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Abstract: Emerging robotic systems with compliant characteristics, incorporating nonrigid links
and/or elastic actuators, are opening new applications with advanced safety features, as well as
improved performance and energy efficiency in contact tasks. However, the complexity of such
systems poses challenges in modeling and control due to their nonlinear nature and model variations
over time. To address these challenges, the paper introduces Locally Weighted Projection Regression
(LWPR) and its online learning capabilities to keep the model of compliant actuators accurate and
enable the model-based controls to be more robust. The approach is experimentally validated in
Cartesian position and stiffness control for a 4 DoF planar robot driven by Variable Stiffness Actuators
(VSA), whose real-time implementation is supported by the Sequential Least Squares Programming
(SLSQP) optimization approach.

Keywords: physical human–robot interaction; variable stiffness actuators; Cartesian stiffness
shaping; incremental learning; locally weighted projection regression

1. Introduction

Compliant robots constitute a paradigm shift in the field of robotics, characterized by
the deliberate integration of pliable materials designed to emulate the inherent flexibility
and adaptability observed in natural organisms. Unlike their rigid counterparts, even ones
with active compliant control strategies, compliant robots have the unique capability to
undergo deformation and reconfiguration, allowing them to adapt and conform to their
environment. The compliant nature of these robots imparts a level of dexterity and versatil-
ity, making them well suited for tasks that require interaction with delicate objects or for
navigating complex, dynamic environments. As the field continues to advance, compli-
ant robots have the potential to revolutionize various industries by providing innovative
solutions to problems that were once deemed impossible for traditional robotic systems.

Compliant robots have an elastic element between the actuator and the link, which en-
ables diverse variants of compliant actuators to be systematically designed and engineered
by varying actuator configurations and associated elastic elements. They are capable of
absorbing sudden impacts and adapting to them [1–3]. Furthermore, robots with flexible
joints can outperform rigid robots in repetitive tasks [4], or where a high energy impact is
needed to perform tasks such as throwing or nailing [5,6].

The two main types of compliant actuators that have been developed are actuators
with constant or variable compliance. Constant compliance actuators or Series Elastic Actu-
ators (SEA) have one elastic element in series to the motor shaft. To accurately control this
type of actuator, the characteristics of elastic elements need to be known. The precise joint
stiffness of SEA can be acquired either via Finite Element Method analysis or experimentally
[7]. SEA exhibits some low-pass filter properties [8] and improves force accuracy by turning
the force control problem into a position control problem [9]. However, in some tasks,
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constant compliance does not lead to the desired behavior—therefore, higher-precision
path following might not be possible. Conversely, VSAs have a mechanical structure
capable of changing the stiffness properties of the actuator. These types of actuators are
mainly composed of two motors coupled with elastic springs—a bidirectional antagonistic
setup [10], or they use one motor for position change and another for stiffness variation (in-
dependent motor setup) [9]. Basic VSA control methods have generally been founded upon
the actuator model: feedback linearization, decoupled control, cascade control, adaptive
control, etc. [11–15]. All these methods deal with a nonlinear model or its approximation.
Generating the correct representation of the dynamical model is not a trivial task. The
characteristics of the springs, as a source of compliance in compliant actuators, are often
nonsymmetrical, and the geometry of the actuator itself cannot always be represented
correctly. Furthermore, compliant elements are often susceptible to degradation with wear
and time, which reduces model accuracy further.

Modeling motor or actuator transfer functions based on the characteristics provided by
the manufacturer can be a very challenging task. Moreover, two motors from the same batch
with the same declared characteristics do not have exactly matching transfer functions.
Furthermore, VSAs have two motors that both work to shape the actuator characteristics,
making them even more demanding to model. Consequently, the actuator model needs to
be exploited from raw data. Initial approaches to learning models were based on applying
step excitation and measuring actuator response. With that information, ARX, ARMAX,
or other algorithms can be implemented for transfer function learning. Developing more
sophisticated algorithms like neural networks, machine learning techniques, and iterative
learning provides easier ways for model learning of actuators [16–19].

Many researchers in the past have implemented different learning techniques to
map the relation between system inputs and outputs, tune the dynamics, or control the
parameters of a system. In [20], feed-forward control was designed in the form of a PI
controller, which gains updates via iterative learning. Iterative learning control was used
in [21] for feed-forward control in a decentralized manner, where the feedback control part
has a low-gain structure. Generalized iterative learning control for VSA trajectory tracking
is presented in [22]. Furthermore, iterative learning was deployed to balance feed-forward
and feedback elements described in [23], showing better results than conventional feedback
control. Some papers depict a neural network-based adaptive control strategy designed
for controlling VSAs [24,25]. Additionally, neural networks can be applied to predict
human motion, in order to create the desired robot motion and control the robot in physical
human–robot interaction [26]. Reinforcement learning is used for goal-oriented tasks and
model-free control. In [27], the authors report accomplishing variable impedance control
with reinforcement learning algorithms that are model-free. Furthermore, a model-based
policy learning algorithm for closed-loop predictive control of soft robots was implemented
in [28], where feed-forward dynamics are represented by a neural network.

