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Abstract: This paper introduces a control method tailored for the speed regulation of monorail cranes
in coal mines. Initially, an analysis of the structure and load conditions of the monorail crane drive
components is conducted to calculate the traction force, clamping force, and target travel speed across
varying operational scenarios. Subsequently, the hydraulic system schematic of the monorail crane
is analyzed to develop a mathematical model for speed control, enabling the assessment of system
stability using transfer functions. A simulation model of the monorail crane speed control loop is
then created in AMESim, where fuzzy adaptive PID controllers and MPC controllers are optimized in
a collaborative simulation with Simulink. Experimental findings reveal that in a single acceleration
condition, both controllers demonstrate superior dynamic response compared to a traditional PID
controller, with the MPC controller exhibiting an overshoot of merely 8.9%. In speed variation
conditions, the MPC controller achieved a settling time in the range of 0.26–0.3 s. Notably, the MPC
controller displays a maximum overshoot of 11%, substantially enhancing the dynamic response
performance of speed regulation in monorail cranes.

Keywords: monorail crane; hydraulic system; speed control loop; simulation model; fuzzy adaptive
control; MPC controller

1. Introduction

Coal is the most economical and reliable resource among primary energy sources in
China [1]. Traditional coal production processes involve tunneling, mining, and transporta-
tion. As mining capabilities have advanced, there is an increased demand for efficient
transportation [2]. Coal mine transportation is categorized into main and auxiliary types:
the former handles raw coal transport, while the latter manages the transport of materials,
equipment, and personnel [3]. Auxiliary transportation equipment can be classified into
two main types based on their driving mechanism: rail-guided locomotives and trackless
vehicles. Rail-guided locomotives offer several advantages over trackless vehicles, includ-
ing greater traction, superior climbing ability, lower energy consumption, and reduced
maintenance costs. These attributes make them well suited for transporting spoil, materials,
and personnel over long distances and steep gradients in tunnels [4]. Diesel-powered
monorail cranes are the primary equipment used for rail-guided auxiliary transportation in
coal mines.

Monorail cranes primarily operate under manual control. The track of the monorail
crane undulates according to the ceiling profile, and the route includes wind doors, switches,
and gradients that necessitate real-time adjustments to speed and driving force during

Actuators 2024, 13, 467. https://doi.org/10.3390/act13120467 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act13120467
https://doi.org/10.3390/act13120467
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-0805-9210
https://doi.org/10.3390/act13120467
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act13120467?type=check_update&version=1


Actuators 2024, 13, 467 2 of 26

operation. Consequently, driving strategies designed for ground-based rail vehicles that
maintain constant speed or power are not applicable to monorail cranes functioning in
complex environments. The speed control of a monorail crane must consider factors such
as load, operating speed, and fluctuations in working conditions to ensure both stability
and safety during operation, as well as the effectiveness of the control strategy. Achieving
efficient and safe autonomous driving is contingent upon adaptive optimization based on
operational conditions and real-time power matching under load-sensitive contexts.

The foundation for achieving speed regulation in monorail cranes lies in the in-depth
study of their hydraulic drive system, which is a closed hydraulic transmission system.
Quan Fei [5] studied the drive system of electric traction monorail cranes, exploring the
relationship between crane working parameters and the system’s dynamic characteristics
using a 3D model and dynamic simulations. Chen Yu [6] developed a 3D model of the
crane’s drive unit, analyzed the principles of the drive, clamping, and braking hydraulic
systems, and built related mathematical models to analyze dynamic performance. He
also used AMESim to model and simulate the key hydraulic systems of the drive unit
and carried out optimization design. Wang Xu [7] designed a distributed hybrid power
system architecture for diesel-powered monorail cranes, created a physical model of the
hybrid power system using AMESim, and investigated the feasibility and energy-saving
performance of various control strategies based on actual working conditions. Li Kun-
quan [8] established a 3D model of the driving mechanism with SolidWorks, conducted
force analysis, created a simplified hydraulic circuit with AMESim, and obtained curves for
motor speed, output torque, and pump oil pressure variations based on working conditions.
Swider, J. et al. [9] proposed a two-stage braking algorithm and analyzed the effects of
changing braking algorithm parameters on deceleration, braking time, and braking distance
through numerical simulations. The new algorithm can further increase monorail crane
operating speed while ensuring safe braking. These studies primarily focus on the dynamic
models and force states of monorail crane drive systems, but research on optimizing their
dynamic characteristics, particularly adaptive speed optimization matching crane motion
states, is limited.

With the development of auxiliary transportation in coal mines, integration research
of perception technology and control technology has attracted widespread attention [10].
Multi-modal perception technology is the basis for the autonomous judgment of the oper-
ating state of monorail cranes. Jiang, H. et al. [11] proposed an error compensation method
based on the dynamic model of the monorail crane driver’s cab unit and a multi-subsample
error compensation algorithm, achieving high-precision perception of the motion posture
and heading of the monorail crane through an inertial navigation system. Li Honggang
et al. [12], based on the fusion of laser radar and millimeter wave radar in a multi-target
recognition architecture, applied the joint probabilistic data association (JPDA) algorithm
based on Kalman filtering on the basis of data correlation to achieve multi-target recognition
in the mining area environment and built a mine car unmanned driving system platform.
Liu, Z. C. et al. [13] proposed a dynamic inclination estimation method for the monorail
crane by using the Estimate-FocusedEKFNet algorithm to estimate the running inclination
of the monorail crane based on the real-time collection of acceleration, running speed, and
motor output torque parameters by sensors. The above research on motion posture and
motion state perception of monorail movement provides the basis for the formulation of an
adaptive speed control strategy for a monorail crane based on its motion state in this paper.

In this paper, the structure of the monorail crane drive unit, its motion state, and
load characteristics are combined to establish a mathematical model of the speed control
loop, obtain the transfer function of the monorail crane speed control process, and conduct
stability analysis. Furthermore, based on the mathematical model and hydraulic schematic,
an AMESim simulation model of the monorail crane speed control loop is established to
match the parameters of different operating conditions with the speed control process
of the monorail crane. By using a combined simulation interface, different speed control
strategy algorithms are incorporated into the simulation model to reveal the response
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characteristics of the monorail crane speed control loop under different algorithms and to
derive the optimization results for each algorithm.

