressed using two states: one for the
integral term of the PI (xi) and the other one for the Clegg integrator (xci). Thus, the state
will be xr = (xi, xci)

⊤. A PI+CI state-space model is given by Equation (3) [6]
ẋr = Bre, e ̸= 0
x+r = Aρxr, e = 0
v = Crxr + Dre

(3)

where x+r , or xr(t+), represents the value xr(t + ϵ) with ϵ → 0+, and the matrices Br, Aρ,
Cr, and Dr are given by

Br =

(
1
1

)
, Aρ =

(
1 0
0 0

)
Cr =

kp
τi

(
1 − pr pr

)
, Dr = kp

As discussed previously, three parameters must be calculated (kp, τi and pr). The pa-
rameter pr of Clegg’s integrator is tuned to improve the performance of the linear controller,
and the base PI is tuned so that, partly by resetting its state, the closed-loop performance
can be improved. Therefore, in the first place, a fast response with significant overshoot
will be specified for the base PI controller and after that, the partial reset (pr) will be used
to decrease the resulting overshoot, maintaining the speed of response.

In the case of first-order systems, described by the following transfer function

P(s) =
k

τs + 1
(4)

a flat response for disturbance rejection (regulation problem) can be obtained after the first
reset time when pr is given by [18]

pr =
e−

απ
β

1 + e−
απ
β

(5)

where α and β are given by

α =
1 + kpk

2τ
(6)

and

β = +

√∣∣∣∣α2 −
kpk
ττi

∣∣∣∣ (7)

with k and τ representing the static gain and the time constant, respectively, for the first-
order system in (4), and where α2 <

KpK
ττi

is assumed to assure an oscillatory output.
If Equation (5) is used for tracking step signals (tracking problem), a flat output is obtained
after the second reset instant. Regarding robustness, PI+CI is robust enough if the gain
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of the process, k, is well modeled with low variations for the tracking problem and if the
damping ratio of the closed-loop poles has low variation for the regulation problem [18].
The base PI and PI+CI exhibit similar performance in terms of cost of feedback (sensor noise
effect) for both problems, considering the tracking of reference signals and disturbance
rejection independently. It is also possible to obtain a flat response after the first reset
instant for the tracking problem, using pr given by

pr = 1 − τi
kkpxi(t1)

(8)

where xi(t1) is the state of the integral term for the first reset instant [18]. However, it is not
possible to obtain an explicit solution for it.

Let us use an example to show the performance of the previous rules. The process is
given by the following transfer function.

G(s) =
3

2s + 1
(9)

and base PI is given by (kp = 2, τi = 0.15), from [18]. A scenario where two reference
changes with different signs and a disturbance appear in steady state is considered. Figure 2
shows a performance comparison between the base PI and the PI+CI, when pr = 0.21 from
Equation (5) is computed. A flat response is obtained after the second reset time in the
tracking problem (first and second setpoint changes in steady state) and after the first reset
time in the regulation problem (when disturbance occurs in steady state). In order to study
the regulation problem, a step disturbance with an amplitude of −3 at time 10 s has been
introduced. In Figure 3, the same comparison is shown, but using pr = 0.83 calculated from
Equation (8), where xi(t1) = 0.1471 is obtained on line [18]. In the latter case, the response
for a tracking problem is optimum, but for a regulation problem, it is not adequate. For the
base PI, an IAE (Integral Absolute Error) of 1.30 is obtained vs. the value of 0.96 resulting
for PI+CI with a flat response. It is important to note that a flat response is impossible to
obtain if an LTI controller is used.

0 2 4 6 8 10 12 14

0

1

2
System output

Setpoint

PI+CI

Base PI

0 2 4 6 8 10 12 14

0

2

4

Control signal

PI+CI

Base PI

0 2 4 6 8 10 12 14
-3

-2

-1

0
Disturbance
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Time [s]

0.2

0.4

0.6

0.8
Pr

Figure 2. Performance comparison between PI and PI+CI controllers for pr from Equation (5).
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Figure 3. Performance comparison between PI and PI+CI controllers for pr from Equation (8).

From Equation (5) for the regulation problem and (8) for the tracking case, the reset
ratio depends on the process gain and the time constant, and in this last case, it also depends
on the state of the controller. However, as shown in the following section, equivalent tuning
rules may be obtained that depend only on the closed-loop specification.