The present research considered bidirectional antagonistic actuators. This type of
actuator has two DC motors linked to an output shaft with springs. The output position
and the stiffness of the actuator can be controlled by changing the position of the two
motors. To construct the required system model, the nonlinear relation between inputs
(DC motor positions) and outputs (joint position and stiffness) needs to be presented. The
complexity of the model depends on the spring’s characteristics. The mathematical model
almost always assumes that the system is symmetric. Since there are no two identical DC
motors or two identical springs, learning algorithms can be applied to learn the model
of a system. Constructing accurate models and executing control over compliant robotic
systems encounter complexities due to unmodeled friction, asymmetry in springs and
motors, and spring nonlinearity.

A key feature of novel compliant robots is advanced and safer physical interaction
with the environment. The performance and capabilities of a robot in physical interaction
are defined by the mechanical impedance of its End Effector (EE) in Cartesian space or
simply by its static component—mechanical stiffness. This property is described by the
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Cartesian stiffness matrix—Kc. Variations in stiffness components can be a tradeoff between
the accuracy of rigid robots and the safety of compliant robots in different directions. The
Cartesian stiffness matrix depends on the configuration of the robot (q) and the stiffness
of each joint, which formulated the diagonal joint stiffness matrix (K j), see Equation (10).
Therefore, accurate and fast information on the position and stiffness of compliant actuators
is essential for planning and controlling the physical interaction of compliant robots that
rely on models.

When it comes to the control of robots driven by rigid joints, Cartesian stiffness is
mainly determined by the robot’s posture. The stiffness of classical industrial robots with
rigid joints is affected by their geometry, material characteristics, actuator and transmis-
sion properties, and the robots’ posture. In order to control the Cartesian stiffness of an
industrial robot and thus make it compliant, researchers have developed different control
strategies like impedance and admittance control [29? ,30]. In addition, it is possible to
control Cartesian stiffness if the robot has more degrees of freedom than the task space via
reconfiguration in the null space [32–36].

However, robots with VSAs can control Cartesian stiffness via robot reconfiguration or
null space variation, as well as by changing the stiffness on the joint level [37]. Using stan-
dard Cartesian stiffness-shaping techniques (active compliance, optimization algorithms),
combined with robots that have flexible joints, can provide better control and a wider range
of achievable Cartesian stiffness [38].

The above-mentioned collaborative approaches enhance efficiency and flexibility in
production processes, reducing the risk of injury by absorbing external forces, which show-
case real-world applications where compliant robots excel in industrial settings. Robots
with compliant features are employed on assembly lines where they can work safely along-
side human workers in the automotive industry [39,40]. Some authors propose the use
of impedance control for collaborative human–robot chamfering and polishing applica-
tions [41], as well as a null-space search for torque-effective drilling [42]. Collaborative
assembly via robot behavior shaping with active and passive compliance was introduced
in [43]. Furthermore, a notable real-world application where compliant robots outper-
form rigid robots is in surgery, specifically in minimally invasive procedures. Compliant
robotic systems, such as the da Vinci Surgical System [44], demonstrate superiority over
rigid counterparts due to their ability to navigate and manipulate soft and delicate tissues
with greater precision and dexterity [45]. The compliance of the robotic arms allows for
more natural and adaptive movements, reducing the risk of tissue damage and improving
surgeon's control [46].

The contribution of this paper is twofold. The LWPR learning algorithm [47] substi-
tutes the traditional way of modeling actuators and maps VSA characteristics, including
the possibility to examine nonlinear phenomena which are often considered as unmodeled
dynamics (frictions or drive asymmetry). Additionally, incremental learning features of
the LWPR algorithm were used to track model parameter changes due to wear and tear.
New measurements are used to expand the learning dataset and incrementally update the
actuator model. The proposed methodology improves simultaneous control of both the
position and passive stiffness of VSAs. Secondly, SLSQP [48–51] optimization was imple-
mented to shape the Cartesian stiffness of compliant robots with VSAs. This algorithm
exploits all the features of quadratic programming, which is used when fast optimization
with constraints is needed. Furthermore, SLSQP can optimize functions that have nonlinear
criteria with nonlinear constraints. The proposed methodology enables Cartesian stiffness
shaping on the EE level to meet the desired robot behavior without concerning stability
issues by leveraging compliant behavior via passive stiffness and robot reconfiguration in
the null space. Correspondingly, combining joint-level stiffness control and reconfiguration
extends the achievable Cartesian stiffness range.

To exploit the full potential of the proposed methodology, the following pipeline
was defined through several steps: (1) learning VSA model parameters using LWPR;
(2) continuous parameters relearning via incremental learning; (3) utilization of the learned
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robotic system model (in our case, 4 DoF planar robot with VSAs); and (4) SLSQP algorithm
to effectively control behavior by determining the optimal configuration and stiffness on
the joint level. The flow chart of the proposed pipeline is presented in Figure 1.

Data set

LWPR
for

VSAs
Learning
param.

1. VSA

2. VSA

...