2. Analysis of the Monorail Crane Drive Unit Structure and Load Characteristics
2.1. Drive Unit Structure

The DC280/160Y explosion-proof diesel engine monorail crane’s driving and braking
actions are typically managed by N ( N = 2 ∼ 10) drive units, each comprising a drive
unit, a clamping unit, and a braking unit [14]. The operating conditions in the tunnel are
relatively complex, with slopes generally not exceeding 25◦ and loads ranging from 15 to
65 tons. The running speed must be adjusted according to the slope and load conditions.
Therefore, monorail cranes are usually equipped with a coasting function. When operating
without a load, some drives can be disengaged to increase speed, while under heavy load,
all drives are engaged to ensure adequate traction [15]. The drive force of the explosion-
proof diesel engine monorail crane investigated in this paper can reach up to 28 kN, and its
three-dimensional model is illustrated in Figure 1.
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Figure 2. Schematic of the forces acting on the friction drive wheel of the drive unit. 

Figure 1. Three-dimensional model of monorail crane drive unit. 1—Brake shoe; 2—guide wheel;
3—friction drive wheel; 4—guide wheel; 5—brake spring; 6—clamping oil cylinder; 7—motor
housing; 8—drive motor; 9—brake oil cylinder; 10—brake arm.

2.2. Force and Load Characteristics of the Drive Unit

The force dynamics of the monorail crane drive unit during actual operation are
complex. The slippage of the friction drive wheel under operating and track conditions
impacts the force exerted on the drive unit. This analysis assumes that the friction drive
wheel does not experience slippage or deformation during movement, simplifying the
force dynamics of the drive unit during operation, as illustrated in Figure 2.
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The traction force is represented by Fq, while Fm denotes the frictional force acting
on the drive friction wheel in the direction of travel. FJ is the clamping force exerted
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on the contact point between the friction drive wheel and the track by the clamping
oil cylinder, and FL refers to the clamping force applied on the motor housing by the
clamping oil cylinder. The vertical restriction of the drive unit is supported on the track
surface by steel guide wheels, offering high stiffness and minimal deformation. To simplify
the analysis, the friction between the guide wheel and the track, as well as the vertical
displacement and friction of the friction drive wheel, are neglected during horizontal
motion. By determining the position of the vertical center of gravity from the front view, a
set of force equilibrium equation, Equation (1), can be derived to establish the balanced
state during horizontal movement. {

FJ L1 = FLL2
Fq/2 = µFJ

(1)

When the monorail crane operates in an inclined tunnel, the force of the load on the
craning mechanism generates a drag force component in the direction of travel on the drive
unit. Disregarding any deformation during travel, the force state of the monorail crane is
depicted in Equation (2). 

Fq = Fg + Fa + Ff + Ff z
Fg =

(
Gq + Gd

)
sinα

Fa =
(
mq + md

)
γa

Ff = µ
(
mq + md

)
cosα

Ff z = 2 fzFmiq

(2)

where Fg represents the gravitational component of the entire vehicle’s weight in the
direction of the slope, kN; Gq indicates the self-weight of the drive unit, kN; Gd represents
the total weight of the lifting load, kN; α signifies the slope of operation in degrees; γ
denotes the inertia coefficient, generally taken as 1.075 for mining equipment; a indicates
the acceleration of the monorail crane during operation. Under normal conditions, when
heavily loaded, a = 0.015 m/s2, and when unloaded, a = 0.3 m/s2, where µ represents
the coefficient of friction between the drive wheel and steel rail, fz signifies the resistance
coefficient, Fm is the hydraulic motor transmission resistance, and iq indicates the number
of drive units put into operation.

The equations described above provide the calculation formula for the traction force
of the monorail crane under slope operating conditions, as depicted in Equation (3).

Fuq =
(
mq + md

)
(gsinα + γa + µgcosα) + 2 fzFmiq (3)

The calculation from equation set (1) infers that the clamping force required for the
friction drive wheel in this state is as follows:

Fu J =

(
mq + md

)
(gsinα + γa + µgcosα) + 2 fzFmiq

2µ
(4)

The clamping cylinder needs to provide a clamping force as follows:

FL =
FJ L1

L2
(5)

Similarly, when operating under downhill conditions, the monorail crane’s required
traction force is determined by Equation (6):

Fdq =
(
mq + md

)
(µgcosα − gsinα − γa) + 2 fzFmiq (6)

2.3. Analysis of Operating Conditions for Monorail Cranes

During monorail crane operation in underground tunnels, its conditions and speeds
are categorized based on factors such as load capacity and tunnel gradient. Ignoring the
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frictional resistance of the drive unit wheels and using relevant technical parameters, the
average maximum haulage weight per drive unit can be calculated with Equation (3). This
calculation is based on a monorail crane with a self-weight of 15 tons and a maximum
traction force of 280 kN for ten drive units.

The monorail crane’s transportation capacity curve indicates that when the tunnel
gradient is below 5◦, the crane’s maximum transportation speed is 2.0 km/h, both when
unloaded and fully loaded. The maximum permissible gradient for operation should not
exceed 25◦, as specified by the Coal Mine Safety Regulations. To facilitate future research
and based on the driving habits of monorail crane operators under varying conditions, the
operational states of the monorail crane are roughly categorized as illustrated in Table 1.

Table 1. Vehicle speeds of the monorail crane under different operating conditions.

Total Weight Gradient Speed

M ≤ 30 t α ≤ 5◦ 2.0 m/s
30 t ≤ M ≤ 60 t α ≤ 5◦ 2.0 m/s

M ≤ 30 t 5◦ ≤ α ≤ 15◦ 2.0 m/s
30 t ≤ M ≤ 60 t 5◦ ≤ α ≤ 15◦ 0.9∼1.5 m/s

M ≤ 30 t 15◦ ≤ α ≤ 25◦ 0.5∼1.0 m/s
30 t ≤ M ≤ 60 t 15◦ ≤ α ≤ 25◦ 0.5 m/s

3. Mathematical Model and Control Principles of Speed Control System

The monorail crane is powered by a diesel engine, which drives the main pump and
gear pump to convert mechanical energy into hydraulic energy. The hydraulic system
utilizes a closed variable system to control the movement functions, including running,
stopping, and brake operation. The motor speed and output efficiency are determined by
the pump displacement. This system is crucial for regulating the speed of the monorail
crane [16]. The brake system and the clamping system both serve the speed control system.
Owing to the complexity of the monorail crane system and the constraints of real vehicle
testing conditions, this paper will employ simulation models for validation to examine
control strategies for the movement of the monorail crane.

3.1. Hydraulic Drive System

The drive unit’s main pump employs a closed-loop hydraulic control axial piston
variable pump with an integrated slippage oil circuit. Each drive unit features a pair of
drive motors arranged symmetrically on the left and right. The oil circuits for the drive
motors on each side are connected in parallel, and the motors within the same unit rotate
in opposite directions. This configuration primarily facilitates both driving and speed
regulation functions during operation.

