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Abstract: In the quest for intelligent robots, it is essential to enable them to understand tasks beyond
mere manipulation. Achieving this requires a robust parsing mode that can be used to understand
human cognition and semantics. However, the existing methods for task and motion planning
lack generalization and interpretability, while robotic knowledge bases primarily focus on static
manipulation objects, neglecting the dynamic tasks and skills. To address these limitations, we present
a knowledge-based framework for hierarchically understanding various factors and knowledge types
in robotic manipulation. Using this framework as a foundation, we collect a knowledge graph dataset
describing manipulation tasks from text datasets and an external knowledge base with the assistance
of large language models and construct the knowledge base. The reasoning tasks of entity alignment
and link prediction are accomplished using a graph embedding method. A robot in real-world
environments can infer new task execution plans based on experience and knowledge, thereby
achieving manipulation skill transfer.

Keywords: robotic manipulation; knowledge representation; knowledge update; knowledge reasoning

1. Introduction

Task understanding and skill refinement are crucial abilities for service robots. The
decomposition of tasks in a manner similar to human cognition can be transformed into a
planning problem within a symbolic space. Task and motion planning (TAMP) is the main-
stream method for handling long-term tasks in robotic manipulation, relying on predefined
planning domains, symbolic rules, and complex strategy searches. The limitation of such
methods lies in the requirement for robots to possess a comprehensive model prior to task
execution, thereby impeding their ability to achieve skill transfer and generalization, as
well as adaptability to dynamically the evolving task scenes.

In order to address this issue, the knowledge-based approaches have been considered
for the representation and task planning of robotic manipulation. Semantic knowledge
serves as a medium for skill transfer among humans, providing concise explanations of the
world. Knowledge bases effectively express and store the experiences generated in human
or robotic manipulation, enabling reasoning and reuse. However, the discrete nature of
knowledge poses challenges in directly describing the continuously manipulated data. The
existing knowledge-based methods for robotic manipulation focus on characterizing static
objects without achieving reasonable decoupling between the different factors. In querying
and reasoning, they solely rely on rule-based symbolic computation. To properly represent
the complex manipulation knowledge, it is essential to simultaneously consider both the
continuous and discrete data as well as the static and dynamic factors. Additionally, robots
need to acquire human knowledge and record the existing experiences in order to achieve
real-time responses to new tasks and continuous updates.

We propose a knowledge-based framework for a hierarchical understanding of human
and robotic manipulation. The framework represents the factors in manipulation in a
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hierarchical structure, the object, agent, scene, task, skill, and action, as well as different
knowledge types, the ontology, template, and instance. Knowledge is extracted and fused
from the life guide dataset wikiHow and external knowledge base DBpedia using large
language models (LLMs) to accomplish multi-source knowledge updates. As a result, we
create a knowledge graph dataset named SkillKG consisting of 13,154 triples, representing
984 entities and 18 relations. The framework is integrated with the dataset results for the
establishment of a comprehensive knowledge base for robotic manipulation. To address
entity alignment and link prediction as reasoning tasks, we propose a graph embedding
method for representation learning to extract feature and structured information from
the nodes in the knowledge bases, thereby generating embeddings. By utilizing prior
knowledge, it is possible to predict the action sequence of a robot in similar tasks involving
novel objects, thus enabling skill transfer. In the evaluation and experiments, we initially
assess the query performance of our knowledge base. Using the generated embeddings,
the real-world robot predicts action sequences for new tasks. An UR5 robot achieves an
accuracy of 91.7% on action sequence prediction and an accuracy of 81.8% on execution.
Figure 1 shows a pipeline of our work in this paper.
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Figure 1. Pipeline of our work. It encompasses the entire process from representation (hierarchical
framework) to updating (data fusion), and then inference (graph embedding). Ultimately, it facilitates
task understanding in robotic manipulation.

Our contributions encompass: (a) a hierarchical knowledge-based framework that
represents the different manipulative factors and knowledge types; (b) a knowledge graph
dataset and base that integrates information from the text datasets and external knowledge
bases using large language models; (c) a graph embedding method for entity alignment
and link prediction; and (d) the evaluation of the proposed framework on a real-world
robotic manipulation platform.

