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Abstract: Existing traditional expansion state observers exhibit good tracking performance for
constant and low-frequency disturbances. However, their ability to track non-constant disturbances
such as ramp and high-frequency harmonics is inadequate. This paper proposes an extended state
observer design method based on the internal model principle. This method achieves precise tracking
of non-constant disturbances in the system, effectively addressing the issue of disturbance estimation
errors in conventional expansion state observers. When applied to control systems, this approach
significantly mitigates or suppresses system vibrations caused by non-constant disturbances, thereby
enhancing control accuracy. Furthermore, it demonstrates the stability of the controlled system and
the active disturbance rejection controller parameters over a wide range of variations. Simulation
results indicate that the ADRC controller based on the proposed observer in this paper offers notable
advantages, including high tracking accuracy, strong disturbance rejection capability, and good
stability, leading to commendable control performance.

Keywords: active disturbance rejection control; disturbance tracking; expansion state observer;
frequency domain stability analysis

1. Introduction

Industrial systems often encounter non-constant external disturbances, which can
adversely affect control performance. Various control methods have been proposed to
mitigate disturbances and maintain desired control performance [1–4]. These include Active
Disturbance Rejection Control (ADRC) [1], control based on disturbance observers [2],
equivalent input disturbance methods [3], and control based on uncertainty and disturbance
estimation (UDE) [4]. ADRC has gained popularity due to its ability to achieve precise
control with minimal information about the controlled object, and it has been successfully
applied in numerous control systems [5–9].

ADRC is a nonlinear control inherited from PID proposed by Jingqing Han from
the Chinese Academy of Sciences [10]. Subsequently, Professor Zhiqiang Gao of Cleve-
land State University in the United States proposed Linear Active Disturbance Rejection
Control (LADRC) and its parameter tuning method, introducing the concepts of observer
bandwidth and controller bandwidth for LADRC design [11]. The Expansion State Ob-
server (ESO), as a core component of ADRC control technology, has also been widely
utilized [12–16]. ESO treats the model mismatch (uncertainty) and external disturbances as
new states in the system and extends the state space to observe these new system states,
thereby estimating the total disturbance [17]. However, traditional ESO, being equivalent
to an integral controller, exhibits excellent tracking performance for constant or slowly
changing disturbances, but often falls short in tracking rapidly changing disturbances [18].
As mentioned in reference [19], the conventional ESO can estimate unknown disturbances
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very well only when the disturbances consist of low-frequency components. On one hand,
the model-free characteristic of ESO leads to strong robustness against uncertainty and
disturbance; however, on the other hand, it may somewhat waste information about distur-
bances that are known to us. In existing observers such as sliding mode observers [20] and
expanded high-gain observers [21,22], there is also some waste of known information. In
reality, in engineering applications, we are not completely unaware of disturbance infor-
mation, such as smoothness, boundedness and dynamic information about disturbances.
In reference [23], it is mentioned that in large-scale wind turbine systems, the rotational
frequency of the wind rotor is three times the disturbance frequency experienced by the
wind turbine. Additionally, mechanical resonance issues commonly occur in servo systems,
and online detection techniques for resonance frequencies have become quite mature. For
instance, in reference [24], the second-order generalized integrator-frequency-locked loop
is employed for online detection of resonance frequencies. This information is very useful
for control. A typical example is harmonic disturbance where the known frequencies are
highly useful for the internal model principle (IMP), which is an elegant approach to robust
output regulation [25], yet this information is entirely wasted in ADRC.

Regarding the above issues, this paper proposes an IMP-ESO (internal model principle-
based expanded state observer), which maximally utilizes interference information by
studying the characteristics of disturbance signals based on the idea of expanded state
observation and combining with the internal model principle. The internal model principle
(IMP) indicates that any controller must include the internal model and disturbance model
characteristics of the controlled system to achieve optimal performance. This means that
the controller must be able to accurately establish the behavioral model of the controlled
system, including its dynamics and response characteristics, in order to make effective
control decisions.

Utilizing the spectral characteristics of the total disturbance, the difference between
the estimated system state and the actual state is input into the proposed disturbance
tracker based on the internal model principle, generating a disturbance-tracking signal.
The IMP-ESO presented in this paper effectively tracks non-constant disturbances, enabling
control systems utilizing IMP-ESO to effectively suppress disturbances and improve control
accuracy, response speed, and disturbance rejection capability. Finally, the effectiveness of
the proposed method is validated through simulations on a second-order control system.

The main contributions of this paper are as follows:

1. Introduction of a design concept and methodology for an internal model principle-
based ESO tailored to different types of disturbances, providing a novel approach
to Active Disturbance Rejection Control (ADRC) that effectively suppresses non-
constant disturbances.

2. Further extension and improvement of the ESO by proposing a new disturbance-
tracking paradigm.

3. Theoretical analysis and simulation results indicate that the internal model principle-
based extended state observer (IMP-ESO-ADRC) possesses several advantages, in-
cluding high tracking accuracy, strong disturbance rejection capability, and good
stability. This controller exhibits robustness in the face of disturbances and showcases
a remarkable ability to mitigate their effects. The remaining sections of this paper are
organized as follows:

Section 2 discusses the limitations of traditional ESO.
Section 3 introduces the design methodology of IMP-ESO and provides parameter

tuning methods.
Section 4 presents the frequency domain analysis and simulation of IMP-ESO.
Section 5 presents the simulated results, which offer a comprehensive evaluation of

the proposed IMP-ESO-ADRC.
Finally, Section 6 concludes the paper.
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2. Expansion State Observer

Firstly, consider the following n-th order linear system: (1):

.
x1(t) = x2(t).
x2(t) = x3(t)

...
.
xn−1(t) = xn(t).
xn(t) = f (t) + bu(t)
y(t) = x1(t)

(1)

where x1(t), x2(t), . . . and xn(t) represent the system state variables, u(t) denotes the
control input, y(t) signifies the control output, f (t) is a function containing external distur-
bances to the system and undocumented system dynamics, and b is the input gain.