3. New Tuning Rules for PI+CI

In this section, new tuning rules are proposed for the PI+CI controller based on IAE
minimization. A minimum IAE is ensured if a flat output, i.e., without oscillations, is
reached after the first reset time. As shown in the previous section, to study this behavior,
tracking and regulation problems must be independently analyzed. Global search optimiza-
tion algorithms from the MATLAB optimization toolbox are used to compute the optimum
reset ratio.

3.1. Tracking Problem

On the basis of the IAE, a sweep is made considering a set of sufficiently different
plants. For each combination of static gain (k ∈ [1, 10]) and time constant (τ ∈ [1, 10]) s,
the reset ratio pr, belonging to [0, 1], is calculated to ensure the minimum IAE, using a unit
step as a reference. The pole placement method is used to design the base PI:

(kp, τi) =

(
2τξωn − 1

k
,

2τξωn − 1
τω2

n

)
(10)

The specifications are given by a damping factor ξ = 0.33 and an undamped natural
frequency ωn = 2.21 rad/s, corresponding to an overshooting of 33% and a peak time
of 1.51 s, which is sufficient to obtain a fast response for the plants in the set considered.
The reset ratio is swept in the interval [0, 1], and the minimum IAE value is chosen for each
combination (k,τ). Figure 4 shows the relationship between the best pr (minimum IAE) and
the gain and the time constant of the system.
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Figure 4. Sweep of pr and second-order polynomial fitting for the tracking problem.

Using the MATLAB Curve-Fitting toolbox, the following equation is obtained for the
curve in Figure 4:

pr(k, τ) = 0.46 + 5.14 · 10−17k + 0.12τ − 4.10 · 10−18k2 + 2.43 · 10−18kτ − 0.01τ2

It is important to note that the terms for the gain k in the previous expression are
too small, as also can be deduced from Figure 4, and therefore they can be omitted. Once
the k terms are omitted, a more precise equation can be obtained based on a fifth-order
polynomial, as follows:

pr(τ) = 0.21 + 0.44τ − 0.14τ2 + 0.02τ3 − 1.75 · 10−3τ4 + 5.49 · 10−5τ5

Figure 5 shows the validation of this equation, where it can be observed that the
proposed expression works properly for different values of τ.

2 4 6 8 10 12 14 16

0.6

0.7

0.8

0.9

p
r

Original points

Fifth order polynomial

Figure 5. Fitting of pr as a fifth-order polynomial function of τ.

However, the proposed polynomial solution is not bounded and, as previously men-
tioned, pr must be in the [0, 1] interval. Therefore, for values of τ outside the range [1, 10],
pr in [0, 1] is not guaranteed. So, a different kind of fitting function must be used, and thus
the following exponential function is proposed

pr(τ) = 1 − e f (τ) (11)

where

f (τ) = −1.12 · 10−5τ5 + 0.54 · 10−3τ4 − 0.01τ3 + 0.11τ2 − 0.72τ − 0.16

Figure 6 shows the validation for Equation (11). As observed, for large values of
the time constant, pr becomes equal to 1, and for very low values, pr → 0.15. Therefore,
Equation (11) is also valid for (k, τ) outside the domain [1, 10]× [1, 10] considered for sweep.
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For the particular case of an integrator plant (τ → +∞), pr is equal to 1, which is in line
with the results in [18].

0 2 4 6 8 10 12 14 16
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
r

Exponential fitting

p
r
 vs 

Figure 6. Fitting of pr as the exponential function of τ in Equation (11).

Note that the assumption of ξ = 0.33 for a PI+CI is adequate independently of the
dynamic of the process (to achieve a sufficiently oscillatory response as suggested in [9]);
however, the value of ωn = 2.21 (peak time of 1.51 s) may not be adequate for a process
with a time constant less than one. On the other hand, as will be shown in the next section,
for the regulation problem, pr depends only on the damping factor. So, in order to study
the optimum value of pr for both the tracking problem and the regulation, the tracking
problem must also be analyzed in terms of this parameter. The previous study shows
the independence of pr with respect to the gain of the process. Therefore, a new study is
considered in which the sweep is carried out only on parameters ξ and n = tp/τ, with tp
being the peak time. A tp between 0.3τ and τ, and ξ between 0.22 and 0.46 (overshoot
between 20% and 50%) are considered. Notice that this value for the overshoot ensures
a sufficiently oscillatory response as suggested in [9]. Values over 0.46 give oscillations
smaller than 20%, which does not justify the need for a reset element. On the other
hand, the value of 0.22 provides just an overshoot of 50%, which is a too aggressive
specification. Smaller values of the damping factor would provoke too large control signal
peaks and leave the system in permanent saturation during the transient period. For the
peak time, an interval between 30% and 100% of the open-loop time constant has been
chosen, but without loss of generality, the same procedure presented below can be applied
using a different interval. Figure 7 shows the result of this sweep and the fit given by the
following polynomial.