N. VSA

Compliant
robotic
system

Desired EE 
stiffness

Desired EE
position

SLSQP Observing robot
behaviour

1) LWPR learning 3) Utilization of learned model 4) SLSQP optimization

2) Iterative learning

Figure 1. Flowchart presenting pipeline of the proposed methodology. (1) Learning VSA model using
LWPR phase. (2) Iterative learning phase. (3) Robotic system model building phase. (4) Optimiza-
tion phase.

The rest of the paper is organized as follows. Section 2 introduces a general method
of LWPR utilization for learning the model of compliant joints and then presents its use
case on the QB actuator—the bidirectional antagonistic drive. Section 3 describes a general
SLSQP optimization method for Cartesian stiffness shaping, as well as a use case on
computing positions and stiffnesses for each of the 4 DoF compliant robot joints for the
desired Cartesian stiffness. Finally, Section 4 validates the theory and use cases from
Sections 2 and 3 by introducing external disturbances via a compliant robot equipped with
an F/T sensor that exposes the motion to the 4 DoF complaint robot and measures the
deviation from the desired position. The paper ends with concluding remarks and future
work prospects.

2. Learning a Variable Stiffness Actuator Model

LWPR is used as a learning technique in order to deal with the uncertainties of the
actuator model parameters, as well as the nonlinearity of the actuator and its susceptibility
to change due to wear. The LWPR method is designed to overcome the issue of sparse data
because it is effective in learning when a small amount of data is available or when the
data are noisy. In [47], the authors describe in detail the features of LWPR compared to
other state-of-the-art algorithms, like the Gaussian Process and Support Vector Machine.
Furthermore, the complexity of the LWPR algorithm increases linearly with problem
dimensionality. Regarding computational efficiency, a 70Hz learning rate has been achieved
for a high-dimensional learning problem (90 inputs and 30 outputs). In [52], this technique
is used to map the input/output characteristics of SEA. Paper [53] presents a learning
algorithm to acquire the inverse dynamics of a 7 DoF manipulator. In the present paper,
the LWPR algorithm is used to map the input/output characteristics of VSA, enabling
nonlinear function mapping in high-dimensional space, which is very suitable for learning
the behavior of robotic systems. Its main idea is to fit a nonlinear function using local linear
models. It is shown that locally linear models can be an appropriate substitute for nonlinear
and complex models. The essence of LWPR is to determine the validity region of each local
model. The validity region can be represented in the form of a Gaussian kernel

ωk = exp(−1
2
(x− ck)

T Dk(x− ck)) (1)
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where ck is the center of kth linear model, and Dk corresponds to a positive semi-definite
distance metric that determines the size and shape of the validity region of the linear model.
Algorithms update the distance matrix Dk (Dk = MT

k Mk) by incorporating gradient descent

Mn+1
k = Mn

k − α
∂J

∂Mk
, (2)

where J is the criteria function for minimizing the prediction error of all linear models.
For each input query data, the local linear model calculates the prediction ŷk. The total

output of the learning system is the normalized weighted mean of all K linear models

ŷ =
K

∑
1

ωk ŷk/
K

∑
1

ωk. (3)

To successfully incorporate the LWPR approach into a learning problem, the learning
rate parameter α and the initial values for the distance matrix Dk need to be set properly.
The typical approach, which can be applied to various VSAs, involves configuring the
parameter Dk = rI with a small number for the variable r (e.g., r = 0.05). Then, the model
is retrained by gradually increasing r until the model achieves satisfactory performance.
Also, α can be tuned to improve algorithm performance. This methodology might be
demanding and time-consuming until satisfactory performance is achieved.

QB Move Maker Pro [54] was used in this research as a bidirectional antagonistic
actuator. Figure 2 shows the QB actuator and its functional scheme. This actuator is a
low-cost and open-source variable stiffness actuator. It can be represented as a system with
two inputs (q1 and q2) and two outputs (x and S), where q1 and q2 are the positions of the
primal mover motors (DC motors), and x and S are the output shaft position and joint
stiffness, respectively. The static relation between the position of the QB actuator primal
movers and the equilibrium position and stiffness is given by Equations (4) and (5)

xe = (q1 + q2)/2, (4)

Se = a · k · cosh(a · (x− q1)) + a · k · cosh(a · (x− q2)). (5)

Here, cosh is the cosine hyperbolic function, while a = 6.8465 and k = 0.0223 are
spring parameters obtained via identification.

Figure 2. (a) QB actuator. (b) Functional scheme of QB actuator–bidirectional antagonistic actuator.

A proper training set needs to be collected to map the static relation between the inputs
and outputs of the bidirectional antagonistic actuator. In the proposed application case, a
4 DoF planar manipulator with VSAs, the input dimension is 2× 4 (shaft position and joint
stiffness of each actuator), and the output dimension is also 2× 4 (primal movers position
of each actuator). Data collection is performed on a QB actuator. The authors of [55] suggest
five different patterns of the input/output signals). In the first pattern, the reference signals
for the primal movers are assumed to have a constant difference between them (0, 20, 40,
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60, and 70◦), achieving constant stiffness in each subpattern. The difference between the
primal movers keeps the constant position of each primal mover from changing from −90
to 90 by 5◦. In the following four patterns, the position of the primal movers changed
increasingly from −90 to 90◦ and the difference between their positions changed up and
down from −60 to 60◦. The dataset is presented in Figure 3.