According to Formula (1), the expanded state equation corresponding to an n-order
system can be obtained as: 

.
x1(t) = x2(t).
x2(t) = x3(t)

...
.
xn−1(t) = xn(t)
.
xn(t) = xn+1(t) + bu(t)
y(t) = x1(t)

(2)

In this regard, xn+1(t) = f (t) + (b − b)u(t) is the expansion state, b representing
the nominal gain of the system. Accordingly, the conventional state observer (ESO) [18]
corresponding to this n-th order system is as follows:

.
x̂1(t) = x̂2(t) + β1(x1(t)− x̂1(t)).
x̂2(t) = x̂3(t) + β2(x1(t)− x̂1(t))

...
.
x̂n−1(t) = x̂n(t) + βn−1(x1(t)− x̂1(t)).
x̂n(t) = x̂n+1(t) + βn(x1(t)− x̂1(t)) + bu(t)
.
x̂n+1(t) = βn+1(x1(t)− x̂1(t))
ŷ(t) = x̂1(t)

(3)

where x̂1(t), x̂2(t), . . ., x̂n+1(t) respectively represent the estimated state variables for the
system state variables x1(t), x2(t), . . ., xn+1(t). u(t) denotes the control input, and ŷ(t)
signifies the estimated control output. x̂n+1(t) represents the total disturbance estimation
for the conventional ESO, and b is the input gain. β1, β2, . . ., βn+1 are the gain of the ESO.

As shown in Figure 1, the classic second-order ADRC system consists of:
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Where k1 and k2 represent feedback gain, with x̂1(t) and x̂2(t), respectively, denoting
estimated state variables corresponding to the system state variables x1(t) and x2(t); r(t) is
the input signal, u(t) indicates the control input, b is the input gain, and y(t) = x1(t).

As evident from Equation (3), the traditional ESO utilizes
.
x̂3(t) = β3(x1(t)− x̂1(t)) as

the total disturbance estimation for the ADRC system, as shown in Figure 1.
Hence, it is evident that the traditional ESO algorithm can only estimate the error better

when the disturbance is of low frequency. Furthermore, from the theoretical research on
traditional ESO presented in reference [19], it is known that traditional ESO exhibits good
tracking performance only for constant and low-frequency disturbances. When it comes
to high-frequency disturbances, especially harmonic disturbances, there are significant
tracking errors and considerable phase lag, resulting in low control accuracy in the closed-
loop system. In practical applications where non-constant disturbances are present, the
traditional ESO often fails to accurately estimate the total disturbance of the system.

3. Controller Design and Stability Analysis
3.1. Controller Design

In response to the issues raised in the previous section, this paper proposes the
following improvements.

From the principles of internal model principle, it is evident that a feedback controller
must incorporate the spectral characteristics of external disturbances in order to enable
the closed-loop system to resist disturbances, model mismatches, and regulate the output.
Similarly, the internal model principle can be applied to redesign the ESO in the disturbance
observation loop. This new design, known as the IMP-ESO, can accurately track the total
disturbance of the system in real-time and achieve error-free tracking.

Considering the application of the internal model principle, the expansion state equa-
tion for the IMP-ESO can be expressed as follows:

.
x̂1(t) = x̂2(t) + β1(x1(t)− x̂1(t)).
x̂2(t) = x̂3(t) + β2(x1(t)− x̂1(t))

...
.
x̂n−1(t) = x̂n(t) + βn−1(x1(t)− x̂1(t)).
x̂n(t) = x̂n+1(t) + βn(x1(t)− x̂1(t)) + bu(t)
.
x̂n+1(t) = Gz(t)(x1(t)− x̂1(t))
ŷ(t) = x̂1(t)

(4)

where x̂1(t), x̂2(t), . . .,x̂n+1(t) represent the estimated state variables for the system states
x1(t), x2(t), . . ., xn+1(t), respectively. x̂n+1(t) denotes the total disturbance estimation,
while β1, β2, . . ., βn+1 correspond to the gain of the IMP-ESO. After Laplace transform,
Gz(t) can obtain Gz(s). Gz(s) represents the transfer function constructed based on the
internal model principle. u(t) denotes the control input, ŷ(t) signifies the control output,
and b denotes the input gain.

To facilitate formula derivation and exposition, let us transform the variable state
space into the error state space, by introducing the following notation:

e1(t) = x1(t)− x̂1(t)
e2(t) = x2(t)− x̂2(t)

...
en−1(t) = xn−1(t)− x̂n−1(t)
en(t) = xn(t)− x̂n(t)
en+1(t) = xn+1(t)− x̂n+1(t)

(5)
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Therefore, combining Equations (1) and (5), we can derive the following expressions:

.
e1(t) = e2(t)− β1e1(t).
e2(t) = e3(t)− β2e1(t)

...
.
en−1(t) = en(t)− βn−1e1(t).
en(t) = en+1(t)− βne1(t).
x̂n+1(t) = Gz(t)e1(t)

(6)

From Equation (6), we can obtain its transfer function as follows:

sE1(s) = E2(s)− β1E1(s)
sE2(s) = E3(s)− β2E1(s)

...
sEn−1(s) = En(s)− βn−1E1(s)
sEn(s) = En+1(s)− βnE1(s)
sX̂n+1(s) = Gz(s)E1(s)

(7)

By integrating Equation (4) into Equation (7), we can derive the following expression:
E1(s) = 1

βn+βn−1s+···+β2sn−2+β1sn−1+sn En+1(s)
En+1(s) = Xn+1(s)− X̂n+1(s)
sX̂n+1(s) = Gz(s)E1(s)

(8)

Simplifying Equation (8), we can rearrange it to obtain:

En+1(s) = Xn+1(s)− X̂n+1(s) =

(
βn + βn−1s + · · ·+ β2sn−2 + β1sn−1 + sn

βn + βn−1s + · · ·+ β2sn−2 + β1sn−1 + sn + Gz(s)
s

)
Xn+1(s) (9)

Therefore, by ensuring that the pole distribution of the characteristic polynomial in
Equation (11) lies in the left half plane, we can satisfy the stability requirements of the
system. This allows us to obtain the disturbance tracking transfer function under different
disturbance characteristics and determine the appropriate observer parameter values.