The rest of the paper is organized as follows: Section 2 summarizes the recent advances
in robotic manipulation with knowledge; Sections 3–5 discuss representation, updating, and
reasoning within our framework, respectively; the evaluation, experiments, and discussion
are presented in Section 6; and we draw the final conclusions in Section 7.
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2. Related Works
2.1. Knowledge Representation in Robotic Manipulation

Robotic manipulation involves three levels, ranging from high-level understanding
and task planning to mid-level strategy and behavior planning and down to low-level
execution. Knowledge, as a representation of the condensed data and information, pri-
marily corresponds to the top level. The knowledge base provides the semantic context
for the robots’ input and output in their tasks, including defining the meaning or function
of the manipulated objects. The early robot knowledge bases primarily focused on static
objects, such as RoboEarth [1,2], KnowRob [3,4], RoboBrain [5], and the recently developed
articulated object knowledge base AKB-48 [6]. However, all the aforementioned knowledge
bases for robots are large-scale static repositories primarily focused on describing stationary
objects in robotic manipulation tasks. The graph composition is excessively intricate and
convoluted, leading to a heightened level of complexity when querying. Several knowledge
representation methods have been proposed, specifically targeting the behaviors of robots.
Action tree bank [7] generates a symbolic high-level representation in the form of a tree, en-
compassing the knowledge derived from demonstrations. FOON [8] is a structured method
for representing the knowledge the models’ objects and their movements in manipulation
tasks, constructed through the manual annotation of instructional videos. Instead of a com-
prehensive symbolic representation system, several works apply knowledge to different
robotics tasks, such as vision [9], grasping [10,11], assembly [12], and path planning [13,14],
to describe robots’ behavior processes. Furthermore, the utilization of knowledge graph
embedding enables inference and finds application in the field of robotics [15]. However,
its efficacy is constrained by the scale of the knowledge graph.

Currently, there are several key challenges facing robot knowledge graphs. Firstly, the
discretization of continuous data results in a lack of proper decoupling between the high-
level semantics and low-level data. Secondly, the dynamic changes in relations overlook
the impact of robot actions on object relations. Thirdly, traditional symbolic computation
is the only consideration when querying knowledge graphs. We propose a hierarchical
architecture for our knowledge-based framework, which achieves a layered decoupling
of knowledge manipulation and the data, while also considering the dynamic factors in
robotic manipulation. Moreover, the utilization of a state-of-the-art graph database as the
foundation for our knowledge graph enhances the query speed.

2.2. Knowledge Sources of Robotic Manipulation

The hierarchical organization of robotic manipulation skills determines its complexity.
In our framework, manipulation knowledge is decoupled into two categories: static and
dynamic. Static knowledge describes the stable common-sense knowledge obtained from
resources, such as the internet, general knowledge databases, and vertical domain databases.
Dynamic knowledge describes the continuously changing entity state process associated
with actions generated based on existing experiences or real-time observations. Knowledge
can be derived from semantically annotated descriptions by humans or different types of
sensors, such as cameras, force sensors, and light-sensitive tactile sensors.

Manipulation knowledge originates from various sources due to its diverse types, pri-
marily encompassing the following three categories: (1) Human-constructed manipulated
datasets, which involve focused, single tasks, such as Push [16] and Bigs [17], and those
encompassing multiple tasks like RoboTurk [18], MIME [19], and RoboNet [20]. (2) Com-
mon knowledge in the general knowledge base. In addition to domain-specific knowledge
bases, there are publicly available cross-domain knowledge bases that serve as encyclo-
pedias, such as the language knowledge base WordNet [21]; the concept knowledge base
ConceptNet [22,23]; the world knowledge bases Freebase [24], Wikidata [25], DBpedia [26],
and YAGO [27]; and others. These common knowledge bases encompass a vast amount
of general information, including object definitions, classifications, and functionalities.
(3) LLMs refers to transformer language models with trillions or more parameters, which
are trained on extensive text data, such as GPT-3 [28], PaLM [29], and LLaMA [30]. These
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models exhibit exceptional proficiency in comprehending natural language and tackling
intricate problems [31]. Because LLMs have extensive prior knowledge and reasoning
capabilities, they facilitate knowledge extraction and update. LLMs have already found
applications in robotic manipulation tasks. Text2Motion [32] accomplishes the end-to-end
planning of robotic manipulation tasks using LLMs. Wu et al., on the other hand, integrated
language-based planning and perception with the limited summarization capability of
LLMs to facilitate robots in understanding the users’ preferences [33].