pr(ξ, n) = 0.95 + 0.24ξ − 0.32ξ2 − 0.20n − 0.91ξn + 0.68ξ2n + 0.13ξn2 (12)
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Figure 7. Sweep and fitting of pr as a polynomial of n and ξ specifications.

3.2. Regulation Problem

Following the same procedure presented in the previous section, a sweep is carried
out on the parameters k and τ to obtain pr to ensure the minimum IAE for the disturbance
rejection problem. However, in this case, the value of the reset ratio obtained is always
pr = 0.25. Figure 8 shows the response of some representative plants.
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Figure 8. Performance for a representative set of plants using pr = 0.25 for the regulation problem.
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Therefore, pr does not depend on the dynamics of the process. As in the previous case,
it depends only on the closed-loop specifications. Making exactly the same sweep as in
the tracking case, the third-order polynomial in Equation (13) is calculated to fit the data,
as Figure 9 shows.

pr(ξ, n) = 0.54 − 1.26ξ + 1.74ξ2 − 1.74ξ3 + A(ξ, n) (13)

where

A(ξ, n) = 10−15 · (8.60ξn − 3.17ξ2n − 4.36ξn2 − 4.22n + 4.23n2 − 1.44n3)

which can be neglected. So, pr only depends on ξ, as follows:

pr(ξ) = 0.54 − 1.26ξ + 1.74ξ2 − 1.74ξ3 (14)

To validate this new rule to obtain pr for the regulation problem, the value ξ = 0.33 is
used in Equation (14), resulting in pr = 0.25 as expected.

Figure 9. Fitting of pr as a third-order polynomial of specifications n and ξ.

3.3. Combined Tracking and Regulation Problems

When tracking and regulation problems are considered at the same time, the optimum
pr must belong to the surfaces in Figures 7 and 9. Figure 10 shows both surfaces in the
same plot. As observed, the surfaces do not intersect, and thus it is not possible to obtain a
flat response after the first reset instant for tracking and regulation simultaneously.
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Figure 10. Optimum pr for tracking (upper) and regulation (lower) problems.

Therefore, a possible solution is to use the scheme in Figure 11, where the optimal
pr is selected (prt for the tracking problem from Equation (12) and prr for regulation
from Equation (14)) based on changes in inputs (measurable disturbances are assumed).
Notice that measurable disturbances are common in the process industry, such as pressure,
temperature, solar radiation, wind speed, flow rate, etc. To ensure smooth transfer between
switchings, a tracking mode option is included in the controllers using Tt =

√
τi [24].

Figure 11. Reset switching control scheme.

Now, two cases are considered to set the supervisor behavior up: when a disturbance
appears during a setpoint change and when a setpoint change is introduced during a distur-
bance rejection. Figure 12 shows a scenario that includes both cases, where two disturbances
and three setpoint changes are considered. The first disturbance is introduced before the
first reset time, the second disturbance is introduced at time t = 10 (s), before achieving
the steady state after the second setpoint change, and finally a third setpoint change is
introduced at time t = 15 (s), before achieving the steady state after the introduction of the
third disturbance. In this simulation, the supervisor is configured to use the optimum value



Actuators 2024, 13, 67 11 of 20

for the tracking from Equation (12). Figure 13 shows the simulation results for the same
scenario but using the optimum reset ratio for the regulation problem from Equation (14).
The IAE resulting for the first case is 3.059, and for the second one, it is 2.8274.
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Figure 12. Switching control performance for the proposed scenario with pr from Equation (12).
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Figure 13. Switching control performance for the proposed scenario with pr from Equation (14).
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Now, the same scenario is considered but using a plant with the same time constant
as in previous cases and with static gain equal to 0.1. As shown in Figure 14, the effect of
the disturbances is very small due to the small value for the gain of the system, and thus
in this case, using the optimum value of pr for the tracking problem would be the best
choice. In this case, an IAE of 1.1914 results when the optimum value for tracking is used
(Supervisor 1 in the figure) and an IAE of 1.382 results when the supervisor selects the
optimum value for regulation (Supervisor 2 in the figure).
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Pr

Supervisor 1

Supervisor 2

Figure 14. Switching control performance for the proposed scenario, with pr from Equation (14)
and (12), for a plant with small static gain.