The schematic diagram of the hydraulic speed regulation system is presented in
Figure 3. Upon starting the monorail crane, the diesel engine drives the hydraulic main
pump, which delivers high-pressure oil through the filter, proportional valve oil block,
power valve, flushing valve, and cut-off hydraulic control valve to the bidirectional drive
motor. The output oil circuit is controlled to alter the motor’s rotational direction, enabling
the monorail crane to move forward or backward along the track. The motors in each drive
unit are connected in parallel, leveraging the self-balancing characteristics of the parallel
hydraulic system to ensure that the driving forces remain consistent, thereby guaranteeing
synchronized movement of the drive units [17]. To simplify the system representation,
one constant drive unit and one cut-off drive unit are utilized to depict the hydraulic
motor section.
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3.2. Analysis of the Speed Regulation Characteristics of the Drive System

According to the hydraulic principles of the monorail crane drive system, the entire
system is a volumetric speed control circuit of a “variable pump + fixed displacement
motor”. Assuming the volumetric efficiency of the circuit is not considered, its speed–load
characteristics are as follows:

nM =
VBnB
VM

(7)

The displacement of the fixed displacement motor (VM) is constant. When the speed of
the variable pump (nB) remains constant, the motor speed (nM) varies proportionally with
changes in the variable pump displacement (VB). Consequently, the proportional direction
control valve in the speed control circuit can be regulated via an electrical signal, thereby
affecting the operation of the variable pump’s control cylinder.

The expression for the thrust of the proportional solenoid can be determined by the
current (I) flowing through the coil and the displacement (xT) of the armature.

FC = KI I − Kl xT (8)

where FC is the thrust output of the proportional solenoid, N; KI is the current gain of the
proportional solenoid, N/A, with KI =

∂FC
∂I ; Kl is the displacement force increment added

to the spring stiffness.
The force equilibrium equation for the electromagnetic assembly is the following:

FC = mT
∂2xT

∂t2 + CT
∂xT
∂t

+ T (9)

where mT is the mass of the armature, kg; CT is the damping coefficient; T is the exter-
nal load.

Equations (8) and (9) describe the dynamic behavior of the proportional solenoid as
a function of the input current. By applying the Laplace transform and rearranging the
resulting expressions, we obtain the following:

I
(
s
)
=

mTxT
(
s
)
s2 + CTxT

(
s
)
s + Kl xT

(
s
)
+ T

KI
(10)
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For the directional valve spool, the force exerted on it is equal in magnitude but
opposite in direction to the external load force. Thus, the relationship is given by Fx = T &
xv = xT . The dynamic equilibrium equation for the spool is the following:

Fx = mv
d2xv

dt2 + Bv
dxv

dt
+ Kvxv + K f vxv (11)

where mv is the mass of the spool, kg; Bv is the viscous damping coefficient of the spool,
N · s/m; Kv is the spring stiffness of the centering mechanism for the spool, N/m; K f v is
the steady-state fluid dynamic stiffness coefficient acting on the spool, N/m.

By applying the Laplace transform to Equation (11) and integrating it with Equation (8)
through (10), we obtain Equation (12):

xv(s)
I(s)

=
KI

(mT + mv)s2 + (CT + Bv)s +
(

Kl + Kv + K f v

) (12)

The simplified transfer function of the input current to the spool displacement for the
proportional directional control valve is obtained.

xv(s)
I(s)

=
Kbv

s2

ω2
bv
+ 2ξbv

ωbv
s + 1

(13)

where ωbv is the natural frequency, rad/s, with ωbv =
√

Kl+Kv+K f v
mT+mv

; ξbv is the damping

coefficient, with ξbv = 1
2

√
(BT+Bv)

2

(mT+mv)(Kl+Kv+K f v)
; Kbv is the gain coefficient, m/A, given by

Kbv = KI
(Kl+Kv+K f v)

.

The hydraulic oil exiting the proportional directional valve is directed into the valve-
controlled hydraulic cylinder. The mechanical schematic of this system is illustrated in
Figure 4.
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The hydraulic oil exiting the proportional directional valve is directed into the valve-
controlled hydraulic cylinder. The mechanical schematic of this system is illustrated in 
Figure 4. 
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Figure 4. Schematic diagram of the valve-controlled hydraulic cylinder.

Assuming that the sliding valve is at zero opening and the four throttling ports are
symmetrical, for convenience in calculation, the variations from the initial conditions are
represented by the variables themselves. The Laplace transform of the linearized flow
equation is given by Equation (14):

qL(s) = Kqxv(s)− Kc pL(s) (14)

where qL is the load flow rate, L/min, given by qL = q1+q2
2 ; Kq is the flow amplification co-

efficient, with Kq = ∂qL
∂xv

; xv is the spool displacement, m; Kc is the flow-pressure coefficient,

given as Kc = − ∂qL
∂pL

.
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The Laplace transform form of the continuity equation for the hydraulic cylinder’s
flow rate is shown in Equation (15) [18].

qL(s) = Ctp pL(s) + Apsxp(s) +
Vt

4βe
spL(s) (15)

where Vt is the total volume of the two oil chambers of the flow adjustment cylinder, m3;
Ctp is the total leakage coefficient of the flow adjustment cylinder; AP is the effective area
of the flow adjustment cylinder, m2; βe is the overall elastic modulus of the system, N/m3.

The external load force acting on the flow adjustment cylinder generally consists of
four components: inertia force, viscous damping force, elastic force, and other external
loads [19]. The Laplace-transformed form of the resulting equilibrium equation is presented
in Equation (16).

AP pL(s) =
(
mps2 + Bps + K

)
xp(s) + FL(s) (16)

where mp is the total mass attributed to the piston component; Bp is the viscous damping
coefficient of the piston and load; K is the spring stiffness of the load; FL is the external load
force applied to the piston.

By combining Equations (14)–(16), the displacement of the flow adjustment cylin-
der piston, considering the combined effects of the proportional directional valve spool
displacement and the external load force, is expressed in Equation (17).

xp(s) =

Kq
AP

xv(s)− Kce
A2P

(
1 + Vt

4βeKce
s
)

FL(s)
mpVt

4βe A2P
s3 +

(
Kcemp

A2P
+ VtBP

4βe A2P

)
s2 +

(
KceBP
A2P

+ VtK
4βe A2P

+ 1
)

s + KceK
A2P

(17)

where Kce is the total flow pressure coefficient, where Kce = Kc + Ctp.
In the preceding servo system, the presence of an elastic load is nearly negligible.