Figure 3. Training patterns designed to cover the entire range of actuator positions and stiffness.

After designing and collecting the training data, the actuator model was learned and
the feed-forward control method was implemented. Feed-forward control was used to
faithfully represent the accuracy of the learned model. The following diagram represents
the control functional scheme (Figure 4).

Shaft position

Shaft stiffness

LWPR model
QB actuator

Actual shaft
position

Actual shaft
stiffness

Figure 4. LWPR feed–forward control scheme that maps the reference actuator position and stiffness
to the motors’ position.

The results from the learned model and the mathematical representation of the static
actuator model are shown in Figure 5, to illustrate how well this model can track reference
motion. The static model was formed using Equations (4) and (5).
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Figure 5. Achieved position (a) and stiffness (b) tracking results using standard mathematical model
(red) and LWPR model (yellow).

It is apparent in Figure 5 that the LWPR and static models of the actuator yield similar
position tracking results, but the LWPR model is better in stiffness tracking. However,
more effort needs to be put into conducting the detailed mathematical model (including
spring and motor asymmetries and friction) compared to the LWPR method, since machine
learning techniques simplify model development.

To represent the incremental learning features of the LWPR algorithm, a series of exper-
iments were performed in a simulation environment, using the same learning methodology.
After data collection, learning of the actuator model proceeded with LWPR. The initial
results from the feed-forward control are shown in Figure 6, light red). Changing the char-
acteristics of one spring on this simulated actuator led to undesired behavior. It is obvious
that with new spring parameters, the previously learned model did not consistently track
the reference path and stiffness. The reason for this is evident since the actuator model was
learned for the initial model parameters (Figure 6, yellow).

When the classical mathematical model is used, a robust controller needs to be devel-
oped to suppress the disturbance due to the change in actuator parameters. Designing a
robust controller for this type of highly nonlinear system can be challenging. Consequently,
it is more convenient to use the incremental learning features of the LWPR. The same
model that was learned at the beginning can be used in the process of relearning. Due
to model uncertainties introduced by drastic parameter changes (not likely to happen in
real-life scenarios, where parameter degradation occurs gradually), new measurements are
introduced in the learning set. The new actuator model was learned successfully after only
four iterations (Figure 6). In the case of a large deviation from the initial parameters, the
model can be relearned an arbitrary number of times.
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Figure 6. Achieved position (a) and stiffness (b) tracking results after changing spring parameters
(yellow) and after four incremental learning iterations (dark red).

3. Planning End-Effector Cartesian Stiffness

This section presents an optimization algorithm for shaping a robot’s EE Cartesian
stiffness. To achieve the desired stiffness, the nonlinear function needed to be minimized.
SLSQP optimization was used to shape the Cartesian stiffness. This method is an iterative
procedure for minimizing nonlinear functions with nonlinear constraints. In each iteration,
SLSQP was reduced to a quadratic programming (QP) subproblem by transforming nonlin-
ear functions into quadratic approximation. Furthermore, the result of one QP iteration
was used as the starting point for another SLSQP iteration. The problem statement can be
formulated as follows

min f (ω), over ω ∈ Rn,

subject to h(ω) = 0,

g(ω) ≤ 0,

(6)

where the objective function is represented as f : Rn → R, while functions h : Rn → Rm

and g : Rn → Rz are the equality and inequality constraints for an optimization problem.
The value n represents the number of variables in vector ω (robot’s joints position vector
and joint stiffnesses) for which optimization is performed, and m and z are the number of
equality or inequality constraints, respectively.

For redundant compliant robots, there is an infinite number of robot configurations
for one EE position. EE Cartesian stiffness can be alternated by changing the configuration
and joint stiffness of the robot. The primary focus of the authors’ previous research was
the EE Cartesian stiffness control of task-redundant robots with SEAs [56]. The SLSQP
algorithm was used to optimize the robot configuration via the null space search, in order
to achieve the desired EE Cartesian stiffness. This paper provides an extension of the topic
by introducing VSAs in the 4 DoF planar manipulator. To run the optimization algorithm,
a kinematic model of the proposed robotic system needed to be developed.

Based on Figure 7, the Cartesian position of the robot EE is defined as

x = l1cos(q1) + l2cos(q1 + q2) + l3cos(q1 + q2 + q3) + l4cos(q1 + q2 + q3 + q4), (7)
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y = l1sin(q1) + l2sin(q1 + q2) + l3sin(q1 + q2 + q3) + l4sin(q1 + q2 + q3 + q4), (8)

θ = q1 + q2 + q3 + q4, (9)

where q1, q2, q3, q4 are the joint positions and l1, l2, l3, l4 are the lengths of the robot links.
The robot stiffness in the Cartesian space is in direct relation to the robot configuration and,
therefore, directly related to the Jacobian matrix J.

rr

q1

q2

q3

q4

y

x

Figure 7. Planar manipulator with 4 DoF consists of variable stiffness actuators.