2.3. Knowledge Reasoning with Representation Learning

Knowledge reasoning involves deriving new knowledge or conclusions from the exist-
ing knowledge using various methods. Knowledge reasoning methods via representation
learning are primarily implemented through translating models and graph embedding.
Translating models is based on word2vec [34]. TransE [35] utilizes the concept of translat-
ing invariance within a word vector space, considering the relations in knowledge bases
as translating vectors between entities. Graph networks are primarily used for tasks in
non-Euclidean spaces, which align well with the topological graph structure of knowledge
graphs. Graph embedding, also known as graph representation learning, expresses the
nodes in a graph as low-dimensional dense vectors. It necessitates that the nodes with sim-
ilar characteristics in the original graph are also close to each other in the low-dimensional
representation space. The output expression vector can be used for downstream tasks, such
as entity alignment [36] and knowledge fusion [37]. The most classic graph embedding
method is DeepWalk [38], which utilizes random walks to sample nodes within the graph
and acquire co-occurrence relations among them. Furthermore, there are other methods
such as node2vec [39] and LINE [40]. We assess the advantages and disadvantages of the
above methods, and combined with the hierarchical structure of our framework, we design
a suitable embedding method to accomplish knowledge reasoning.

3. Hierarchical Knowledge Representation

The objective of this work is to establish a comprehensive knowledge-based frame-
work for understanding robotic manipulation. The primary aim of this framework is to
systematically analyze and represent the various factors involved in everyday manipula-
tion processes, while aligning with human cognition. On the one hand, it necessitates the
consideration of numerous factors pertaining to both human and robotic manipulation. On
the other hand, it requires the characterization of multiple types of knowledge data. To
address these challenges, we employ a hierarchical design approach that facilitates decou-
pling between these two dimensions, thereby laying a solid foundation for the ontology
construction of the knowledge base.

3.1. Hierarchical Manipulation Factors

We categorize the factors involved in manipulation into two groups: static and dy-
namic. Static factors refer to concrete and stable elements, such as objects, agents, and
scenes in the environment, while dynamic factors pertain to abstract and variable aspects,
including the tasks, skills, and actions required for manipulation. We present a definition
of the process of manipulation that aligns with human cognition.

M =
{

Sobject, Sagent, Sscene, Dtask, Dskill , Daction

}
(1)

In a given scene Sscene, an agent Sagent aims to accomplish task Dtask by utilizing a
series of skills Dskill to manipulate a set of objects Sobject through performing a sequence of
actions Daction. We decompose different factors in knowledge representation based on their
dynamic and static relations, forming six interconnected levels of knowledge.
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3.1.1. Static Layers

The object layer serves as the representation of manipulated objects, which typically
refer to physical entities. This aspect of knowledge representation in robotic manipulation
has reached a high level of maturity. We make use of common sense knowledge bases, such
as DBpedia and Wikidata, along with manipulation datasets like YCB [41] and the object
knowledge base AKB-48. The first part expresses the fundamental semantic information
about a manipulated object, including its name, description, and superclass. The second
part encompasses the physical properties of the object, such as size, weight, shape, color,
material composition, etc. The final part includes visual modalities related to appearance,
such as 3D mesh and multi-view RGB images. The first two parts are stored in the knowl-
edge base ontology, while the last part is stored in the server, storing the link to the file
location in the properties of the object entity.

The agent layer serves as a representation of the subjects involved in manipulation,
primarily humans and robots. In terms of human manipulation, body parts such as
the hands are commonly utilized. The hardware and software configurations of robots,
including various models of mechanical arms, end effectors, cameras, and tactile sensors,
play a crucial role in determining the feasibility of manipulation tasks.

The scene layer serves as a representation of the background space for manipulation,
encompassing two categories: the broad sense environment, which pertains to indoor
spaces where human or robotic activities occur (e.g., kitchens and workshops), and the
narrow sense region, which includes relevant information about the manipulation platform,
such as desktops, lighting, and artificially divided platform areas.

3.1.2. Dynamic Layers

The task layer serves as a representation of the purpose of manipulation, with tasks
in the knowledge base being named using a verb–object structure (“Action_Object”) to
facilitate direct connection to corresponding entities through their names. The simple tasks
involve only one object, such as “Pour_Juice” or “Insert_Key”, while the complex tasks
may involve multiple objects, such as “Make_ Drink”. The task ontology only has a name
and description, while the task template and instance contain action sequences and all the
starting, intermediate, and ending states—a complete sequence of state transitions. These
action sequences consist of action primitives linked to the relevant objects, agents, and
scenes. The states are primarily described by visual scene graphs along with coordinates
and postures for objects.