Assuming that the disturbance signal is a harmonic signal, i.e., X3(s) = ωn
2

s2+ωn2 , we
can use the pole placement method to determine the observer poles:

β1 = 5ω0
β2 = 9ω0

2 − ωn
2

Gz(s) =
(9ω0

3−5ω0ωn
2)s2+(5ω0

4−9ω0
2ωn

2+ωn
4)s+ω0

5

s2+ωn2

(10)

where ω0 is the observer bandwidth, and ωn is the characteristic frequency of the distur-
bance signal.

Similarly, when the disturbance signal is a ramp signal, i.e., X3(s) = 1
s2 , we can also

use the pole placement method to determine the observer poles:
β1 = 4ω0
β2 = 6ω0

2

Gz(s) = 4ω0
3s+ω0

4

s

(11)

where ω0 is the observer bandwidth.
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Based on this, we can derive the IMP-ESO for harmonic disturbance as follows:
.
x̂1(t) = x̂2(t) + β1(x1(t)− x̂1(t)).
x̂2(t) = x̂3(t) + β2(x1(t)− x̂1(t)) + bu(t)
.
x̂3(t) = Gz(t)(x1(t)− x̂1(t))
y(t) = x1(t)

(12)

where β1 = 5ω0, β2 = 9ω0
2 − ωn

2, Gz(s) =
(9ω0

3−5ω0ωn
2)s2+(5ω0

4−9ω0
2ωn

2+ωn
4)s+ω0

5

s2+ωn2 , and ω0 are
the observer bandwidths, and ωn is the characteristic frequency of the disturbance signal.

Similarly, we can derive the IMP-ESO for ramp disturbance as follows:
.
x̂1(t) = x̂2(t) + β1(x1(t)− x̂1(t)).
x̂2(t) = x̂3(t) + β2(x1(t)− x̂1(t)) + bu(t)
.
x̂3(t) = Gz(t)(x1(t)− x̂1(t))
y(t) = x1(t)

(13)

where β1 = 4ω0, β2 = 6ω0
2, Gz =

4ω0
3s+ω0

4

s , and ω0 are the observer bandwidths.
In conclusion, this paper proposes a design concept and methodology for the IMP-

ESO based on the internal model principle, which can effectively handle disturbances with
different characteristics.

3.2. Stability Analysis

By applying the Final Value Theorem (FVT), the disturbance tracking error of the
system can be determined as:

lim
t→∞

en+1(t) = lim
s→0

sEn+1 = lim
s→0

s[Xn+1(s)− X̂n+1(s)]

= lim
s→0

(
βns+βn−1s2+···+β2sn−1+β1sn+sn+1

βn+βn−1s+···+β2sn−2+β1sn−1+sn+ Gz(s)
s

)
Xn+1(s)

(14)

Let Xn+1(s) =
G(s)
H(s) , G(s) represent a p-order polynomial and H(s) a q-order polyno-

mial, with p ≤ q.
Considering that a and the parameters for the observer are determined based on the

principle that the pole locations of the characteristic polynomial are distributed in the left
half plane, Formula (15) may potentially be obtained from Formula (14):

lim
t→∞

en+1(t) == lim
s→0

[
(βns + βn−1s2 + · · ·+ β2sn−1 + β1sn + sn+1)G(s)

(s + ω0)
m

]
= 0 (15)

where:

(s + ω0)
m = (βn + βn−1s + · · ·+ β2sn−2 + β1sn−1 + sn +

Gz(s)
s

)H(s), m = q + n + 1.

Therefore, one may infer that the disturbance tracking error of the system converges
as t approaches infinity.

Considering the n-order linear system below:{ .
X = AX + Bu + Exn+1
y = CX

(16)



Actuators 2024, 13, 29 7 of 24

where X =


x1(t)
x2(t)
...
xn−1(t)
xn(t)

, A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0

, A ∈ Rn×n, and B =


0
0
...
b

,

CT =


1
0
...
0

, E =


0
0
...
1

, B, CT , E ∈ Rn×1. The system state variables are represented

by x1(t), x2(t), . . ., xn+1(t), b is the input gain, u denotes the control input, y refers to the
control output, and xn+1(t) represents a function containing external disturbances to the
system and system dynamics that have not been modeled.

The IMP-ESO observer corresponding to system (16) may be expressed as:
.

X̂ = AX̂ + Bu + Ex̂n+1 + L[y − ŷ]
.
x̂n+1(t) = GZ(x1(t)− x̂1(t))
ŷ = CX̂

(17)

where X̂ =


x̂1(t)
x̂2(t)
...
x̂n−1(t)
x̂n(t)

, L =


β1
β2

...
βn

.

By subtracting Formula (17) from Formula (16), one may potentially obtain:

.
X −

.
X̂ = A(X − X̂) + E(xn+1 − x̂n+1)− L[y − ŷ] (18)

Formula (15) may suggest:

lim
t→∞

(xn+1 − x̂n+1) = lim
t→∞

en+1(t) = 0 (19)

Therefore, when t → ∞ , Formula (18) may potentially be rewritten as:

.
X −

.
X̂ = (A − LC)(X − X̂) (20)

where F = A − LC =


−β1 1 0 · · · 0
−β2 0 1 · · · 0

...
...

...
...

−βn 0 0 · · · 1

.

If F is a Hurwitz matrix, then Formula (21) would be stable. Thus the IMP-ESO system
would also satisfy the stability criterion.

The observer parameters determined from Formula (11), with the characteristic poly-
nomial pole locations distributed in the left half plane, have the potential to satisfy the
condition of F being a Hurwitz matrix. Therefore, the IMP-ESO system may also satisfy the
stability criterion.