In the case of VSA-driven robots, Cartesian stiffness is influenced by the robot joint
stiffness matrix that has a diagonal matrix form K j = diag(ki), where ki is the i-th joint
stiffness. The Cartesian stiffness matrix can be defined as

Kc = (J(q)K−1
j J(q)T)−1, (10)

where Kc is the symmetric 2× 2 matrix and q is a 4-dimensional joint position vector.
Only optimization of the kc11 and kc22 elements will be considered, as they represent

stiffness along the X and Y axes in Cartesian coordinates

Kco =

[
kc11 0
0 kc22

]
, (11)

where kc11 is stiffness along the X axis and kc22 is stiffness along the Y axis. The desired
Cartesian stiffness can be represented as a 2× 2 diagonal matrix

Kcd =

[
kcdx 0

0 kcdy

]
. (12)

For the purpose of optimization, the weighted Frobenius norm was used to describe
the process performance index (criteria function). The task was to minimize the norm f (ω)
and therefore achieve stiffness tracking.

f (ω) =
√

A(kcdx − kc11)
2 + B(kcdy − kc22)

2. (13)
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Coefficients A and B are weighted factors used to favor one axis over the other.
For the optimization process, following the desired EE position can be considered as an
optimization constraint. In fact, the optimization process needs to find the robot joint
coordinates qo1, qo2, qo3, qo4 and joint stiffness k jo1 , k jo2 , k jo3 , k jo4 that provides the minimal
norm (Equation (13)) and satisfies the constraint that can be described by

h(ω)1 = −xd + l1cos(qo1) + l2cos(qo1 + qo2) + l3cos(qo1 + qo2 + qo3) + l4cos(qo1 + qo2 + qo3 + qo4), (14)

h(ω)2 = −yd + l1sin(qo1) + l2sin(qo1 + qo2) + l3sin(qo1 + qo2 + qo3) + l4sin(qo1 + qo2 + qo3 + qo4). (15)

By repeating this process, the optimization algorithm can lead to a local minimum
because the algorithm is based on gradient descent.

A simulated 4 DoF planar manipulator was used to validate the optimization tech-
nique. In the simulation, the robot link lengths were set at l1 = l2 = l3 = l4 = 0.1 m.
First, the optimization process was simulated over one axis, then over the X axis and Y
axis simultaneously. To prove that the optimization technique was working, several cases
of the desired robot configuration and stiffness were introduced in the simulation. QB
Move Maker Pro parameters were used to achieve more realistic simulation results. The
active rotation angle was ±180◦, and the minimal and maximal stiffness were 0.5 Nm/rad
and 13 Nm/rad, respectively. At the beginning of each simulation, the initial robot joint
stiffness was set to 5 Nm/rad. The time needed to calculate the optimal robot configuration
and joint stiffnesses was 0.004± 0.001 s.

3.1. Optimization over One Axis

For one-axis optimization, the value of one coefficient, A or B, in Equation (13) needed
to be set to 0. If coefficient A is 0, then optimization is performed over the Y axis and vice
versa. The robot manipulator is set at some point in the workspace and the algorithm is
started. A couple of trials of one-axis optimization are presented in Table 1.

Robot joint stiffness was changed during the simulation, as was joint position, in
order to achieve the desired stiffness at a particular position in the workspace. As shown
in Table 1, in the case of the one-axis optimization, the algorithm is capable of finding a
robot configuration that satisfies the constraints and achieves the desired stiffness along
the selected axis.

3.2. Multiple Axis Optimization

Optimization over multiple axes was expected to be more complicated than over one
axis, leading to deviation from the desired Cartesian stiffness tracking. In general, the
algorithm needs to satisfy the constraints first and then find the robot configuration and
joint stiffness that will achieve the desired Cartesian stiffness along multiple axes. To obtain
results, coefficients A and B were set at value 1. Even though the optimization algorithm
found the optimal robot configuration and joint stiffness that successfully tracked the
desired Cartesian stiffness, as shown in Table 2, the optimization algorithm can fail to find
a solution that could track the desired stiffness. Two main reasons can lead to this behavior:
(1) in a particular position, the robot cannot physically achieve the desired stiffness, or
(2) the optimization algorithm is stuck at the local minimum. This can be overcome by
multiple trials of the same desired position and stiffness with different initial positions
to find the global minimum. In some scenarios, ideal Cartesian stiffness tracking is not
mandatory since in most cases, it is satisfactory to achieve stiff or compliant behavior in a
moving direction.
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Table 1. One-axis optimization across Y axis.

Sim.
Desired Pos. Init. Conf. Res. Stiff. Res. Conf. Res. Pos.

Norm Val.
Stiffness:

x, y q1,2,3,4 kj1,2,3,4 q1,2,3,4 x, y Ach. (Des.)
[m] [Rad] [Nm/Rad] [Rad] [m] [N/m]

1
0.0241 1.1472 7.1004 1.5707 0.0241

2.8055× 10−5
2351.1272 0.5348 −0.8605

0.3564 −0.2472 3.5427 0.9859 0.3564 (235)0.7154 0.6301 0.2777

2
0.0241 0.9472 6.7482 1.2941 0.0241

6.6554× 10−6
4400.8972 1.6680 −0.2958

0.3564 −0.2472 4.5738 0.5010 0.3564 (440)0.9054 2.5607 0.7727

3
0.1125 1.1472 2.0157 0.8516 0.1125

6.0982× 10−5
728.081.1272 0.5133 0.0298

0.3198 0.0146 12.0378 1.3616 0.3198 (745)−0.8554 3.7201 −1.1421

4
0.1125 0.9472 5.9942 0.9342 0.1125

1.1922× 10−5
13500.8972 2.7714 −0.2770

0.3198 0.0146 9.3229 1.5074 0.3198 (1350)−0.0783 3.1778 −0.8967

Table 2. Multiple axes optimization.