The skill layer serves as a representation of the condensed prior knowledge in ma-
nipulation. Skills are generalizations of the topological structure underlying similar tasks.
Simple tasks are derived from skills at the same level, such as the skill “Peg-in-Hole”, which
can be used to derive the task “Insert_Key”, both involving a sequence of actions like “pick-
align-insert”. Complex tasks encompass multiple skills and act as their superclass. For
instance, the task “Make_Coffee” may incorporate several skills, including “Pour_Powder”,
“Pour_Water”, and “Stirring”.

The action layer serves as a representation of the fundamental primitives involved in
manipulation. For robots, these action primitives are low-level task units that can be directly
implemented with classical motion planning algorithms. For humans, they represent the
smallest modules of semantic segmentation. The ordered arrangement of these action
primitives enables the composition of tasks and skills, whether they are simple or complex.

3.2. Hierarchical Knowledge Types

We have previously explored hierarchical understanding based on manipulation
factors. Considering the knowledge from another perspective, it also encompasses various
types, such as conceptual descriptions or specific instances within a task. Consequently,
this requires a hierarchical representation based on the types of knowledge, namely from
ontology to templates, and then instances.
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The ontology is utilized for the representation of abstract conceptual knowledge,
which is akin to a dictionary or a classical common sense knowledge base. It serves as
a repository for semantic knowledge pertaining to the entities themselves, organizing
diverse entity types based on concept definitions, while maintaining strict categorization
and hierarchical relations.

The template is utilized to represent a variety of manipulation tasks or skills, wherein
each task or skill constitutes a manipulation process with an action sequence as its funda-
mental structure. This process encompasses the scene where the manipulation takes place,
along with the agents and objects associated with each action primitive. Consequently, it
necessitates establishing logical or temporal relationships between the nodes at different
levels. Each entity within the template is linked to its corresponding counterpart in the
ontology through “instanceof”, thereby indicating the instantiation of concepts in manip-
ulations. The ontology and template knowledge are enriched by the knowledge graph
dataset presented in Section 4.

The instance is utilized to represent each execution, which is akin to a log. They
incorporate execution parameters and timestamps based on the corresponding template,
with all the entities and relations in the instance mapped from those in said template.
Each manipulation task execution generates an instance, thereby allowing for continued
knowledge accumulation throughout the process.

In summary, the data structure of the hierarchical knowledge-based framework
achieves decoupling from both the manipulation elements and types of knowledge. This
ensures the stability and flexibility of the architecture, thereby facilitating ontology con-
struction and subsequent knowledge updates.

4. Multi-Source Knowledge Update

After devising a hierarchical framework, in order to sufficiently expand the scale of
the knowledge base for reasoning purposes, we update and complete our framework by
incorporating knowledge from various data sources, particularly focusing on template-
based manipulation tasks. Upon completing knowledge acquisition and integration, we
enhance the hierarchical framework using SkillKG, a task-centric manipulation knowledge
graph dataset, and subsequently update the knowledge base. In the construction process,
the existing knowledge from multiple sources, such as manipulation text datasets, LLMs,
and general knowledge bases, is extensively utilized. The main process is shown in Figure 2.
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4.1. Task Text Collection

Collect Textual Descriptions. We gather manipulation tasks, comprising textual de-
scriptions of the manipulation process. wikiHow serves as an open-source life guide that
functions as a large-scale text summarization dataset. We specifically selected guides for
physically and simply manipulative tasks, where the object being manipulated undergoes
changes in state or position during a task process, such as “how to brew tea” and “how
to cut apples”. This excludes virtual manipulations like “how to access email”, and even
more abstract complex non-manipulation tasks like “how to eat healthily”. Following this
step, we acquired structured text data for 317 manipulative tasks encompassing daily life,
kitchen-related activities, and industrial assembly scenes.