Consequently, the parameters K = 0, Kce, and BP can be regarded as very small, and their
product is even smaller. As a result, the impact can be disregarded. The simplification of
the preceding equation leads to the derivation of the transfer function between the valve
spool displacement xv(s) and the displacement of the flow adjustment cylinder piston
xp(s), as depicted in Equation (18), and the transfer function between the external load
FL(s) and the displacement of the flow adjustment cylinder piston xp(s), as illustrated in
Equation (19).

xp(s)
xv(s)

=

Kq
Ap

s
(

s2

ω2
p
+

2δp
ωp

s + 1
) (18)

xp(s)
FL(s)

=
−Kce

A2
p

(
1 + Vt

4βeKce
s
)

s
(

s2

ω2
p
+

2δp
ωp

s + 1
) (19)

where ωp =

√
4βe A2

p
Vtmp

; δp = Kce
Ap

√
βemp

Vt
+

Bp
4Ap

√
Vt

βemp
.

The push rod of the flow control lever is connected to the swashplate of the axial piston
pump, enabling it to modify the swashplate angle through the extension and retraction of
the push rod. The change in the swashplate angle is directly proportional to the piston rod
displacement, as presented in Equation (20).

ψ =
ψmax

XmaxXp
(20)

where ψmax is the maximum swashplate angle; Xmax is the maximum displacement of the
flow adjustment push rod.
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Upon obtaining the transfer function of the hydraulic pump variable system, it is
essential to derive the transfer function of the pump-controlled motor system. The following
assumptions are required in this process:

(1) The input speed of the variable pump remains constant;
(2) The interconnecting pipeline between the variable pump and the fixed motor is short,

disregarding pipeline losses. The hydraulic pipelines have identical characteristics,
and the volume of the pump and motor chambers remains constant;

(3) The pressure within the variable pump and fixed motor chambers is atmospheric, and
the leakage is laminar;

(4) All chamber pressures are equivalent, and the physical properties of the hydraulic
fluid remain constant;

(5) The pressure of the replenishment system remains constant, and the low-pressure
pipeline pressure during operation equals the system replenishment pressure;

(6) The input signal is minimal, and pressure saturation does not occur.

The displacement of the variable pump is also approximately proportional to the
swashplate angle [19], which therefore gives the following:

DB = KBψ (21)

where DB is the variable pump displacement, m3/rad; KB is the displacement conver-
sion factor.

The continuous flow equation of the variable pump is as follows:

qB = DBωB − CiB(ph − pl)− CeB ph (22)

where qB is the flow output from the variable pump; ωB is the variable pump speed;
CiB, CeB are the internal and external leakage coefficients of the variable pump; ph is the
high-pressure pipeline pressure; pl is the low-pressure replenishment pipeline pressure.

After performing the Laplace transform on the above equation, we obtain the following:

QB(s) = KqBψ(s)− CtBPh(s) (23)

where Kqp = KBωB; CtB = CiB + CeB.
In the pump-controlled motor system, the flow output from the variable pump is

primarily divided into three components: the flow entering the hydraulic motor, the motor’s
internal and external leakage, and the flow variation resulting from the compressibility of
the oil. Consequently, Equation (24) presents the continuity equation for the high-pressure
chamber of the hydraulic motor.

qB = Cim(ph − pl) + Cem ph + Dm
dθm

dt
+

V0

βe

dph
dt

(24)

where Cim, Cem are the internal and external leakage coefficients of the motor; Dm is the
motor displacement, m3/rad; θm is the motor swivel angle, rad; βe is the effective bulk
modulus of elasticity, N/m3; V0 is the total chamber volume, m3.

The Laplace transform of the above equation yields the following:

QB(s) = (Cim + Cem)Ph(s) + Dmsθm(s) +
V0

βe
sPh(s) (25)

The output torque of the motor in the pump-controlled motor system is primarily
utilized to counteract the motor’s inertial force, the viscous resistance during rotation, and
the external load torque applied to the motor shaft. Thus, Equation (26) represents the
torque equilibrium equation for the hydraulic motor and the load.
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Dm(ph − pl) = Jm
d2θm

dt2 + Bm
dθm

dt
+ G0θm + TL (26)

where Jm is the total rotational inertia of the hydraulic motor and the load, kg/m2. Bm is
the viscous damping coefficient, kg/s. G0 is the load torsional stiffness; TL is the external
load torque on the fixed motor shaft.

The result after performing the Laplace transform is the following:

DmPh(s) = Jms2θm(s) + Bmsθm(s) + G0θm(s) + TL(s) (27)

By combining Equations (23), (25) and (27), we derive the transfer function of the
pump-controlled motor system, as illustrated in Equation (28).

θm(s) =

KqB
Dm

ψ(s)− Ct
D2

m

(
1 + V0

Ct βe
s
)

TL(s)

JmV0
D2

m βe
s3 +

(
JmCt
D2

m
+ BmV0

D2
m βe

)
s2 +

(
1 + BmCt

D2
m

+ G0V0
D2

m βe

)
s + CtG0

D2
m

(28)

where Ct = CtB + Cim + Cem, which is the total leakage coefficient.
In this pump-controlled motor system, the variable mechanism is a servo system, and

its load primarily consists of inertial loads [20]. Here, torsional stiffness can be disregarded,
i.e., G0 = 0. Generally, Dm/Ct ≫ Bm; thus, the above equation can be simplified to
the following:

θm(s) =

KqB
Dm

ψ(s)− Ct
D2

m

(
1 + V0

βeCt
s
)

TL(s)

s
(

s2

ω2
h
+ 2δh

ωh
s + 1

) (29)

where ωh =
√

βeD2
m

V0 Jm
; δh = Ct

2Dm

√
βe Jm
V0

+ Bm
2Dm

√
V0

βe Jm
.

By substituting
·

θm(s) = sθm(s) into Equation (29), we can obtain the transfer function
that relates the motor speed to the input variable, which is the swashplate angle of the
variable pump.

.
θm(s)
ψ(s)

=

KqB
Dm

s2

ω2
h
+ 2δh

ωh
s + 1

(30)

The transfer function of motor speed to the input value is obtained when the input
variable is the external load on the motor shaft.

.
θm(s)
TL(s)

=
− Ct

D2
m

(
1 + V0

βeCt
s
)

s2

ω2
h
+ 2δh

ωh
s + 1

(31)

To establish closed-loop control of the system, the motor speed must be continuously
monitored and converted into a corresponding voltage value using a sensor. This voltage
value is then compared with the desired value for the expected speed, obtaining an error
signal that is subsequently transmitted to the controller through a proportional amplifier.
Through adjustment of the error signal, the motor speed is consistently brought closer to
the desired speed. The speed sensor functions as a proportional component, characterized
by the following transfer function:

Kν =
U(s)

.
θm(s)

(32)

In summary, Figure 5 depicts the transfer function block diagram of the pump-
controlled motor speed control system for the monorail drive system.
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Figure 5. Transfer function block diagram of the pump-controlled motor system.