So, the following rule can be deduced to choose the value for the parameter pr for
cases in which a setpoint change is introduced during a disturbance rejection or when a
disturbance appears during a setpoint change:

pr =

{
prt if |k| ≤ |Ard|(1 + f (Ard))

−1

prr if |k| > |Ard|(1 + f (Ard))
−1 (15)

where prt is given by Equation (12) and prr is given by Equation (14), with f function
given by

f (x) =
{

0, x ≥ 0
1, x < 0

where k is the gain of the system and Ard = Ar/Ad, with Ad being the amplitude of
disturbance input and Ar being the change in reference input. It is important to note that
Equation (15) is also valid for the cases considered in Sections 3.1 and 3.2, i.e., when the
disturbance does not appear during a setpoint change (Ad = 0) and when a setpoint change
is not introduced during a disturbance rejection (Ar = 0), respectively.

Therefore, when the supervisor detects a disturbance or reference change, it must use
the most appropriate pr from Equation (15). Therefore, the framework proposed in this
paper to compute pr from the rules derived from IAE optimization is the first method in
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the literature, to the knowledge of the authors, considering the tracking and regulation
problems simultaneously.

So, the following algorithm (Algorithm 1), considering all cases, is proposed:

Algorithm 1: Control algorithm

1 Set specifications ξ and tp with ξ ∈ [0.22, 0.46] and tp ∈ [0.3τ, τ].
2 Compute n = tp/τ.
3 Compute base PI given by

kp =

(
2πξ

n
√

1 − ξ2
− 1

)
· 1

k

τi =

(
2πξ

n
√

1 − ξ2
− 1

)
· n2τ|1 − ξ2|

π2

4 Compute the tracking constant as Tt =
√

τi.
5 Compute settling time as ts = 4tp

√
1 − ξ2/(ξπ)

6 Compute Ar = Ad = 0, tc = 0 and pr = prr from Equation (14)
7 Loop
8 If (r(t)− r(t−) <> 0) then
9 Compute Ar = r(t)− r(t−)

10 Compute tc = t
11 End
12 If (d(t)− d(t−) <> 0) then
13 Compute Ad = d(t)− d(t−)
14 Compute tc = t
15 End
16 If (Ar <> 0 or Ad <> 0) then
17 Compute pr in Figure 11 from Equation (15)
18 End
19 If (t > tc + ts) then
20 Compute Ar = Ad = 0
21 Compute pr in Figure 11 from Equation (14)
22 End
23 Compute control action
24 End Loop

Although this paper assumes measurable disturbances, notice that in lines 6 and 21 of
the proposed algorithm, the reset ratio is calculated from Equation (14) in order to reject
non-measurable disturbances if they appear when the system is in steady state.

4. Discussion

This section shows 11 study cases to show the capabilities of the proposed algorithm.
Assuming the specifications given by a damping factor ξ = 0.33 and the undamped

natural frequency ωn = 2.21 rad/s (tp = 1.51 s), in the first study case, the process is given
by Equation (9). The base PI is given by kp = 0.64 and τi = 0.20 (s). The value of the reset
ratio to ensure the minimum IAE would be pr = 0.71 according to Equation (12). Figure 15
shows the response for this configuration, where a setpoint change of 1.5 and a disturbance
with amplitude of 1 are introduced at times t = 1 and t = 10 (s), respectively. As shown,
the performance for PI+CI is better (IAE of 1.3489) than for PI (IAE of 1.9109), but it is not
possible to achieve a flat response taking into account simultaneously both tracking and
regulation problems, as expected.