Sim.
Desired Pos. Init. Conf. Res. Stiff. Res. Conf. Res. Pos.

Norm Val.
Stiffness:

x, y q1,2,3,4 x, y q1,2,3,4 x, y Ach. (Des.)
[m] [Rad] [Nm/Rad] [Rad] [m] [N/m]

1
0.0241 1.1472 12.9489 0.9865 0.0241

1.6819× 10−4
60; 3501.1272 13 0.1284

0.3564 −0.2472 3.4717 0.7027 0.3564 (60; 350)0.7154 0.5000 0.2841

2
0.0241 0.9472 12.6546 1.5690 0.0241

9.0114× 10−4
75; 27000.8972 12.7370 0.3654

0.3564 −0.2472 8.5553 −1.2348 0.3564 (75; 2700)0.9054 5.0958 1.0421

3
0.1125 1.1472 7.1619 1.4837 0.1125

1.4× 10−3
149.9; 499.91.1272 5.9281 0.4001

0.3198 0.0146 8.3310 −0.7289 0.3198 (150; 500)−0.8554 5.5392 −0.8127

4
0.2125 0.3224 12.4952 1.4081 0.2125

1.2870× 10−4
500; 2000.0336 3.5669 0.1878

0.2198 0.3768 8.0491 −1.5175 0.2198 (500; 200)1.3664 12.3320 0.0554

3.3. Favoring One of the Axes

In the process of multi-axes optimization, in order to favor one axis over another,
coefficients A and B need to be set accordingly. To favor stiffness tracking along the X
axis, the relation A > B needs to be satisfied and vice versa. This case is different from
simple one-axis optimization (where the user has no control over the second axis at all),
because control over the non-favored axis is achieved as well. Table 3 shows how changing
coefficients A and B affects Cartesian stiffness tracking.
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Table 3. Favoring one of the axes.

Sim.
Desired Pos.

A and B
Res. Stiff. Res. Conf. Res. Pos.

Norm Val.
Stiffness:

x, y kj1,2,3,4 q1,2,3,4 x, y Ach. (Des.)
[m] [Nm/Rad] [Rad] [m] [N/m]

1
0.1172 1 13 1.5708 0.1172

89.86
243; 8740.5 −0.4909

0.3164 1 12.99 −0.7612 0.3164 (330; 850)6.1066 1.5040

2
0.1172 1 13 1.5708 0.1172

170
159; 8477.6633 −0.9172

0.3164 16 13 0.0357 0.3164 (330; 850)5.4937 1.2859

3
0.1172 16 12.9728 1.5653 0.1172

72.35
330; 8345.8234 −0.2659

0.3164 1 0.8217 −1.0942 0.3164 (330; 850)12.9846 1.4461

4. Experimental Validation

For experimental validation, a 4 DoF planar manipulator with QB actuators was
used to demonstrate the methodology introduced for compliant actuator model learn-
ing (Section 2) and compliant robot Cartesian stiffness shaping (Section 3). To that end,
the pipeline presented in Figure 1 was followed. In this process, the joint position and
stiffness were obtained from the desired EE position (as a constraint) and Cartesian stiff-
ness. Afterward, the learned LWPR models of each actuator were used to control each
joint and achieve the desired joint behavior (position and stiffness). The block diagram
of the whole control process is shown in Figure 8. Joint position and stiffness can be
calculated from Equations (4) and (5), and the robot EE position and its Cartesian stiffness
from Equations (7)–(9) and (10).

Primal mover 1

Primal mover 2

Joint position

Joint stiffness
SLSQP Omptimization

EE position

EE stiffness

QB Maker Move Pro
LWPR learned model

Figure 8. Control block diagram: SLSQP optimization for finding optimal robot configuration and
joint stiffness, and LWPR model for controlling QB actuators.

In order to estimate the achieved robot behavior, a contact or disturbance needed to
be introduced to the system. This was performed with the Panda robot and the relative
deviation from the equilibrium position was measured [57]. The Panda is equipped with
an F/T sensor which was used to measure generated contact forces and torques. The
experimental setup was composed of the 4 DoF planar robot, the Panda robot, and the F/T
sensor (Figure 9), similar to that presented in [58].
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Figure 9. Experimental setup: 4 DoF planar robot with QB actuators, Franka Robotics Panda robot,
and Axia80-M8 F/T sensor.