4.2. Entity Extraction and Triplet Construction Based on Large Language Models

Entity extraction refers to extracting labels from textual data. We extract the labels
from text data in wikiHow, which includes a Title, Headline, and text. The task name
is extracted from the Title, while the action sequence is derived from the Headline. We
utilize wikiHow’s textual data as the input and extracted keywords using LLMs with a
prompt, leveraging their text comprehension capabilities. The resulting output, as shown
in Figure 3, includes verb sequences with corresponding nouns and prepositions for each
manipulation. The LLM we use is text-davinc-003, which is a variant of instructGPT [42]
based on GPT-3. Additionally, we introduce the suffixes “.t”, “.a”, “.i”, “.o”, and “.l” to
differentiate the words related to tasks, actions, subjects, objects, and scenes, respectively.
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Subsequently, triplets are constructed based on the identified entities and relations.
Triples are the fundamental building blocks of a knowledge graph and take the form
of ‘entity-relation-entity’. Using a single task template as an example, “Brew_Teabag.t”
comprises two actions in a sequence: “place” (with “teabag.o” as the object and “in cup.o”
as the target) and “pour” (with “hot_water.o” as the object and “in cup.o” as the target).
Based on these data, we derive a set of triples for each manipulation task that represent the
parent–child relations between tasks and actions using the relation “contain”, sequential
relations between actions using “next”, action subjects or performers using “subject”, action
objects using “object”, and action targets or locations through relations, such as “from”,
“in”, “on”, and “beside”.

4.3. Knowledge Fusion Based on External Knowledge Base

We expand knowledge by retrieving neighbors from the common sense knowledge
base. Although the entity nodes themselves are singular, connecting the subject, object, and
location entities with DBpedia through SparQL allows us to obtain more relevant contextual
information. In DBpedia, we retrieve neighbor nodes by restricting the triple relationships
with “typeof”, “hypernym”, and “ingredient” in order to acquire the categories, contexts,
and components of local entities as additional knowledge for our dataset. For instance, the
examples include “toothbrush.o typeof toiletries.o”, “cabbage.o hypernym plant.o”, and
“noodle.o ingredient leavening_agent.o”.

However, the direct retrieval method based on string matching is limited to obtaining
nodes from the external knowledge base that have explicit associations with nodes in the
local knowledge base. It fails to retrieve differently named nodes representing the same
or similar entities. The crucial challenge that knowledge fusion must address is how to
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identify the implicitly associated nodes and align them with local entity nodes. We propose
a method based on a breadth-first search to construct neighborhoods for generating entity
embeddings, thereby achieving alignment and providing implicitly associated nodes for
knowledge fusion. For more details about this method, please refer to Section 5.

4.4. Identifier Addition and Knowledge Update

In robotic manipulation execution instances, it is possible to have actions with similar
semantics, but different parameters under various tasks. If these actions are all linked to
the same node, it can lead to the excessive coupling of data structures in the templates of
the knowledge-based framework. To address this issue, unique identifiers in the form of
randomly generated hash suffixes are attached to each action within every template. With
this approach, dataset construction concludes successfully.

Finally, we import these template data into the knowledge base. The meta nodes
representing actions are included in the ontology for aggregating action entities with
identical names from templates (e.g., “place_UWBL3G instanceof place”). Additionally,
object entities from templates are also replicated within the ontology and connected through
“instanceof”. The expanded knowledge obtained in Section 4.3 is transferred to object
entities within the ontology, as they pertain to specific concepts.

4.5. Dataset Statistic

SkillKG offers a wealth of manipulation knowledge, encompassing both the local
knowledge extracted from wikiHow via LLM and the external knowledge retrieved from
DBpedia. Please refer to Table 1 for detailed statistics. With a total of 13,154 triples, includ-
ing 984 entities and 18 relations, SkillKG provides ample high-quality prior knowledge for
hierarchical semantic representation aimed at robotic manipulation. The latest version of
SkillKG is available at https://github.com/tsingmr/SkillKG, accessed on 1 January 2024.

Table 1. Data statistics and comparison of datasets SkillKG and THOR_U.