Now, when the value pr is set from Equation (14) and used for both regulation and
tracking problems, the results in Figure 16 are obtained (IAE 1.292). As observed, the re-
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sponse to the regulation problem is flat after the first reset time, as expected, but in the case
of the tracking problem, the response is not flat until the second reset time, obtaining worse
results, in the first part of the simulation, than those in Figure 15. If the algorithm proposed
in the previous section is used, the results in Figure 17 are obtained. As observed, a flat
response is obtained after the first reset time for both tracking and regulation problems,
as expected, resulting in an IAE of 0.9846.
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Figure 15. Performance comparison between PI and PI+CI controllers for pr from Equation (12).
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Figure 16. Performance comparison between PI and PI+CI controllers for pr from Equation (14).
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Figure 17. Performance comparison between PI and the switching controller.

Now, several simulations are performed to validate the algorithm, controlling systems
with different combinations of values for the gain and the time constant. Ten cases are con-
sidered with the gain and/or time constant outside the range [1, 10] considered in Section 3.
Four controllers are compared: a PI+CI with preset from Equation (12) (PI+CI Tracking),
a PI+CI with a preset from Equation (14) (PI+CI Regulation), the base PI, and the proposed
control algorithm. Two scenarios are considered. In Table 1, the results are provided for a
test, Scenario 1, where a reference of amplitude Ar = 1 is inserted at time t = 1 (s) and a
disturbance with amplitude Ad = 1 is added in steady state at time t = 5 ∗ tp + 1 (setpoint
change and disturbance arriving in steady state). Note that the time to add the disturbance
depends on each particular system (tp = n ∗ τ). In all cases, the control algorithm provides
the best results. Table 2 shows the results for scenario 2, where an amplitude change of set-
point of Ar = 1 is introduced at time t = 1 (s), a disturbance of amplitude Ad = Ar/(2 ∗ k)
is inserted at time t = 1.1 ∗ tp + 1 (s), between the first and second reset time after the
change of setpoint, a second disturbance of Ad = 2 ∗ Ar/k is added at t = 6 ∗ tp + 1 (s),
and a second change of setpoint with amplitude Ar = 1 is introduced at t = 7 ∗ tp + 1 (s)
before achieving steady state after the second disturbance. In all cases, the control algorithm
shows the best IAE. To visualize the scenarios used for the simulations, Figure 17 shows
a simulation for scenario 1 (but using Ar = 1.5), and Figure 18 shows a simulation for
scenario 2, which is used to calculate Tables 1 and 2, respectively, where the system is given
by Equation (9). In this case, IAE values of 1.5577, 1.4234, 1.3024, and 2.0344, respectively,
are obtained for the four controllers previously mentioned.
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Figure 18. Performance comparison for scenario 2 and system given by Equation (9).

Table 1. Comparison in terms of IAE between four controllers for different systems in simulations
assuming changes in disturbance and setpoint occuring at steady state.

Plant PI+CI Tracking PI+CI Regulation Algorithm Base PI

k = 20 τ = 30 107.86 54.44 51.258 81.861
k = 30 τ = 20 104.98 50.046 48.156 75.231
k = 0.1 τ = 20 6.0852 8.9267 5.8518 13.424
k = 20 τ = 0.1 0.3595 0.18146 0.16609 0.27284
k = 0.1 τ = 0.5 0.15212 0.22319 0.14634 0.335759
k = 0.5 τ = 0.1 0.037044 0.047396 0.032019 0.0713055
k = 5 τ = 0.1 0.11145 0.078324 0.06304 0.1178
k = 0.1 τ = 5 1.5213 2.2319 1.463 3.3584
k = 20 τ = 5 17.976 9.0733 8.344 13.642
k = 5 τ = 20 22.293 15.665 12.589 23.569

Table 2. Comparison in terms of IAE between four controllers for different systems in simulations
mixing disturbance and setpoint change occuring at non-steady state.

Plant PI+CI Tracking PI+CI Regulation Algorithm 1 Base PI

k = 20 τ = 30 23.455 21.355 19.485 30.551
k = 30 τ = 20 15.637 14.236 13.04 20.325
k = 0.1 τ = 20 15.634 14.235 13.053 20.36
k = 20 τ = 0.1 0.078188 0.071176 0.065103 0.10183
k = 0.1 τ = 0.5 0.39087 0.35589 0.32611 0.50932
k = 0.5 τ = 0.1 0.078163 0.071173 0.065253 0.10182
k = 5 τ = 0.1 0.078162 0.071173 0.065217 0.10169
k = 0.1 τ = 5 3.9077 3.5589 3.2627 5.0921
k = 20 τ = 5 3.9092 3.5592 3.2354 5.0909
k = 5 τ = 20 15.638 14.236 12.991 20.365
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5. An Example

In this section, the previous rules are tested using a fluid flow reservoir (Figure 19).
We assume that the water in the tank is incompressible and the flow is inviscid, irrotational,
and steady and the mathematical nonlinear model, derived from basic principles of science
and engineering [25] is given by:

Figure 19. The fluid flow reservoir configuration.