4. IMP-ESO Analysis in the Context of ADRC Closed-Loop Control System

To demonstrate the performance of the proposed IMP-ESO, this paper will compare
it with the traditional ESO in frequency domain analysis under two different types of
disturbances: ramp and harmonic disturbances. The aim is to showcase the enhanced
robustness of IMP-ESO in dealing with non-constant disturbances.
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4.1. IMP-ESO-ADRC Design

To facilitate discussion, this study considers implementing the IMP-ESO proposed
in Section 3 on a second-order system, and integrating it within an ADRC controller.
Accordingly, the corresponding state feedback control law utilized herein may be expressed
as follows, as cited from reference [26]:

Applying the Laplace transform to Equation (4), we obtain:
sX̂1(s) = X̂2(s) + β1(X1(s)− X̂1(s))
sX̂2(s) = X̂3(s) + β2(X1(s)− X̂1(s)) + bU(s)
sX̂3(s) = Gz(s)(X1(s)− X̂1(s))

(21)

Applying iteration to Equation (21), we obtain:
X̂1(s) = β1s−1(X1(s)− X̂1(s)

)
+ β2s−2(X1(s)− X̂1(s)

)
+ 1

s2 bU(s)
X̂2(s) = β2s−1(X1(s)− X̂1(s)

)
+ β3s−2(X1(s)− X̂1(s)

)
+ 1

s bU(s)
X̂3(s) = Gz(s)s−1(X1(s)− X̂1(s)

) (22)

By applying the Laplace transform to the expanded state Equation (2) of the system,
we can derive its transfer function as follows:{

sX1(s) = X2(s)
sX2(s) = X3(s) + bU(s)

(23)

From the state feedback control law, we can obtain its transfer function as follows:

U(s) = k2R(s)
b

− X3(s)+k2X̂1(s)+k1X̂2(s)
b

= k2R(s)−(X3(s)+k2X̂1(s)+k1X̂2(s))
b

(24)

From the first equation in Equation (22), we can derive the following:

X̂1(s) =
(β1s2 + β2s + Gz)X1(s) + bsU(s)

s3 + β1s2 + β2s + Gz(s)
(25)

By substituting Equations (22) and (25) into Equation (24), we can obtain the
following expression:

U(s) = k1R(s)−(X3(s)+k2X̂1(s)+k1X̂2(s))
b

= k1
b

c2(s)R(s)
b2(s)

− 1
b

a2(s)
b2(s)

X1(s)
(26)

where:
a2(s) = k2(Gz(s) + β2s + β1s2) + k1(sGz(s) + β2s2) + s3Gz(s)
b2(s) = s3 + β2s + β1s2 + Gz(s) + k2s + k1(s2 + β1s)− sGz(s)
c2(s) = s3 + β2s + β1s2 + Gz(s)

Because X1(s) = Y(s), we can finally obtain:

U(s) =
1
b

C2(s)R(s)− A2(s)Y(s)
B2(s)

(27)

where:
A2(s) = k2(Gz(s) + β2s + β1s2) + k1(sGz(s) + β2s2) + s3Gz(s)
B2(s) = s3 + β2s + β1s2 + Gz(s) + k2s + k1(s2 + β1s)− sGz(s)
C2(s) = k1(s3 + β2s + β1s2 + Gz(s))

Therefore, from Equation (27), we can derive Equation (28) as follows:

U(s) = G3(s)R(s)− G4(s)Y(s) (28)
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Based on the derived equations, we can illustrate the closed-loop control of the ADRC
system using IMP-ESO as shown in Figure 2:
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Based on the equivalence transformation from Figure 2, we can derive the closed-loop
control principle block diagram of ADRC based on IMP-ESO, as shown in Figure 3:
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Figure 3. Block diagram of ADRC closed-loop control principle based on IMP-ESO.

From Figure 3, we can determine the equivalent unit negative feedback open-loop
transfer function of the ADRC closed-loop control system based on IMP-ESO as follows:

Go2(s) = Gp(s) · G4(s) (29)

By applying further shift transformation to Figure 2, we can obtain the following
closed-loop control block diagram of IMP-ESO-ADRC:

In the depicted diagram G(s) = G3(s)
G4(s)

= C2(s)
A2(s)

, it can be observed that a lead-lag
element is employed, along with input shaping to enhance the stability of the closed-loop
control system. In the design scheme presented in Figure 4, for different disturbance
characteristics, a new transfer function can be constructed to achieve error-free tracking
and observation of disturbances. This enables precise control of the ADRC control system.
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4.2. Frequency Domain Analysis

Frequency analysis and simulation comparison play an integral role in evaluating
the performance of the ESO-ADRC system. In this section, we will conduct a compre-
hensive analysis of stability indicators, such as phase margin, gain margin, and crossover
frequency, based on the equivalent unit negative feedback open-loop transfer function
derived from IMP-ESO-ADRC. By comparing the results obtained from simulations, we
can assess the effectiveness of the proposed control scheme and its ability to handle various
disturbance characteristics.
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The design process for the traditional ESO-ADRC follows the same principles as
discussed in Section 4.1. By applying the traditional ESO and integrating it into the ADRC
controller, we can obtain the corresponding state feedback control law.

U(s) =
1
b

C(s)R(s)− A1(s)Y(s)
B1(s)

(30)

where:
A1(s) = s2 A = ∑2

i=0 (∑
2−i
j=0 ki+jβ3−j)s1−i

B1(s) = ∑2
i=0 (∑

i
j=0 k jβi−j)sn−i

C(s) = k2C = k2∑3
i=0 βis2−i

Let: G1(s) =
C(s)

bB1(s)
, G2(s) =

A1(s)
bB1(s)

.

From Equation (26), we can deduce:

U(s) = G1(s)R(s)− G2(s)Y(s) (31)

Based on this, we can derive the control block diagram of the system as shown
in Figure 5:
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Figure 5. Closed-loop control block diagram of ESO-ADRC.

Indeed, it is evident that from Figure 5, we can derive the block diagram illustrating
the closed-loop control principle of the ADRC system, as depicted in Figure 6:
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Figure 6. Equivalent block diagram of ADRC closed-loop control.