Dataset Triple Relation
Entity

Task Action Subject Object Scene

THOR_U 1964 15 / 27 / 114 4

SkillKG 13,154 18 317 59 7 595 6

4.6. Dataset Details

In Table 1, we compare SkillKG with THOR_U [15], presenting the number of triples,
relations, and entities. The entity subclasses include task, action, subject, object, and location.
THOR_U extracts semantic knowledge from the home domain simulation environment
AI2THOR [43] for embedding purposes only. SkillKG primarily extracts manipulation
skill knowledge from wikiHow and DBpedia for both embedding and constructing a
comprehensive knowledge base. SkillKG has significant advantages in data scale and
coverage over THOR_U. We also present the distribution of relation categories in Figure 4.
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5. Embedding-Based Knowledge Reasoning

Retrieval-based reasoning, which relies on knowledge base queries, serves as a funda-
mental approach for knowledge reasoning. However, its effectiveness is constrained by the
size of the knowledge base. Embedding-based methods possess the capability to represent
the entities and relations within a continuous feature space. By transforming entities and
relations into vectors, the downstream tasks classified as generative reasoning, such as
entity alignment and link prediction, can be simplified through vector operations.

The existing dataset represents a small-scale knowledge graph, which can be consid-
ered as a multi-relational directed graph. In this graph, the entities are represented as nodes,
while the relations are depicted as edges. The knowledge-based framework we propose,
specifically designed hierarchically for robotic manipulation, exhibits a higher level of
complexity in comparison to that of the general knowledge bases. Hence, when generating
the embedding, it is imperative to not only consider explicit relations between the entities,
but also comprehensively incorporate the structural information of nodes throughout the
entire graph.

In contrast to DeepWalk, which utilizes depth-first search for constructing neighbor-
hoods, we propose an LINE-based method that utilizes breadth-first search to generate
entity embeddings for alignment. Embedding serves as prior knowledge for link prediction.

5.1. Entity Alignment

Given a knowledge graph G(E, R) and a triplet set
{(

ei, r, ej
)∣∣ei ∈ E, ej ∈ E, r ∈ R

}
within it. The embedding is generated by constructing neighbor similarity. For a directed
edge r, the probability of generating a context neighbor entity ej under a given entity ei is
defined as:

p
(
ei
∣∣ej

)
=

exp
(
→
vj

T
·→vi

)
∑
|N|
k=1 exp

(
→
vk

T
·→vi

) (2)

where
→
vi is the lower-dimensional vector representation of entity ei itself, and |N| is the

number of neighbor entities. Therefore, the optimization goal is defined as:

O = ∑
i∈N

λid( p̂2(·|ei), p(·|ei)) (3)

where λi is the factor that controls the entity weight, which can be represented by the
degree of the entity node. The empirical distribution is defined as:

p̂
(
ej
∣∣ei

)
=

wij

di
(4)

where wij is the weight of relation edge r, and di is the out-degree of entity node ei. Then,
using Kullback–Leibler divergence, setting λi = di, and omitting the constant terms, the
objective function is:

O = − ∑
(i,j)∈E

wijlogp
(
ej
∣∣ei

)
) (5)

when calculating similarity, in order to optimize the disadvantage that the denominator
calculation of softmax function requires complete traversal, negative sampling optimization
is adopted. Then, the objective function is:

O = logσ

(
→
vj

T
·→vi

)
+ ∑K

i=1 EvnPn(v)

[
−logσ

(
→
vn

T
·→vi

)]
(6)

where K is the number of negative edges. After the above calculation and optimization, the
embedding V(ei) of each entity ei in the knowledge graph is obtained. Then, the similarity
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between the vectors is calculated to find the equivalent entity pair here using the Euclidean
Distance, which is formulated as:

D =
√(

V(ei)−V
(
ej
))
·
(
V(ei)−V

(
ej
))T (7)

When the distance is less than the threshold, the two entities are regarded as similar
entities to achieve alignment, and then the knowledge fusion is realized by retrieving
the neighbor of similar entities. The graph-based embedding generation method can
automatically extract equivalent entity pairs from knowledge graphs on a large scale
without introducing a lot of artificial features.

5.2. Link Prediction

In link prediction, knowledge embedding models, such as DistMult [44] and TransE,
define the scoring functions for triplets (eh, r, et), which are continuously optimized to
enhance the scores and rankings of the correct triplets. Our knowledge-based framework
exhibits a more specific orientation compared to common sense knowledge bases. Therefore,
we utilize TransE instead of DistMult as the scoring function for triplets:

Fscore(eh, r, et) = −∥h + r− t∥1/2 = −
∥∥ f (eh) + reh ,et − f (et)

∥∥
1/2 (8)

where eh represents the head entity, eh represents the tail entity, ∥.∥1/2 represents the L1 and
L2 distances, f (.) represents the feature vector after encoding entities, and reh ,et represents
candidate relations between the head and tail entities.

