
Citation: Ha, V.T.; Vinh, V.Q.

Experimental Research on Avoidance

Obstacle Control for Mobile Robots

Using Q-Learning (QL) and Deep

Q-Learning (DQL) Algorithms in

Dynamic Environments. Actuators

2024, 13, 26. https://doi.org/

10.3390/act13010026

Academic Editor: Keigo Watanabe

Received: 24 November 2023

Revised: 1 January 2024

Accepted: 4 January 2024

Published: 9 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Experimental Research on Avoidance Obstacle Control for
Mobile Robots Using Q-Learning (QL) and Deep Q-Learning
(DQL) Algorithms in Dynamic Environments
Vo Thanh Ha 1,* and Vo Quang Vinh 2

1 Faculty of Electrical and Electronic Engineering, University of Transport and Communications,
Hanoi 100000, Vietnam

2 Faculty of Control and Automation, Electric Power University, Hanoi 100000, Vietnam; vinhvq@epu.edu.vn
* Correspondence: vothanhha.ktd@utc.edu.vn; Tel.: +84-912-241-365

Abstract: This study provides simulation and experimental results on techniques for avoiding static
and dynamic obstacles using a deep Q-learning (DQL) reinforcement learning algorithm for a two-
wheel mobile robot with independent control. This method integrates the Q-learning (QL) algorithm
with a neural network, where the neural networks in the DQL algorithm act as approximators
for the Q matrix table for each pair (state–action). The effectiveness of the proposed solution was
confirmed through simulations, programming, and practical experimentation. A comparison was
drawn between the DQL algorithm and the QL algorithm. Initially, the mobile robot was connected
to the control script using the Robot Operating System (ROS). The mobile robot was programmed
in Python within the ROS operating system, and the DQL controller was programmed in Gazebo
software. The mobile robot underwent testing in a workshop with various experimental scenarios
considered. The DQL controller displayed improvements in computation time, convergence time,
trajectory planning accuracy, and obstacle avoidance. As a result, the DQL controller surpassed the
QL algorithm in terms of performance.

Keywords: autonomous mobile robot; ROS; DQL; QL

1. Introduction

Mobile robots play a crucial role in societal advancement, undertaking perilous or
challenging tasks for humans, such as search and rescue operations, and aiding in epidemic-
stricken areas and the exploration of remote planets. Consequently, designing such robots
necessitates meticulous trajectory planning—a pivotal aspect [1]. This planning emphasizes
creating the shortest distance, minimizing time, conserving energy, and circumventing
obstacles enroute to the target [2]. Mobile robot trajectory planning encompasses global
path planning, local path planning, static path planning, and dynamic path planning [3,4].

Recent research has seen an increase in trajectory-planning studies for mobile robots to
evade obstacles in their operational surroundings. These studies involve linear, nonlinear,
and intelligent algorithms. In one study [5], mobile robots utilized an artificial potential
field (APF) algorithm for path planning. Another study explored the checkerboard method,
with the researchers frequently employing a simulation algorithm to determine the optimal
trajectory for mobile robots [6]. Additionally, various pathfinding algorithms for static
obstacle avoidance have been utilized, such as the A* algorithm [7], the D algorithm [8], the
DWA algorithm [9], the random tree algorithm (RRT) [10], the genetic algorithm (GA) [11],
particle swarm optimization (PSO) [12], ant colony optimization [13], the gravity search
algorithm (GSA) [14], and pigeon-inspired optimization [15]. A robot is moved according
to the trajectories set based on the PID-FLC controller [16], and intelligent control for
mobile robots based on a fuzzy logic controller [17] has gained popularity. Upon analyzing
the aforementioned research findings, it is evident that mobile robots can swiftly and

Actuators 2024, 13, 26. https://doi.org/10.3390/act13010026 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act13010026
https://doi.org/10.3390/act13010026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-4023-260X
https://doi.org/10.3390/act13010026
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act13010026?type=check_update&version=1

Actuators 2024, 13, 26 2 of 18

accurately operate in static environments (where comprehensive knowledge of the area
exists) by adjusting their movement speed and trajectory to avoid obstacles. However,
orbital navigation planning for mobile robots proves effective in dynamic environments
(characterized by complexity and numerous variables) [18]. Consequently, AI algorithms
are recommended for planning mobile robot trajectories in dynamic environments, such as
the GA-fuzzy method [19], ANFIS [20], reinforcement learning (RL), and machine learning
(ML). These AI algorithms allow mobile robot trajectories to be trained and updated online
in real time [21].

Building on a previous investigation [22], researchers have extensively utilized the RL
algorithm in gaming and IT. However, many scholars have also applied this algorithm’s
advantageous features, such as simple controller design and orbital navigation planning,
to mobile robots [23,24]. Despite this, the RL algorithm only marginally improves pathing
and increases computation time for convergence. With reference to studies [25–27], the
Q-learning (QL) algorithm charts the mobile robot’s trajectory by learning from past
environmental observations. The QL algorithm has improved computation speed and
convergence. However, it computes the Q values of states to expand the action values of the
neural network. Since accessing all action–state pairs in complex, dynamic environments
are necessary, planning the mobile robot’s trajectory takes a substantial amount of time.

Consequently, several studies have proposed various solutions to mitigate the draw-
backs of traditional QL algorithms. Nakashima and Ishibashi [28] utilized a fuzzy set to
moderate the appropriate Q-value initialization, hastening convergence. In a separate study,
Jiang and Xin [29] introduced a QL algorithm that generates undefined state variables using
a new technique for continuous space division and learning planning in an unknowable
dynamic environment.