Aḣ(t) = q1(t)− a
√

2gh(t) + q2(t) (16)

where A is the tank area, ρ is the density of water, a is the output port area, h(t) is the height
of the water in the reservoir, g is the gravity constant, q1(t) is the input mass flow rate
and q2(t) is a measurable disturbance of the mass flow rate. This nonlinear system can be
approximated by a linear system using Taylor series expansion about an equilibrium flow
condition and neglecting the higher-order terms. When the tank system is in equilibrium,
ḣ(t) = 0, thus defining q∗1 and h∗ as the equilibrium mass flow rate and the water level,
respectively, and

h(t) = h∗ + ∆h
q1(t) = q∗1 + ∆q1

(17)

the linear approximation is given by the following:

∆ḣ(t) = − a2gρ

Aq∗1
∆h(t) +

1
ρA

∆q1(t) (18)

where ∆h is the deviation in the water level from the operating point due to a deviation
from the nominal input mass flow rate ∆q1. Assuming A = 840 (cm2), a = 2 (cm2),
g = 981 (cm/s2), h∗ = 5 (cm), and q∗1 = 198.09 (cm3/s), the following transfer function
is obtained:

∆H(s)
∆Q(s)

=
0.0505

42.4048s + 1
(19)

Assuming the closed-loop specifications given by a damping factor ξ = 0.33 and
the undamped natural frequency ωn = 0.1570 (rad/s) (tp = 21.2024 (s), that is, n = 0.5),
the base PI is given by kp = 67.2121 (cm3/s/cm) and τi = 3.2476 (s). The simulation
scenario is given by a first positive change in the set point of Ar = 1 (cm) at t = 10 (s),
which is followed by a second change in the setpoint at t = 10 + 5 ∗ tp (s) with a value of
Ar = −1 (cm). Subsequently, when the system is in steady state, a disturbance is applied
at t = 10 + 10 ∗ tp (s) with Ad = 80 (cm3/s), which is followed by another disturbance at
t = 10 + 15 ∗ tp (s) with Ad = −50 (cm3/s). Finally, a new change in the setpoint is applied
with Ar = 1 (cm) before achieving steady state at t = 10+ 15.5 ∗ tp (s). The results obtained
using the model described by Equation (16) for the system are shown in Figure 20. Note
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that in t = 0 (s), the control signal q1(t) = q∗1 and the signal output h(t) = h∗, because the
approximation is only valid at the chosen operation point. As shown, the supervisor in
Figure 11 following the proposed control algorithm allows one to obtain a much better
response vs. the base PI with an IAE of 26.736 vs. the IAE of 51.525 obtained for the
PI. Notice that in this simulation, the nonlinear model described in (16) was used as a
plant, demonstrating that the performance of the proposed approach works with nonlinear
systems around a given operating point.
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Figure 20. Level control for a fluid tank using the proposed solution vs. a classical PI.

6. Conclusions and Future Work

This paper proposes an algorithm based on simple tuning rules for the PI+CI controller,
for both tracking and regulation problems, assuming first-order dynamics for the plant.
These rules assure optimal performance in terms of the Integral Absolute Error (IAE)
and, in contrast to those already existing in the literature, depend only on the closed-loop
specifications. Furthermore, the proposed control algorithm makes it possible to consider
for the first time the tracking and regulation problems simultaneously, i.e., cases where
setpoint changes and disturbance arrivals can occur at the same time before reaching a
new steady state. So, this work shows that the minimum IAE criterion is an adequate
tool for design purposes. The proposed rules can also be applied to higher-order systems
when they can be approximated by first-order models. The main limitation and, at the
same time, the main advantage of these rules is given by the method used to obtain them.
The numerical method provides a solution close to the optimum theoretical results obtained
in the literature but being more practical and generalizable to more complex problems.
Moreover, note that this method only ensures the best behavior when measurable step-
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like disturbances are considered. In future work, this idea will be extended to cope with
first-order systems with dead time using a variable reset ratio and a variable reset band.
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