For the pump-controlled motor system, the dynamic response of the proportional
variable pump and the fixed motor link is the least pronounced within the system, with
a resonant frequency significantly lower than that of the proportional valve and servo
cylinder. As a result, the dynamics of the latter two can be neglected [21]. The transfer
function of the electro-hydraulic proportional directional valve can be denoted as shown
in Figure 5. Additionally, the simplified transfer function of the valve-controlled cylinder
can be condensed into an integral link and a proportional link [22], which leads to the
illustration of the simplified system transfer function block diagram in Figure 6.
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Based on the aforementioned inference, the open-loop transfer function of the system
is represented by the following equation:

Gk(s) =
KaKbvKqKψKqBKv

ApDm

(
s3

ω2
h
+ 2δh

ωh
s2 + s

) (33)

The closed-loop transfer function of the system, when the input signal is voltage U(s),
is expressed as follows:

GB(s) =

.
θm(s)
U(s)

=
Kg

s
(

s2

ω2
h
+ 2δh

ωh
s + 1

)
+ Kνx

(34)

where Kνx =
KaKbvKqKψKqBKv

ApDm
, Kg =

KaKbvKqKψKqB
ApDm

, and Kνx = KgKv.
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The values of the parameters related to the transfer function, as obtained from the
Rexroth series variable displacement pump manual and parameter specifications, are
presented in Table 2.

Table 2. Parameters related to the monorail crane speed control transfer function.

Parameters Values Parameters Values

Ka 0.2 (A/V) V0 3.6 × 10−2 (m3)

Kbv 0.251 Ct 5 × 10−12 (m5/N · s)

Kq 0.1783 (m2/s) Jm 0.052 (kg/m2)

Ap 3.14 × 10−2 (m2) Dm 9.0 × 10−5(m3/rad)

Kψ 5 βe 6.98 × 108 (N/m3)

KqB 1.756 × 10−2 (m3/rad · s) Bm 3.26 (N · m · s)

Kg 280 ωh 55 (rad/s)

Kv 0.15 δh 0.57

Kνx 42

The above parameters are used to obtain the open-loop transfer function of the system.

Gk(s) =
42

3.3 × 10−4s3 + 2.1 × 10−2s2 + s
=

125, 980
s3 + 62.79s2 + 3020s

(35)

The closed-loop transfer function is the following:

GB(s) =
280

3.3 × 10−4s3 + 2.1 × 10−2s2 + s + 42
=

848485
s3 + 62.79s2 + 3020s + s + 127273

(36)

The Bode plot of the open-loop transfer function, shown in Figure 7, indicates that the
system’s gain crossover frequency is below the phase crossover frequency, with both the
phase margin and gain margin being positive. Thus, the system is stable and controllable.
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4. Research on Optimization of Speed Control Characteristics of Monorail Crane Based
on AMESim

This study analyzed the mathematical models of various loops in the speed regulation
circuit of the monorail crane hydraulic system and derived the corresponding transfer
functions. To create a more intuitive simulation model of the monorail crane power system,
AMESim (v.21.1) simulation software can be used to develop this model based on the
established mathematical model.
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The experimental hydraulic system configuration in this paper utilizes an A4VG280
variable pump which is produced by Bosch Rexroth AG located on Glockeraustraße 4
89275 Elchingen, Germany. The main pump has a maximum displacement of 280 mL/r,
while the slippage pump has a maximum displacement of 60 mL/r. The system is powered
by an explosion-proof diesel engine rated, at 160 kW horsepower, running at 2100 RPM, and
a fixed displacement motor with a displacement of 565 mL/r. Subsequently, an AMESim
simulation model of the monorail crane drive speed regulation circuit is developed based
on these parameters.

4.1. Modeling of Variable Displacement Pump Supply Module

As a crucial element of the speed regulation system for pump-controlled motors,
it is essential to precisely simulate the variable displacement pump’s control over the
movement of the variable oil cylinder. This control is achieved through a proportional
valve, ultimately impacting the swash plate angle and fine-tuning the pump’s output
displacement. In this study, the simulation model of the variable displacement pump
supply module is developed leveraging the integrated capabilities of the HCD, mechanical,
and signal libraries in the AMESim software, as depicted in Figure 8.
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Figure 8. AMESim simulation model of the variable displacement pump supply module. 1—Diesel
engine; 2—radial piston pump; 3—slippage pump; 4—low-pressure relief valve; 5—high-pressure
relief valve group; 6—flush valve group; 7—proportional valve; 8—fork mechanism; 9—flow control
cylinder; A—Interface of Oil Route A; B—Interface of Oil Route B.

The relationship between the proportional valve input current signal and the variable
pump output displacement can be found in Figure 9 of the A4VG pump manual.

When the current at terminal A of the solenoid valve ranges from 200 to 400, the
variable pump displacement changes from 0 to the maximum. Conversely, as the current at
terminal A ranges from −400 to −200, the variable pump reverses the output displacement
from the maximum to 0.
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4.2. Modeling of Load Module

The monorail crane’s operational speed varies from 0.5 to 2 m/s under different
conditions. The simulation model depicts the load end with two drive units, comprising
four drive motors, as illustrated in Figure 10.
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In the simulation model, the fixed displacement motor is connected to the torque
and friction modules in the AMESim mechanical library, simulating the process in which
the drive friction wheel, installed on the drive motor of the monorail crane, provides
traction by rolling contact with the rail under the action of clamping force. The load signal
input terminal inputs the clamping force value matched to the operating conditions, with
its simulation calculation module as depicted in Figure 11. The speed sensor provides
real-time motor speed feedback to the controller.
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4.3. Main Speed Control Loop Simulation Model

The primary speed control loop of the monorail crane consists of a variable pump
and several fixed displacement motors. The simulation model for the entire loop was built
using AMESim simulation software, as depicted in Figure 12.

Actuators 2024, 13, x FOR PEER REVIEW 16 of 28 
 

 

 
Figure 12. Main speed control loop simulation model. A—Oil Route A; B—Oil Route B. 