During training, the embeddings generated by entity alignment serve as the initial
values, and the model is iteratively optimized using cross-entropy loss. After optimization,
new relations can be predicted by determining the validity of new triplets, while the
accuracy of embeddings can be assessed through various metrics.

5.3. Verification of the Accuracy of Embeddings

The input for this experiment is derived directly from the dataset SkillKG, which
encompasses the semantic knowledge stored in our ontology and templates within our
knowledge representation framework. This dataset comprises a total of 13,154 triples,
984 entities, and 18 relations. We divide it into a training set, validation set, and test
set at a ratio of 12:1:1. The batch size is configured to be 2000, while the epoch is set to
10,000. The Mean Reciprocal Ranking (MRR) and Hit@N are metrics utilized to assess the
accuracy of embeddings. The ranking of correct triplets is positively correlated with the
magnitude of MRR and Hit@N, indicating a higher level of accuracy in the embeddings.
The precomputation process is shown in Algorithm 1: the precomputation process of the
metrics of embedding accuracy.

Algorithm 1: Metrics of embedding accuracy

Input: Triples T, Entities E, Scoring function f
Output: Ranks ranki
1 Scores S = ∅
2 foreach ti = (eh, r, et) ∈ T do
3 add f (ti) into S
4 foreach e in E do
5 add f (eh, r, e) into S
6 add f (e, r, et) into S
7 end
8 ranki ← rank( f (ti) in S)
9 end
10 MRR = 1

|S|∑
|S|
i=1

1
ranki

11 Hit@N = 1
|S|∑

|S|
i=1 I(ranki ≤ n)
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We present the results of MRR and Hits@1, Hits@3, and Hits@10 for SkillKG in
Table 2. The baseline includes the bilinear model DistMult and the translating model
TransE, which directly acquire explicit relations, while our approach integrates richer,
contextualized, structured information. The results demonstrate that our graph embedding
method surpasses the baseline in terms of the accuracy of the generated embeddings.

Table 2. Accuracy of embeddings.

Metric\Method DistMult TransE Graph Embedding
(Ours)

MRR 34.33% 41.29% 73.84%

Hits@
1 20.76% 23.70% 64.31%
3 41.38% 49.83% 76.68%

10 59.61% 72.25% 88.12%

In summary, we propose a graph-based embedding generation method for knowl-
edge reasoning. The embeddings are initially generated through entity alignment and
subsequently utilized for link prediction to assess the accuracy of the embeddings. Fi-
nally, we validate the accuracy of our generated embeddings on our dataset through a
comparative experiment.

6. Evaluation, Experiments, and Discussion

Firstly, we construct a knowledge base within the hierarchical framework and evaluate
its query performance. Subsequently, the embeddings obtained using the graph embedding
method on the SkillKG dataset are used to enhance the skill transfer in robotic manipulation.

6.1. Knowledge Base Construction and Query Performance Evaluation

The knowledge-based hierarchical understanding framework was constructed using
Neo4j [45], a graph database based on a property graph model. Initially, we established a hi-
erarchical representation structure for the knowledge ontology and subsequently imported
the SkillKG dataset, which incorporates the updates from multiple sources to successfully
build the knowledge base.

Given that the knowledge-based framework operates within a real-time robotic manip-
ulation scene, it is imperative for its knowledge base to function in real time as well in order
to prevent any delays during execution. To assess the query performance of the knowledge
base, we conducted tests on the query time and memory consumption at various depths of
entity nodes using computers with identical configurations and networks. Each depth was
queried five times and averaged, as depicted in Figure 5.
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The baseline used for comparison is KnowRob [3,4], a robot knowledge base based
on OWL. The results demonstrate the superior efficiency of our attribute graph-based
knowledge base compared to that of KnowRob in terms of the knowledge query time. The
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average query time for different depths is consistently below 10 ms, thereby satisfying
the real-time manipulation requirements of robots. In terms of knowledge query memory,
both the knowledge bases exhibit similar memory consumption (approximately 0.1 MB)
when the query path depth is low. However, as the query path depth increases, our
knowledge base demonstrates a higher memory occupancy compared to that of KnowRob.
The rationale behind this result lies in the fact that the attribute graphs possess higher data
dimensions and more complex data storage formats, thereby require more computational
resources. Nevertheless, in scenarios where hardware resources are abundant, the disparity
in memory consumption exerts a negligible influence on the execution performance.