From Figure 6, we can obtain the equivalent unit negative feedback open-loop transfer
function of the ADRC closed-loop control system for System (1) as follows:

Go1(s) = Gp(s) · G2(s) (32)

In the traditional ESO-ADRC, the selection of observer parameters and state feedback
control parameters follows the principle of pole-zero cancellation [11]. Therefore, we have:

β1 = 3ωo, β2 = 3ω2
o , β3 = ω3

o
k1 = 2ωc, k2 = ω2

c

Therefore, it can be inferred that:

A1(s) =
(ω3

o + 6ωcω2
o + 3ω2

c ωo)ω2
c ω3

o s2

ω2
c ω3

o s
+

(2ωcω3
o + 3ω2

c ω2
o)ω

2
c ω3

o s + 1
ω2

c ω3
o s

(33)
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B1(s) = s2 + (3ωo + 2ωc)s + (3ω2
o + 6ωcωo + ω2

c ) (34)

The transfer function of system is given by:

Gp =
b

s2 + a1s + a2
(35)

Finally, we can determine the equivalent unit negative feedback open-loop transfer
function of the traditional ESO-ADRC closed-loop system for System (35) as follows:

Go1(s) = Gp(s) ·
A1(s)
bB1(s)

(36)

(1) Harmonic Disturbances
We can derive the transfer function of the IMP-ESO-ADRC system, as well as its A3(s)

and B3(s), based on Equation (27):

A3(s) = ωc
2[Gz1(s) + (9ω0

2 − ωn
2)s + 5ω0s2] + 2ωc[sGz1(s) + (9ω0

2 − ωn
2)s2] + s3Gz1(s) (37)

B3(s) = s3 + (9ω0
2 − ωn

2)s + 5ω0s2 + Gz1(s) + ωc
2s + 2ωc(s2 + 5ω0s)− sGz1(s) (38)

where:

Gz1(s) =
(9ω0

3 − 5ω0ωn
2)s2 + (5ω0

4 − 9ω0
2ωn

2 + ωn
4)s + ω0

5

s2 + ωn2

Finally, we can determine the equivalent unit negative feedback open-loop transfer
function of the second-order system using IMP-ESO-ADRC as follows:

Go2(s) = Gp(s) ·
A3(s)
bB3(s)

(39)

In this study, the harmonic signal used has an amplitude of two and a frequency
of ω, denoted as f. Table 1 presents the frequency characteristics of the IMP-ESO-ADRC
closed-loop control system based on different system and control parameters. It compares
stability indicators such as gain margin, phase margin, and crossover frequency for varying
system and control parameter configurations.

Table 1. Second-order system and control parameters.

System a1 a2 b ¯
b ωo ωc

A 300 200 400 400 300 300
B-1 300 200 400 400 300 300

C1-1 300 200 600 400 300 300
C1-2 300 200 300 400 300 300
C2-1 200 100 400 400 300 300
C2-2 400 300 400 400 300 300
C3-1 300 200 400 400 400 400
C3-2 300 200 400 400 200 200

Using MATLAB programming simulations, Figures 7–10 depict the Bode plots that
compare the equivalent unit negative feedback open-loop systems of A (note: A represents
the traditional ESO-ADRC), C1-1, C1-2, C2-1, C2-2, and B-1 (note: C1-1, C1-2, C2-1, C2-2,
and B-1 system represents the IMP-ESO-ADRC under the influence of harmonic distur-
bances) closed-loop control systems. Table 2 provides a comparison of stability indicators
for the following four scenarios:

1. Comparison between A and B-1;
2. Comparison between B-1 and C1-1, C1-2;
3. Comparison between B-1 and C2-1, C2-2;
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4. Comparison between B-1 and C3-1, C3-2.
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Table 2. Stability indicators of the closed-loop control systems based on Table 1.

System Cutoff Frequency
(rad/s)

Crossover
Frequency (rad/s)

Gain Margin
(dB)

Phase Margin
(Degrees)

Delay Margin
(s) Stability

A 133 297 17.3 119 0.0156 Stable
B-1 17 20.1 - 180 0.184 Stable

C1-1 20.7 24.3 - 179 0.151 Stable
C1-2 14.8 17.5 - 180 0.212 Stable
C2-1 20.6 24.2 - 176 0.149 Stable
C2-2 14.8 17.6 - 179 0.213 Stable
C3-1 22.7 26.8 - 178 0.137 Stable
C3-2 11.3 13.4 - 179 0.28 Stable

Based on the parameters of system A, the traditional ESO-ADRC closed-loop con-
trol system and the closed-loop system B-1 have identical parameters. From the analysis
of Figure 7 and Table 2, it can be concluded that IMP-ESO-ADRC has a larger band-
width compared to traditional ESO-ADRC. Therefore, it exhibits faster response speed,
stronger disturbance rejection capability, and greater robustness against rapidly chang-
ing disturbances. The phase of IMP-ESO-ADRC does not exceed −180◦, thus there is no
corresponding gain margin.

For the IMP-ESO-ADRC closed-loop control system based on parameters C1-1 and
C1-2, only the system gain b of the reference closed-loop system B-1 is modified. From the
analysis of Figure 8 and Table 2, it can be observed that as the ratio of the system gain to
the nominal gain of IMP-ESO-ADRC increases, the phase margin, crossover frequency, and
cutoff frequency also increase, while the delay margin remains almost unchanged.

Similarly, for the IMP-ESO-ADRC closed-loop control system based on parameters
C2-1 and C2-2, adjustments are made to the controlled system coefficients a1 and a2 of
the reference closed-loop system B-1. From the analysis of Figure 9 and Table 2, it can be
observed that as the values of the controlled system coefficients a1 and a2 increase, the
phase margin, crossover frequency, and cutoff frequency increase, while the delay margin
remains almost unchanged.

Furthermore, for the IMP-ESO-ADRC closed-loop control system based on parameters
C3-1 and C3-2, modifications are made to the observation bandwidth ωo and control
bandwidth ωc of IMP-ESO-ADRC relative to the reference system B-1. From the analysis of
Figure 10 and Table 2, it can be observed that as the observation bandwidth ωo and control
bandwidth ωc of IMP-ESO-ADRC increase, the crossover frequency, cutoff frequency, and
phase margin increase, while the delay margin remains almost unchanged.
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From the simulation results of Figures 8–10 and Table 2, it can be concluded that
although the variations in the controlled system coefficients a1, a2 and IMP-ESO-ADRC
parameters ωo, ωc, b have a wide range, they do not affect the stability of the IMP-ESO-
ADRC closed-loop control system under harmonic disturbances. This fully demonstrates
the strong robustness of control systems based on IMP-ESO-ADRC.