In the above figure, the dashed box represents the interface for the joint simulation 
of AMESim and Simulink. It includes three input interfaces: the v1 interface input repre-
sents the average real-time output value of the speed sensors for the four drive motors, 
the Alpha interface input represents the pitch angle of the monorail crane operation, and 
the M interface input represents the total weight of the monorail crane. The output com-
prises the value of the proportional valve input electrical signal, enabling the joint simu-
lation to achieve automatic speed control of the simulation model. 

4.4. Speed Control Strategy 
The main speed control loop of the monorail crane hydraulic system is a complex 

nonlinear system, influenced by the rheological properties of the hydraulic fluid, load var-
iability, and the precision of the model. These factors impact the dynamic, static perfor-
mance, and control accuracy of the pump-controlled motor speed regulation loop. The 
common control methods utilized in pump-controlled motor simulation research include 
traditional PID control, fuzzy control, and fuzzy adaptive PID control. Assuming the mon-
orail crane operates under clamping force requirements, varied control algorithms are in-
tegrated into Simulink for speed regulation of the AMESim simulation model through the 
joint simulation interface. 

We assume an input target of one for the open-loop transfer function, and its response 
curve is shown in Figure 13. The overshoot is 50%, and the settling time is 0.7 s. 

 
Figure 13. Open-loop transfer function step response plot (input is 1). 

  

Figure 12. Main speed control loop simulation model. A—Oil Route A; B—Oil Route B.

In the above figure, the dashed box represents the interface for the joint simulation of
AMESim and Simulink. It includes three input interfaces: the v1 interface input represents
the average real-time output value of the speed sensors for the four drive motors, the
Alpha interface input represents the pitch angle of the monorail crane operation, and the M
interface input represents the total weight of the monorail crane. The output comprises
the value of the proportional valve input electrical signal, enabling the joint simulation to
achieve automatic speed control of the simulation model.

4.4. Speed Control Strategy

The main speed control loop of the monorail crane hydraulic system is a complex
nonlinear system, influenced by the rheological properties of the hydraulic fluid, load
variability, and the precision of the model. These factors impact the dynamic, static per-
formance, and control accuracy of the pump-controlled motor speed regulation loop. The
common control methods utilized in pump-controlled motor simulation research include
traditional PID control, fuzzy control, and fuzzy adaptive PID control. Assuming the
monorail crane operates under clamping force requirements, varied control algorithms are
integrated into Simulink for speed regulation of the AMESim simulation model through
the joint simulation interface.

We assume an input target of one for the open-loop transfer function, and its response
curve is shown in Figure 13. The overshoot is 50%, and the settling time is 0.7 s.
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4.4.1. Traditional PID Control

The PID controller utilizes feedback to measure the error signal and regulate the
controlled object based on this signal. It integrates three components: proportional, integral,
and derivative. The control equation is described as follows:

u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ + Kd

de(t)
dt

(37)

In the simulation software, the compilation of the PID controller is illustrated in
Figure 14.
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As an illustration, taking the flat and empty transport condition of the monorail crane
as an example with a target vehicle speed of 2.0 m/s, the motor speed is approximately
112 rpm, calculated based on the drive wheel diameter of 340 mm. The control initiates 1 s
after the monorail crane is ready to depart. At this point, the gradient signal in AMESim is
set to 0 and the total weight signal is set to 15,000.

Critical Proportional Method PID Tuning

The PID parameters are tuned using the critical proportionality method. A step signal
is applied to the open-loop transfer function of the system, as defined by Equation (35). By
adjusting only the proportional gain, the system’s response achieves a state of sustained
oscillation, yielding a critical proportional gain Kps = 1.506 and an oscillation period
Tr = 0.114 s. The initial values of the three parameters of the classical PID controller are
calculated according to the rules outlined in Table 3.

Table 3. Critical proportionality method PID parameters table.

Type Kp Ki Kd

P 0.5 Kps
PI 0.45 Kps 0.54 Kps/Tr

PID 0.6 Kps 1.2 Kps/Tr 0.075 KpsTr

Simulation results demonstrate that the control effectiveness improves when utilizing
the PID controller. The step response is shown in Figure 15, and the PID parameters are
derived from the calculations presented in the Table 3.

The figure indicates that, under the influence of a step signal of 112 rpm, the maximum
overshoot is 28.4%, and the time required to reach steady state is 0.52 s.
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Root Locus Method for PID Tuning

The root locus method tunes the PID controller by specifying performance indices
related to the system’s frequency response. The desired index is defined as overshoot
σ ≤ 10% and settling time criteria ts = 0.3 s.

The Bode plot analysis of the open-loop transfer function (Figure 7) yields a gain
margin of Gm = 3.55 dB and a phase margin of Pm = 23.7385◦, corresponding to frequencies
ωcG = 54.9545 and ωcP = 42.8558, respectively. The root locus of the closed-loop transfer
function is depicted in Figure 16.
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Analysis of the open-loop transfer function reveals that the system is a Type 1 system
with a modest phase margin. Recognizing that the addition of an integral term would raise
the system’s order and potentially impact its stability, we opt to omit the integral term
initially and concentrate on PD control.

When a PD controller with parameters k(τs + 1) is introduced, with k = 1 and τ = 42,
the resulting root locus and step response is depicted in Figure 17.
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Figure 17. Root locus plot and step response plot with added PD controller (k = 1, τ = 42).

By substituting (k = 1, τ = 1/30) and (k = 0.01, τ = 1/30), the step response plots are
displayed in Figure 18(1,2), correspondingly. When k > 1, the system response is fast, but
overshoot cannot be reduced. When k < 1, although overshoot is suppressed, the response
time becomes slower (as show in Figure 17), especially when k is minimized, leading to
potential steady-state errors.
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Figure 18. Step response plot of system with added PD controller.

Building on the previous results, we propose adding an integral term to the controller.
The controller structure is defined as follows: k/s (τ1s + 1)(τ2s + 1), with (k = 1, τ1 = 1/30,
τ2 = 1/0.1). The modified root locus and step response are presented in Figure 19. At
this stage, the overshoot is too large, prompting the testing of a proportional gain (k < 1).
Ultimately, the values (k = 1, τ1 = 1/30, τ2 = 1/0.1) are selected. The step response is
shown in Figure 20, where the overshoot is 3% and the settling time is 0.232 s.
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At this stage, the controller’s transfer function corresponds to Equation (38).

Gc(s) =
0.08

s

(
1

30
s + 1

)(
1

0.1
s + 1

)
(38)

By expanding the formula, the corresponding PID coefficients are determined as
Kp = 0.803, Ki = 0.08, and Kd = 0.027.