A random perturbation was applied to be able to exploit the achieved behavior of the
4 DoF planar robot. The disturbance was applied in proximity to the equilibrium position.
In that way, the robot configuration did not deviate from the optimal configuration, since
deviation does not affect Cartesian stiffness due to the infinitesimal change in the Jacobian
matrix. In the general case, the Cartesian stiffness matrix of a planar robot is given by

KC =

[
kc11 kc12

kc21 kc22

]
, (16)

where kc11 and kc22 represent stiffness across the X and Y axes, respectively, and kc12 = kc21

is the coupling stiffness between two axes.
The disturbance or contact in such a system leads to a force generated between the

robot and the object in contact (Panda robot). If it is assumed that the behavior of the
system is linear in proximity to equilibrium, then the generated force can be expressed
as follows

F = KC × ∆X,[
Fx
Fy

]
=

[
kc11 kc12

kc21 kc22

]
×
[

∆x
∆y

]
,

Fx = kc11 ∆x + kc12 ∆y

Fy = kc21 ∆x + kc22 ∆y.

(17)

This incomplete system of equations needs to be solved in order to estimate the
Cartesian stiffness matrix elements. The measured values are forces and deviation in the
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XY plane, and the unknown variables are kc11 , kc12 , and kc22 . If there are N randomly
applied disturbances, the above equations can be rewritten as

Fx1

Fx2
...

FxN

Fy1

Fy2
...

FyN


2N×1

=



∆x1 ∆y1 0
∆x2 ∆y2 0

...
...

...
∆xN ∆yN 0

0 ∆x1 ∆y1
0 ∆x2 ∆y2
...

...
...

0 ∆xN ∆yN


2N×3

×

kc11

kc12

kc22


3×1

(18)

Using pseudoinverse, the disturbance matrix can be inverted and added to the left
side of the equation, providing an estimation of unknown parameters. With this method,
the Cartesian stiffness matrix parameters were fitted to minimize the Mean Least Square
Error. Figure 10 represents the perturbations and the generated external forces. The applied
disturbance was a random movement of the Panda robot in the XY plane, where the
maximal movement in each direction was 1.5 cm.
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Figure 10. Measurement of applied disturbance. Position of robot EE (a). Generated external forces:
(b) blue. Estimated external force: (b) red.

The parameters of the Cartesian stiffness matrix were estimated using the previous
equation. The estimated values in this experiment were

K̂c =

[
88.6916 21.4254
21.4254 326.0492

]
, (19)

while the commanded Cartesian stiffness matrix was

Kc =

[
77.0128 0.0019
0.0019 308.1533

]
. (20)

After estimating the Cartesian stiffness matrix parameters, the estimate of the gener-
ated force was calculated by using the newly estimated parameters

F̂x = k̂c11 ∆x + k̂c12 ∆y,

F̂y = k̂c21 ∆x + k̂c22 ∆y.
(21)
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Plot (b) in Figure 10 (red) shows the estimated force from the applied disturbance. It is
apparent from the estimated force values that using pseudoinverse to minimize the mean
least square error can provide good estimation for the Cartesian stiffness parameters.

Interpretation of the Cartesian stiffness matrix can be challenging in some cases. A
more convenient way of depicting the Cartesian stiffness matrix is an ellipse representation
of the matrix using eigenvalue decomposition. Figure 11 shows the 4 DoF QB robot con-
figuration, the commanded Cartesian stiffness ellipse (black), and the estimated Cartesian
stiffness ellipse (red).
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Robot Configuration

Estimated Cartesian Stiffness Ellipse

Commanded Cartesian Stiffness Ellipse


Figure 11. Optimal robot configuration with commanded Cartesian stiffness ellipse (black) and
estimated Cartesian stiffness ellipse (red).

The estimated stiffness matrix was approximately equal to the commanded one. The
error in the orientation of the estimated Cartesian stiffness ellipse was 2.8% compared to
the commanded Cartesian stiffness ellipse.

5. Conclusions

The research aimed to facilitate the physical interaction of a novel compliant robot
with the environment by deploying the latest optimization tools and learning methods.
The effort reconciled the challenges in modeling actuators of variable stiffness and the need
to efficiently determine the position and stiffness of such actuators in order to plan the
interaction of the robot EE with the environment. The LWPR iterative learning algorithm
demonstrated its efficiency in learning the model parameters of a compliant actuator, which
is prone to change due to wear and tear and exploitation time. Based on the model of the
robot and its drives, SLSQP efficiently optimized the setting up of the optimal kinematic
configuration of the robot and stiffness on the joint level for the desired robot EE Cartesian
position and stiffness. Although the proposed methodology was experimentally validated
on a 4 DoF planar robot driven by VSAs, the methodology is general and could be exploited
by other compliant robots without any additional sensors. Future work will address further
improvements of the proposed methodology to allow online Cartesian stiffness shaping
beyond discrete points in space (e.g., along a prescribed trajectory), and consequently, its
application to real-life in-contact tasks. The proposed approach has several limitations.
Finding of the proper learning parameters for the LWPR algorithm can be time consuming
on occasion, although parameter finding needs to be performed only once during the initial