(2) Ramp Disturbances
Similarly, by applying Equation (27), we can also derive the expressions for A4(s) and

B4(s) of the IMP-ESO-ADRC.

A4(s) = ωc
2[Gz2(s) + (9ω0

2 − ωn
2)s + 5ω0s2] + 2ωc[sGz2(s) + (9ω0

2 − ωn
2)s2] + s3Gz2(s) (40)

B4(s) = s3 + (9ω0
2 − ωn

2)s + 5ω0s2 + Gz2(s) + ωc
2s + 2ωc(s2 + 5ω0s)− sGz2(s) (41)

where:

Gz2(s) =
4ω0

3s + ω0
4

s
Finally, we can determine the equivalent unit negative feedback open-loop transfer

function of the second-order system using IMP-ESO-ADRC as follows:

Go2(s) = Gp(s) ·
A4(s)
bB4(s)

(42)

Based on the various system parameters and control parameters provided in Table 3,
we conducted a comparative study on the stability indicators, including gain margin, phase
margin, and crossover frequency, of the IMP-ESO-ADRC closed-loop system. By employing
the IMP-ESO-ADRC controller, we analyzed the effects of different system and control
parameters on the stability of the closed-loop system.

Table 3. Second-order system and control parameters.

System a1 a2 b ¯
b ωo ωc

A 300 200 400 400 300 300
B-2 300 200 400 400 300 300

D1-1 300 200 600 400 300 300
D1-2 300 200 300 400 300 300
D2-1 200 100 400 400 300 300
D2-2 400 300 400 400 300 300
D3-1 300 200 400 400 400 400
D3-2 300 200 400 400 200 200

To conduct the study, we utilized MATLAB programming for simulation purposes.
Specifically, we plotted Figures 11–14, which represent the Bode plots of the equivalent
unity feedback open-loop systems for A, D1-1, D1-2, D2-1, D2-2, and B-2 (note: D1-1, D1-2,
D2-1, D2-2, and B-2 system represents the IMP-ESO-ADRC under the influence of harmonic
disturbances) closed-loop control systems.

Furthermore, Table 4 provides a comprehensive comparison of the stability indicators
for the following four scenarios:

1. Comparison between A and B-2;
2. Comparison between B-2 and D1-1, D1-2;
3. Comparison between B-2 and D2-1, D2-2;
4. Comparison between B-2 and D3-1, D3-2.

This comparative analysis allows us to evaluate the impact of different system and
control parameters on the stability performance of the closed-loop control systems.
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Table 4. Stability indicators of the closed-loop control systems based on Table 3.

System Cutoff Frequency
(rad/s)

Crossover
Frequency (rad/s)

Gain Margin
(dB)

Phase Margin
(Degrees)

Delay Margin
(s) Stability

A 133 296 17.3 119 0.0156 Stable
B 17.1 20 - 179 0.183 Stable

D1-1 20.8 24.5 - 178 0.15 Stable
D1-2 14.8 17.6 - 180 0.211 Stable
D2-1 20.7 24.4 - 176 0.148 Stable
D2-2 14.8 17.6 - 179 0.213 Stable
D3-1 22.8 26.7 - 177 0.136 Stable
D3-2 11.4 13.5 - 179 0.278 Stable

Please note that the simulation results and the comparative analysis presented in
Figures 11–14, and Table 4 provide valuable insights into the performance and stability
characteristics of the IMP-ESO-ADRC closed-loop control system.

The results obtained from the analysis of Figure 11 and Table 4 reveal that IMP-ESO-
ADRC exhibits a larger bandwidth compared to traditional ESO-ADRC, indicating faster
response speed and increased robustness in the face of fast-changing disturbances. It is
noteworthy that the phase of IMP-ESO-ADRC does not exceed −180◦, implying the absence
of corresponding gain margin.

Furthermore, by considering the IMP-ESO-ADRC closed-loop control system based on
parameters D1-1 and D1-2, which only modify the system gain b of the reference closed-loop
system B-1, analysis from Figure 12 and Table 4 demonstrates that a higher ratio between
the system gain and the nominal gain of IMP-ESO-ADRC leads to a larger phase margin,
higher crossover frequency, and cutoff frequency, with negligible changes in delay margin.

Similarly, for the IMP-ESO-ADRC closed-loop control system based on parameters
D2-1 and D2-2, which adjust the controlled system coefficients a1 and a2 of the reference
closed-loop system B-1, analysis from Figure 13 and Table 4 indicates that larger values of
the controlled system coefficients a1 and a2 result in a larger phase margin, higher crossover
frequency, and cutoff frequency, while the delay margin remains almost unchanged.

Additionally, the IMP-ESO-ADRC closed-loop control system based on parameters
D3-1 and D3-2 modifies the observation bandwidth and control bandwidth of IMP-ESO-
ADRC relative to the reference system B-1. Analysis from Figure 14 and Table 4 shows that
increasing the observation bandwidth and control bandwidth of IMP-ESO-ADRC leads
to a higher crossover frequency, cutoff frequency, and larger phase margin, with minimal
changes in delay margin.
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The simulation results from Figures 12–14 and Table 4 clearly demonstrate that varia-
tions in the controlled system coefficients and IMP-ESO-ADRC parameters do not affect the
stability of the IMP-ESO-ADRC closed-loop control system under ramp disturbance. This
provides strong evidence for the robustness of the control system based on IMP-ESO-ADRC.

5. Simulation Test Results and Analysis

To validate the performance of the IMP-ESO-ADRC control system, simulation testing
was conducted. The purpose of these tests was to assess the effectiveness and robustness of
the IMP-ESO-ADRC in various scenarios.

The simulation environment was set up using MATLAB, and the IMP-ESO-ADRC con-
troller was implemented according to the specified parameters and control strategies. The
system response, stability, and disturbance rejection capabilities were evaluated through a
series of simulated experiments.

During the simulation testing, different input signals and disturbance profiles were
applied to the system to evaluate its dynamic response and robustness. The performance
of the IMP-ESO-ADRC control system was then analyzed based on various metrics such as
tracking accuracy and steady-state error.