6.2. Knowledge-Based Robotic Manipulation Skill Transfer

Given a fixed scene, the robot is assigned manipulation tasks. If prior manipulation
knowledge for the task exists in the knowledge base, the corresponding templates and
instances are queried, and the action sequences and motion parameters are invoked and
executed. In cases where there is no prior manipulation knowledge for the task, but similar
task templates and instances of other objects have been stored, analogical skill transfer can
still be employed to plan the manipulation task. We refer to this as object-centered skill
transfer. Similar tasks are generalized from the same skill with similar action sequences.

Based on the aforementioned definition, we aim to manipulate real-world robots by
utilizing predictions generated from our knowledge-based framework and knowledge
base. We have derived three types of tasks, including simple skills, such as “Pour_Water”
and “Stir_Drink”, as well as a complex skill called “Make_Drink”. The beverages consist
of 20 objects in four categories: coffee, tea, soda, and milk. They have different forms
and packaging. The forms and packaging correspond to the physical properties of the
object attributes in the knowledge-based framework. Such prior knowledge significantly
influences the embeddings generated for the knowledge graph, thereby impacting the
selection of existing templates as prototypes for new tasks during knowledge inference.
The above task categories and objects generate a total of 36 task templates. Figure 6 shows
a “Make_Coffee_a” task template derived from the “Make_Drink” task in a manipulation
environment, which includes three sub-tasks: “Pour_Coffee_a”, “Pour_Water_a”, and
“Stir_Coffee_a”. Each primitive action in the sub-tasks has a subject, object, and object
complement. We select three task templates from each type of task as priors. The instances
of tasks successfully manipulated by the robot are added to the knowledge base as prior
knowledge. The action primitives in the task instance are bound to the physical parameters
of the target state. The low-level motion planning for each action primitive is directly
generated by an RRT planner [46]. The remaining 27 task templates are utilized as test,
with each attempt being conducted five times. The experiment hardware and environment
are illustrated in Figure 7. The manipulation equipment includes a Universal Robot (UR5)
robotic arm and a Robotiq gripper. Because our focus on skill transfer primarily pertains
to higher-level task understanding, we do not address the underlying aspects of motion
planning or visual positioning. Consequently, there are four fixed initial areas on the
manipulation platform: Production, Material 1, Material 2, and Stirring. The coordinates of
these areas are known. We excluded the need for object detection and assumed that both
the object labels and positions were provided.

Table 3 shows the accuracy of action sequence prediction and robot execution. The
first baseline is pattern matching, where the optimal matching template for generating
semantic action sequences and manipulation sequences is chosen by comparing the shortest
paths between the task nodes. The second and third baselines, along with our method, all
fall within the realm of embedding, where the optimal matching template for generating
semantic action sequences and manipulation sequences is chosen using generated feature
vectors. These methods incorporate entity and relation features, while utilizing the knowl-
edge base, resulting in a superior performance. The accuracy of representation is enhanced
in our method through graph embedding, which incorporates more structured information
compared to that of the other methods. As a result, we achieve a 92.59% accuracy rate in
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action sequence prediction. According to the accurate sequence of actions, the execution
accuracy has also reached 82.96%.
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Table 3. Accuracy of skill transfer.

Method Action Sequence Prediction Robot Execution

Pattern Matching 51.85% 43.70%
DistMult 74.07% 61.48%
TransE 85.19% 74.81%

Graph Embedding (ours) 92.59% 82.96%

7. Conclusions

In this work, we present a hierarchical framework to comprehensively understand
the diverse factors and knowledge types in robotic manipulation. Multi-source knowledge
updating is achieved through the utilization of text datasets, LLMs, and external knowledge
bases. Based on this foundation, the dataset SkillKG and knowledge base are meticulously
constructed. A graph-based embedding method is utilized to generate semantic represen-
tations of the entities and relations in SkillKG, followed by an evaluation of the accuracy
of feature embedding. Finally, based on the understanding of aforementioned knowledge
representation, update, and inference, a robotic system successfully demonstrates skill
transfer in a real-world environment. In the future, we aim to transform the visual data
into knowledge graphs through scene graph generation and extend the framework to more
scenes to explore the methods of induction.
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