A Modification of the PID Law

In commercial control systems, the traditional PID control law as Equation (37) can
be adjusted to use the process variable as input for derivative and proportional control,
while the error solely serves as the input for integral control. This adjustment transforms
the control law into Equation (39).

u(s) = −Kp ∗
.
θm(s)− Kd ∗ s ∗

.
θm(s) +

(
Ki
s

)
∗ e(s) (39)

Here, variable
.
θm(s) acts as the process variable, input into the proportional and

derivative stages, while error e(s) continues to be input into the integral component. Using
the control law discussed above, the simulation model diagram developed in Simulink is
shown in Figure 21.
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We systematically tuned the three PID parameters by first adjusting Kp, followed by
Ki and Kd in sequence, and observed the system’s response to a step input with a target
value of one. During the adjustment of Kp, we observed that when Kp > 1, the system
response became unstable and diverged as Kp increased. In contrast, when Kp < 1, further
reduction in Kp led to an increase in settling time. Therefore, the optimal value of Kp was
determined to be slightly less than 1. With Kp fixed, increasing Ki shortened the settling
time; however, when Ki exceeded six, overshoot occurred, and the improvement in settling
time diminished, with the response curve beginning to exhibit oscillations. As a result, Ki
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was set to six. Finally, by adjusting Kd, the response curve was further smoothed. The three
parameters were ultimately set to (Kp = 0.9), (Ki = 6), and (Kd = 0.09), and the system’s
response curve under this controller is shown in Figure 22.
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As shown in the graph, by incorporating the aforementioned controller, the system
exhibits negligible overshoot in response to a step input with an amplitude of one and a
settling time of 0.58 s, demonstrating excellent overshoot suppression.

Conclusion of the Design and Tuning of the Traditional PID Controller

Comparing various PID controller design approaches and tuning strategies discussed
earlier, we infer that the classical PID controller crafted through the critical ratio method
shows slightly inferior performance compared to those tailored using the root locus method
and incorporating process parameter inputs. The PID controller incorporating process
parameter inputs excels in overshoot suppression, while the one fine-tuned via the root
locus method demonstrates swifter settling time response. The root locus method, capable
of limiting overshoot to approximately 3% and ensuring rapid step response, is selected
as the definitive tuning technique for the conventional PID controller in forthcoming
comparative analyses.

4.4.2. Fuzzy Adaptive PID Control

The traditional PID controller previously mentioned performs well in tracking the
target speed of the monorail crane speed control loop. Nevertheless, its PID controller pa-
rameters cannot autonomously adapt to the intricate and fluctuating operational conditions
and the adaptive control requisites of the monorail crane. The fuzzy adaptive PID algorithm
integrates a fuzzy controller and a PID controller. The fuzzy controller uses the error and
its rate of change as inputs and dynamically adjusts the PID controller parameters using
fuzzy rules, ensuring that the controlled object maintains good dynamic and static stability.

For fuzzy adaptive PID control, fuzzy rules must first be formulated. Utilizing these
fuzzy rules, the error and the rate of change of the error are subjected to fuzzification to
obtain corresponding membership degrees. Then, in conjunction with the appropriate
control rules, ∆Kp, ∆Ki, and ∆Kd are calculated, and are subsequently integrated into the
PID controller for operation. The control expression is depicted in Equation (40).

u =
(
Kp + ∆Kp

)
e(k) + (Ki + ∆Ki)

k

∑
n=0

e(n) + (Kd + ∆Kd)(e(k)− e(k − 1)) (40)

(1) Determining input and output fuzzy variables and membership functions

The inputs of this controller are the motor speed deviation e and the rate of change of
the deviation ec. The basic domain for the speed deviation is set to [−50, 50], while the basic
domain for the rate of change is set to [−10, 10]. Correspondingly, the fuzzy domain is
defined as E ∈ [−6, 6], with a quantization factor Ge = 6/50 = 0.12. The fuzzy domain for
the rate of change is defined as Ec ∈ [−3, 3], with a quantization factor Gec = 3/10 = 0.3.
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Based on the results of PID parameter tuning using the critical proportionality method, the
fuzzy domain for the adjustment coefficients of the PID parameters is set to ∆Kp = [−3 3],
∆Ki = [−20 20], and ∆Kd = [−0.0005 0.0005]. The fuzzy subsets for inputs e and ec and
outputs ∆Kp, ∆Ki, and ∆Kd are defined as {NB, NM, NS, ZO, PS, PM, PB}, all utilizing
triangular membership functions.

The above parameters, combined with the experience of experts and technicians, lead
to the derivation of 49 fuzzy rules, as shown in Figure 23 below:

(2) Simulink simulation module construction
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After establishing the fuzzy rules, a PID controller structure with fuzzy adaptive
components was constructed in Simulink using the co-simulation interface, as shown in
Figure 24:
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4.4.3. MPC Controller

Model Predictive Control (MPC) is an advanced control strategy that integrates process
modeling, online optimization, and a rolling time horizon to compute a sequence of control
inputs [23]. The essence of MPC is its use of a process model to predict future system
behavior, allowing for the determination of a series of control actions by optimizing a cost
function designed to guide the system along a desired trajectory.

The formula of the MPC controller is in the form of Equation (41):

xk+1 = Axk + Buk (41)
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Here, (xk+1) represents the system state at time (k + 1), (xk) denotes the system state at
time (k), and (uk) refers to the system input at time (k). The forms of the system state matrix
(xk) and the input matrix (uk) are provided in Equation (42).

Xk =


x(k|k)

x(k + 1|k)
x(k + 2|k)

. . .
x(k + N|k)

 Uk =


u(k|k)

u(k + 1|k)
u(k + 2|k)

. . .
u(k + N − 1|k)

 (42)

Here, ( x(k + i|k) ) represents the predicted state at time (k + i), based on the state at
time (k), and ( u(k + i|k) ) represents the predicted input at time (k + i), based on the input
at time (k). We then assume that the system input at this time is (y = x), with the reference
(R = 0), and the error (E = y − R = x).

Define the cost function (objective function in optimization) J as follows:

J =
N−1

∑
i=0

(E (k + i|k) TQE(k + i|k) + u(k + i|k)T Ru(k + i|k)) + E(k + N)T FE(k + N) (43)

where (E
(
k + i

∣∣k)TQE(k + i|k) ) is the weighted sum of the errors, and (u
(
k + i

∣∣k)TRu(k + i|k) )
is the weighted sum of the inputs. Considering that (E = x), we substitute (E) in the above
expression to obtain the new cost function:

J =
N−1

∑
i=0

(
x
(

k + i
∣∣∣k)TQx(k + i|k) + u

(
k + i

∣∣∣k)T Ru(k + i|k)
)
+ x

(
k + N)T Fx(k + N) (44)

where Q and R are both diagonal matrices. Expanding the above equation with terms
involving x, we obtain its matrix form:

x(k|k)
x(k + 1|k)

. . .
x(k + N|k)


T

Q
Q

. . .
F




x(k|k)
x(k + 1|k)

. . .
x(k + N|k)

 (45)

And substituting


Q

Q
. . .