Additionally, comparisons were made between the IMP-ESO-ADRC control system
and ESO-ADRC control system strategies to assess its advantages and limitations. The
simulation results were carefully analyzed and interpreted to gain insights into the behavior
and performance of the IMP-ESO-ADRC under different operating conditions.

5.1. Simulation with Harmonic Disturbance

During the simulation, a step signal with a magnitude of 10 was applied as the input
signal to the system. Three different sets of disturbance signals, denoted as f1 = 20 sin(10t),
f2 = 20 sin(100t), and f3 = 2 sin(10t), were added to assess the performance of both
traditional ESO-ADRC and IMP-ESO-ADRC control strategies.

Figures 15 and 16 provide a comparison of the control response speed and control
accuracy (Z(t) = y(t)− r(t)) between traditional ESO-ADRC and IMP-ESO-ADRC. On
the other hand, Figures 17 and 18 present a comparison of disturbance tracking speed

and disturbance tracking error (E(t) = f (t)
⌢
− x̂3(t)) between traditional ESO-ADRC and

IMP-ESO-ADRC.
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Figure 15. Comparison of input signal and output signal.

From Figure 18, it can be observed that IMP-ESO-ADRC exhibits a significantly lower
disturbance tracking error, with a maximum absolute mean error value of 0.0003. Further-
more, the performance of IMP-ESO-ADRC remains unaffected by variations in external
disturbance harmonic frequency and amplitude. In contrast, traditional ESO-ADRC shows
a maximum absolute mean error value of 21.2471 and a minimum of 1.1376 when external
disturbance harmonic frequency and amplitude change.
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Figure 16 provides additional insights, showing that the maximum absolute mean con-
trol error for IMP-ESO-ADRC is 0.000004, whereas for traditional ESO-ADRC it ranges from
0.0032 to 0.0217. Thus, based on the simulation results, it is evident that IMP-ESO-ADRC
demonstrates superior error tracking capability and enhanced disturbance rejection ability.

5.2. Simulation with Ramp Disturbance

In the simulation, a step signal with a magnitude of 10 was applied as the input signal
to the system. Three different sets of ramp disturbance signals with ramp of 4, 10, and 30
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were added. Figures 19 and 20 provide a comparison of the control response speed and
control accuracy between traditional ESO-ADRC and IMP-ESO-ADRC. On the other hand,
Figures 21 and 22 present a comparison of disturbance tracking speed and disturbance
tracking error between traditional ESO-ADRC and IMP-ESO-ADRC.
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From Figure 22, it can be observed that IMP-ESO-ADRC exhibits a significantly lower
disturbance tracking error, with a maximum absolute mean error value of 0.0001. Further-
more, the performance of IMP-ESO-ADRC remains unaffected by variations in the slope
of the external ramp disturbance. In contrast, traditional ESO-ADRC shows a maximum
absolute mean error value of 8.0732 and a minimum of 1.1268 when the slope of the external
ramp disturbance changes.

Figure 20 provides additional insights, showing that the maximum absolute mean
control error for IMP-ESO-ADRC is 0.000002, whereas for traditional ESO-ADRC it ranges
from 0.0051 to 0.0284. Thus, based on the simulation results, it is evident that IMP-
ESO-ADRC demonstrates a superior error tracking capability and enhanced disturbance
rejection ability.

From the simulation results, it is apparent that the proposed IMP-ESO-ADRC not only
tracks non-constant disturbances effectively but also exhibits excellent tracking performance
for high-frequency harmonic disturbances. Compared to traditional ESO-ADRC, IMP-
ESO-ADRC significantly improves disturbance tracking performance, particularly in the
presence of large-amplitude harmonic disturbances. Therefore, IMP-ESO-ADRC exhibits
superior disturbance rejection ability when facing disturbances.

Additionally, in the stable stage, IMP-ESO-ADRC exhibits higher input tracking
accuracy compared to traditional ADRC and can rapidly track disturbance signals. Thus,
compared to traditional ADRC, the proposed IMP-ESO-ADRC offers advantages such as
higher tracking accuracy and stronger disturbance rejection capability. It demonstrates
robustness in the presence of non-constant disturbances and is particularly suitable for
systems with high-frequency disturbances. It effectively suppresses system vibrations and
enhances system precision and stability.

5.3. Experimental Results

In our research, experimental validation was conducted using an open-source multi-
motor drive control comprehensive experimental platform. For specific details regarding
the experimental platform, I recommend consulting ZhongKe ShenGu Technology Devel-
opment Co., Ltd., Hefei City, Anhui Province, China. The cSPACE-RT OS control system,
developed based on TMS320F28335 DSP and MATLAB/Simulink, encompasses three sets
of motors for the towing platform (including high-performance torque sensors), motor
drive control cabinets, and PC software. Figure 23 illustrates the servo control platform
and the load system. Table 5 provides the parameters of the permanent magnet servo
motors used in the experiment. The motor speed is obtained from the encoder. Harmonic
disturbance testing was conducted separately for each algorithm.
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Table 5. Parameters of permanent magnet servo motor.

Rated voltage 24 V

Rated power 200 W

Rated speed 1500 RPM (Revolutions per minute)

Incremental encoder 2500 PPR (Pulses per revolution)

As shown in the control block diagram of Figure 24, the driving motor is set to a
constant speed, with a continuous external disturbance provided by the load motor. An
incremental encoder is used to acquire the speed signal, and a torque sensor is used to
acquire the disturbance signal when stable.

The rated load of the speed motor is 1.27 N·m. During the experimental procedure, a
sine wave disturbance of 1 N·m amplitude and 100 rad/s frequency will be applied by the
load motor at 5 s.

The drive motor was set to a speed of 1000 RPM. The observer parameters for IMP-
ESO-ADRC are ω0−IMP−ESO = 1000; ωn−IMP−ESO = 100. The controller parameters of
IMP-ESO-ADRC are ωc−IMP−ESO = 300. The observer parameters for ESO-ADRC are
ω0−ESO = 1500. The controller parameters of ESO-ADRC are ωc−IMP−ESO = 400. Figure 25
illustrates the experimental test results.