Actuators 2024, 13, 32 16 of 18

learning process. EE Cartesian stiffness is limited since it is achieved by exploiting the
passive stiffness and kinematics of the manipulator. Cartesian stiffness is shaped using an
optimization method that cannot guarantee a global minimum. Although time consuming,
this can be overcome by calculating optimal solutions from different initial points. In future
work, studies will be conducted on learning techniques that can capture motor dynamics,
where a time series dataset will be used. Also, the focus will be on algorithms that combine
active and passive stiffness control at the joint level to enhance the algorithm's performance.
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15. Lukić, B.; Jovanović, K.; Šekara, T.B. Cascade Control of Antagonistic VSA—An Engineering Control Approach to a Bioinspired
Robot Actuator. Front. Neurorobot. 2019, 13, 69. [CrossRef]

16. Weerasooriya, S.; El-Sharkawi, M. Identification and control of a DC motor using back-propagation neural networks. IEEE Trans.
Energy Convers. 1991, 6, 663–669. [CrossRef]

17. Ismeal, G.A.; Kyslan, K.; Fedák, V. DC motor identification based on Recurrent Neural Networks. In Proceedings of the 16th
International Conference on Mechatronics–Mechatronika 2014, Brno, Czech Republic, 3–5 December 2014; pp. 701–705. [CrossRef]

18. Rubaai, A.; Kotaru, R. Online identification and control of a DC motor using learning adaptation of neural networks. IEEE Trans.
Ind. Appl. 2000, 36, 935–942. [CrossRef]

19. Gautier, M.; Jubien, A.; Janot, A. New iterative learning identification and model based control of robots using only actual
motor torque data. In Proceedings of the 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
Wollongong, NSW, Australia, 9–12 July 2013; pp. 1436–1441. [CrossRef]

20. Ono, S.; Masuya, K.; Takagi, K.; Tahara, K. Trajectory tracking of a one-DOF manipulator using multiple fishing line actuators by
iterative learning control. In Proceedings of the 2018 IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy,
24–28 April 2018; pp. 467–472.

21. Angelini, F.; Santina, C.D.; Garabini, M.; Bianchi, M.; Gasparri, G.M.; Grioli, G.; Catalano, M.G.; Bicchi, A. Decentralized
Trajectory Tracking Control for Soft Robots Interacting With the Environment. IEEE Trans. Robot. 2018, 34, 924–935. [CrossRef]

22. Angelini, F.; Mengacci, R.; Santina, C.D.; Catalano, M.G.; Garabini, M.; Bicchi, A.; Grioli, G. Time Generalization of Trajectories
Learned on Articulated Soft Robots. IEEE Robot. Autom. Lett. 2020, 5, 3493–3500. [CrossRef]

23. Della Santina, C.; Bianchi, M.; Grioli, G.; Angelini, F.; Catalano, M.; Garabini, M.; Bicchi, A. Controlling Soft Robots: Balancing
Feedback and Feedforward Elements. IEEE Robot. Autom. Mag. 2017, 24, 75–83. [CrossRef]

24. Huh, S.; Tonietti, G.; Bicchi, A. Neural Network based Robust Adaptive Control for a Variable Stiffness Actuator. In Proceedings
of the 2008 16th Mediterranean Conference on Control and Automation, Ajaccio, France, 25–27 June 2008; pp. 1028–1034.

25. Guo, Z.; Pan, Y.; Sun, T.; Zhang, Y.; Xiao, X. Adaptive Neural Network Control of Serial Variable Stiffness Actuators. Complexity
2017, 2017, 1–9. [CrossRef]

26. Cremer, S.; Das, S.K.; Wijayasinghe, I.B.; Popa, D.O.; Lewis, F.L. Model-Free Online Neuroadaptive Controller with Intent
Estimation for Physical Human–Robot Interaction. IEEE Trans. Robot. 2020, 36, 240–253. [CrossRef]

27. Buchli, J.; Stulp, F.; Theodorou, E.; Schaal, S. Learning variable impedance control. Int. J. Robot. Res. 2011, 30, 820–833. [CrossRef]
28. Thuruthel, T.G.; Falotico, E.; Renda, F.; Laschi, C. Model-Based Reinforcement Learning for Closed-Loop Dynamic Control of Soft

Robotic Manipulators. IEEE Trans. Robot. 2019, 35, 124–134. [CrossRef]
29. Yang, Q.; Dürr, A.; Topp, E.A.; Stork, J.A.; Stoyanov, T. Variable Impedance Skill Learning for Contact-Rich Manipulation. IEEE

Robot. Autom. Lett. 2022, 7, 8391–8398. [CrossRef]
30. Kronander, K.; Billard, A. Online learning of varying stiffness through physical human-robot interaction. In Proceedings of

the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 1842–1849.
[CrossRef]

31. Keemink, A.Q.; van der Kooij, H.; Stienen, A.H. Admittance control for physical human–robot interaction. Int. J. Robot. Res. 2018,
37, 1421–1444. [CrossRef]

32. Sadeghian, H.; Villani, L.; Keshmiri, M.; Siciliano, B. Task-Space Control of Robot Manipulators With Null-Space Compliance.
IEEE Trans. Robot. 2014, 30, 493–506. [CrossRef]

33. Guo, Y.; Dong, H.; Ke, Y. Stiffness-oriented posture optimization in robotic machining applications. Robot. Comput.-Integr. Manuf.
2015, 35, 69–76. [CrossRef]
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