F

 = Q,


x(k|k)

x(k + 1|k)
. . .

x(k + N|k)

 = Xk into the equation, the

final form of the expansion with respect to x is XT
k QXk Similarly, the final form of the

expansion with respect to u is UT
k RUk, and the cost function is rewritten as follows:

J = XT
k QXk + UT

k RUk (46)

In Equation (41), let the initial condition be x(k|k) = xk, and iteratively compute it,
yielding the following:

x(k|k) = xk
x(k + 1|k) = Ax(k|k) + Bu(k|k) = Axk + Bu(k|k)

x(k + 2
∣∣k) = Ax(k + 1

∣∣k) + Bu(k + 1
∣∣k) = A2xk + ABu(k

∣∣k) + Bu(k + 1
∣∣k)

. . .
x(k + N

∣∣k) = AN xk + AN−1Bu(k
∣∣k) + . . . + Bu(k + N − 1

∣∣k)
(47)
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Convert the above equation into matrix form, and substitute the value of the following
expression into it. 

I
A
A2

. . .
AN

 = M,


0 0 . . . 0
B 0 . . . 0

AB B . . . 0
. . . . . . . . . 0

AN−1 AN−2B . . . B

 = C (48)

Equation (47) can be rewritten as Xk = Mxk + CUk. It can be observed that the state
matrix X is now expressed in terms of the initial condition and input. Substituting this into
Equation (46) yields the final form of the cost function.

J = xT
k Gxk + 2xT

k EUk + UT
k HUk (49)

It can be observed that the cost function has been transformed into a function depen-
dent on the initial conditions and inputs, which satisfies the standard form of a quadratic
programming problem. Consequently, the input that minimizes the objective function, i.e.,
the optimal input, can be determined.

The Simulink toolbox features an MPC controller module. In this simulation, the
sampling time is set to 0.1 s, the prediction horizon is set to 10, the control horizon is set to
2, the input weight is configured to 0.09, and the output weight is configured to 22.5.

Upon configuration, the module is integrated into the simulation model, as shown in
Figure 25.
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5. Analysis of Simulation Results
5.1. Step Velocity Response

As an example, traditional PID and fuzzy adaptive PID control methods are employed
to regulate the hydraulic speed control system model of the monorail crane. Considering
the empty-load transportation condition of a monorail crane with a target motor speed of
112 rpm, the simulation results are illustrated in Figure 26. Specific parameter comparisons
can be found in Table 4.
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Table 4. Comparison table of control effects.

Method Overshoot Steady-State Time

PID 27.6% 0.62 s
Fuzzy PID 20.5% 0.62 s

MPC 8.9% 0.27 s

Based on the statistical data, it is evident that, while all three controllers reach the
steady state at the same time and their overshoot indicators are less than 30% of the control
target, a notable variation exists in these indicators. The MPC controller demonstrates
the smallest overshoot and the smoothest control curve, leading to the most optimal
control effect.

5.2. Response to Changes in Target Speed

During its operation, the monorail crane encounters diverse operational conditions,
necessitating dynamic adjustments to its travel speed. This study utilizes a series of
continuous speed change processes as the control objective to evaluate the stability of speed
regulation across different controllers under varied operational conditions. Using the signal
generator in Simulink, the entire operation of the monorail crane is simulated, including
acceleration to 2 m/s after 10 s, 10 s of travel, deceleration to 0.9 m/s, maintaining that
speed for 10 s, and eventual deceleration to a stop, as illustrated in the simulation results
presented in Figure 27.
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Specific parameter comparisons can be found in Tables 5–7.

Table 5. Comparison table of control effects (Condition #1).

Method Overshoot Steady-State Time

PID 27.6% 0.7 s
Fuzzy PID 22.3% 0.7 s

MPC 8.9% 0.3 s

Table 6. Comparison table of control effects (Condition #2).

Method Overshoot Steady-State Time

PID 33.8% 0.66 s
Fuzzy PID 28.8% 0.66 s

MPC 11% 0.3 s
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Table 7. Comparison table of control effects (Condition #3).

Method Steady-State Time

PID 0.65 s
Fuzzy PID 0.65 s

MPC 0.26 s

The statistical data reveal that during the continuous speed change processes within
Conditions #1 and #2, the traditional PID controller no longer meets the control perfor-
mance requirements in terms of overshoot indicators. While both the fuzzy PID and MPC
controllers perform similarly in steady-state parameters, the MPC controller exhibits supe-
rior overshoot indicators compared to the fuzzy PID in both acceleration and deceleration
conditions. Furthermore, during the deceleration to a stop in Condition #3, the MPC
process demonstrates smoother control with minimal oscillation, ultimately achieving the
most effective control.

6. Conclusions

A fast and precise speed control method is crucial for the efficient operation of a
monorail crane. Consequently, this paper proposes an optimization approach for the
speed regulation characteristics of the hydraulic speed control loop of monorail cranes.
Initially, distinct operational conditions of monorail cranes are identified, and an analysis
of the driving mechanism structure and load characteristics is conducted to establish the
relationship between the traction force of the monorail crane and the hydraulic system
parameters. Subsequently, a mathematical model of the hydraulic speed control loop of
the monorail crane is presented, deriving the transfer function from the electromagnetic
signal of the proportional valve to the variable pump swashplate angle change and to the
hydraulic motor output speed, while ensuring its stability. Employing the mathematical
model and hydraulic schematic, the monorail crane speed control loop is modeled using
AMEsim software and jointly simulated with Simulink to probe the dynamic characteristics
of the speed control loop under the influence of traditional PID controllers, fuzzy adaptive
PID controllers, and MPC controllers. The efficacy of the self-designed fuzzy adaptive PID
controller and MPC controller in the speed control process in this model is verified, with
the MPC controller demonstrating an overshoot of 8.9% in the step response, a maximum
overshoot of 11% during target speed changes, and a steady-state time of 0.26–0.3 s. Its
dynamic characteristics in speed control surpass those of the other two methods. The
collective simulation results furnish a theoretical foundation for achieving adaptive control
and power matching of the monorail crane speed control loop. Furthermore, owing to the
broad applicability of the pump-controlled motor speed control loop, the research findings
can be extended to adaptive speed control of other high-load, low-speed mining machinery.
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