Based on the experimental results shown in Figure 25, the IMP-ESO-ADRC noticeably
mitigated the impact of external disturbances. Prior to disturbance application, the steady-
state error of IMP-ESO-ADRC was ±1.27RPM, while the traditional ESO-ADRC’s steady-
state error was ±2.03RPM. After disturbance application, the steady-state error of IMP-
ESO-ADRC was ±1.41RPM, while the traditional ESO-ADRC’s steady-state error was
±5.37RPM. The improvement was significant. Therefore, based on the experimental results,
it can be concluded that IMP-ESO demonstrated superior error tracking performance and
stronger anti-interference capability.



Actuators 2024, 13, 29 22 of 24

Actuators 2024, 13, x FOR PEER REVIEW 23 of 25 
 

 

Table 5. Parameters of permanent magnet servo motor. 

Rated voltage 24 V 
Rated power 200 W 
Rated speed 1500 RPM (Revolutions per minute) 

Incremental encoder 2500 PPR (Pulses per revolution) 

As shown in the control block diagram of Figure 24, the driving motor is set to a 
constant speed, with a continuous external disturbance provided by the load motor. An 
incremental encoder is used to acquire the speed signal, and a torque sensor is used to 
acquire the disturbance signal when stable. 

 
Figure 24. Control block diagram. 

The rated load of the speed motor is 1.27 N·m. During the experimental procedure, a 
sine wave disturbance of 1 N·m amplitude and 100 rad/s frequency will be applied by the 
load motor at 5 s. 

The drive motor was set to a speed of 1000 RPM. The observer parameters for IMP-
ESO-ADRC are 0 IMP ESO IMP ESO1000 100n     ； . The controller parameters of IMP-ESO-
ADRC are IMP ESO 300c    . The observer parameters for ESO-ADRC are 0 ESO 1500   . The 
controller parameters of ESO-ADRC are IMP ESO 400c    . Figure 25 illustrates the experi-
mental test results. 

Based on the experimental results shown in Figure 25, the IMP-ESO-ADRC noticea-
bly mitigated the impact of external disturbances. Prior to disturbance application, the 
steady-state error of IMP-ESO-ADRC was 1.27RPM , while the traditional ESO-ADRC’s 
steady-state error was 2.03RPM . After disturbance application, the steady-state error of 
IMP-ESO-ADRC was 1.41RPM , while the traditional ESO-ADRC’s steady-state error was 

5.37RPM . The improvement was significant. Therefore, based on the experimental results, 

Figure 24. Control block diagram.

Actuators 2024, 13, x FOR PEER REVIEW 24 of 25 
 

 

it can be concluded that IMP-ESO demonstrated superior error tracking performance and 
stronger anti-interference capability. 

 
Figure 25. Experimental results. 

6. Conclusions 
This paper proposes a novel dynamic compensation method to estimate the states of 

linear systems with disturbance. By utilizing known information and online measurement 
information, an IMP-ESO (internal model principle-based expanded state observer) is de-
signed that can be used for ADRC to simultaneously estimate disturbance and system 
states. 

The EDO almost combines the advantages of ESO and IMP, possessing strong ro-
bustness against systems and disturbances, similarly to ESO in active disturbance rejec-
tion, while also proposing a feasible method to maximally utilize disturbance information, 
which was verified through simulations and experiments. Therefore, the proposed EDO 
has considerable universality. Compared with existing active disturbance rejection meth-
ods, this method can improve performance with smaller tuning gains when the interfer-
ence contains non-constant disturbances. Meanwhile, large variations in the coefficients 
of the controlled system and IMP-ESO-ADRC parameters do not affect the stability of the 
closed-loop control system based on IMP-ESO-ADRC, fully demonstrating the strong ro-
bustness of the control system based on IMP-ESO-ADRC. 

We only proposed the basic principles for observer design. In engineering applica-
tions, techniques such as transient response shaping would still require tuning. From a 
theoretical perspective, a systematic method of utilizing the prior dynamics of disturb-
ances was provided. Future work involves utilizing measurement results online to calcu-
late disturbance dynamics. 

Author Contributions: Conceptualization, J.L. and S.S.; methodology, J.L.; validation, P.C. and S.S.; 
formal analysis, J.L. and Z.Z.; writing—original draft preparation, J.L.; writing—review and editing, 
J.L. and Z.Z.; project administration, Z.Z.; funding acquisition, J.L. and S.S. All authors have read 
and agreed to the published version of the manuscript. 

Funding: This research was funded by National Natural Science Foundation of China, grant number 
51909245, 62003314. 

Data Availability Statement: Data will be made available on request. 

Conflicts of Interest: The authors declare no conflicts of interest. The sponsor is responsible for 
reviewing and revising the manuscript during the writing of this article. 

References 
1. Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. 

Figure 25. Experimental results.

6. Conclusions

This paper proposes a novel dynamic compensation method to estimate the states
of linear systems with disturbance. By utilizing known information and online mea-
surement information, an IMP-ESO (internal model principle-based expanded state ob-
server) is designed that can be used for ADRC to simultaneously estimate disturbance and
system states.

The EDO almost combines the advantages of ESO and IMP, possessing strong robust-
ness against systems and disturbances, similarly to ESO in active disturbance rejection,
while also proposing a feasible method to maximally utilize disturbance information, which
was verified through simulations and experiments. Therefore, the proposed EDO has con-
siderable universality. Compared with existing active disturbance rejection methods, this
method can improve performance with smaller tuning gains when the interference contains
non-constant disturbances. Meanwhile, large variations in the coefficients of the controlled
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system and IMP-ESO-ADRC parameters do not affect the stability of the closed-loop control
system based on IMP-ESO-ADRC, fully demonstrating the strong robustness of the control
system based on IMP-ESO-ADRC.

We only proposed the basic principles for observer design. In engineering applica-
tions, techniques such as transient response shaping would still require tuning. From a
theoretical perspective, a systematic method of utilizing the prior dynamics of disturbances
was provided. Future work involves utilizing measurement results online to calculate
disturbance dynamics.
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