Additionally, researchers have recommended an integrated learning strategy based on
spatial allocation to expedite the learning process. When combined with the QL method,
the state–action–reward–state–action (SARSA) technique enabled Wang et al. [30] to achieve
rapid convergence, with the study results indicating reduced learning time. Das et al. [31]
devised an alternative to QL to address the convergence rate issue. To update the Q
table in a more organized manner with reduced time and space complexity, Goswami
et al. [32,33] enhanced the basic QL algorithm. The Q values are preserved in the Q table at
the best action values for each state, resulting in significant time savings. The researchers
established a distinct field for the operation of each table. Numerous QL algorithms have
lessened the computation and convergence times for planning mobile robot trajectories in
intricate and dynamic environments. However, to enhance navigation control in both static
and dynamic environments for mobile robots, this study developed a deep Q-learning
(DQL) algorithm. DQL contains neural networks that are Q-value estimators for each pair
(state-action).

This paper makes several key contributions:

- Successful studies on the navigation controller of mobile robot paths based on the DQL
algorithm based on the ROS operating system through simulation and experimental
results.

- Simulation and experimental results for mobile robots using the DQL algorithm
compared to the QL algorithm have demonstrated the efficiency and superiority of the
proposed algorithm in terms of (1) the proposed DQL algorithm being able to quickly
and safely generate optimal and near-optimal paths; (2) the mobile robot moving
quickly to the required location and avoiding obstacles; (3) the DQL algorithm not
needing a defined environment and lacking a good trade-off between convergence
speed and path length and the algorithm requiring a few milliseconds to compute
a good solution in terms of length and safety; (4) the proposed DQL performance
being improved compared with the performance of the latest related work; and (5) the
suggested DQL increasing the route quality with regard to the length, computation
time, and robot safety.

Actuators 2024, 13, 26 3 of 18

The remainder of this paper is organized as follows. The path planning control
problems for mobile robots are described in Section 1. The mathematical modeling of the
operating system for a mobile robot is described in Section 2. The design of the optimal path
for mobile robots using the DQL algorithm is described in Section 3. Finally, the solution’s
effectiveness is tested, compared, and analyzed through simulations and experiments with
the QL algorithm in Section 4.

2. Mathematical Modeling of an Operating System for a Mobile Robot
2.1. Obstacle Modeling in the Mobile Robot Operating Environment

The obstacle model was built on a rectangular box. Among the static and dynamic
path optimization techniques that collect obstacle estimates, the optimal geometry allows
for the easy estimation of any obstacle shape. The obstacles formed using cubes are shown
in Figure 1. In Figure 1a, by using this geometry to plan the robot in 2D, blocks can be
replaced while avoiding 3D obstacles. A realistic scene with 3D blocks (chairs, tables, etc.)
is shown in Figure 1b. A binary map of the modeled environment is shown in Figure 1c.

2.2. Mathematical Model

The mobile robot moves from the start point (xs, ys) to the destination point target
(xT , yT); the purpose of robot path planning is to find the optimal path from the start point
to the target point. This path is connected by n nodes (Ni, i = 1 . . . n), and (n − 1) each
segment is two consecutive nodes connected to each other. We assume that the robot
moves in an environment with m known obstacles, as shown in Figure 1. Each obstacle
is modeled surrounded by a rectangle with four vertices p1(x1, y1) . . . p4(x4, y4) and four
edges obs_segtj(t ∈ {1 . . . 4}, j ∈ {1 . . . m{}}, where p1 is the bottom left corner of the
rectangle. Similar to obstacles in the environment, the mobile robot is also estimated by
a rectangle of four points, and their coordinates change according to the robot’s current
position. The mathematical equation of each segment defined by the two points (pk, pl) of a
rectangle enclosing an obstacle is given by Equation (1):

seg(pk, pl) =

{
y− yk =

yl−yk
xl−xk

(x− xk)

Min(xl , xk) ≤ x ≤ Max(xl , xk)
(1)

The following notation describes the indices and parameters used in the mathematical
model:

N: number of nodes on the trajectory created from the starting point to the destination.
m: number of obstacles in the environment.

• i(i ∈ {1 . . . n{}}: fragment index generated by the node i and i + 1.
• j(j ∈ {1 . . . m}): index of the jth obstacle in the navigation environment.
• k, l(k, l ∈ {1 . . . 4}): indices of the point that defines an obstacle.
• r(r ∈ {1 . . . 4}): index of segment r from the rectangle approximating the mobile robot.
• t(t ∈ {1 . . . 4}): index of the segment r that defines the rectangle of an obstacle.
• Ni : ith node of the path.
• obsj(j ∈ {1 . . . m}) : jth obstacle.
• path_segi(Ni, Ni+1)(i ∈ {1 . . . n− 1}) : ith segment of the path defined by two nodes

(Ni, Ni+1).
• obs_segl j(pk, pl)(k, l ∈ {1 . . . 4})j(j ∈ {1 . . . m}) : lth segment of the jth obstacle defined

by two points (pk, pl).
• CurrentPos: current location of the robot.
• Rob_segr(pk, pl)(r, k, l ∈ {1 . . . 4}) : rth segment of the rectangle approximating the

robot.

Actuators 2024, 13, 26 4 of 18

Actuators 2024, 13, x FOR PEER REVIEW 3 of 18

improved compared with the performance of the latest related work; and (5) the sug-
gested DQL increasing the route quality with regard to the length, computation time,
and robot safety.
The remainder of this paper is organized as follows. The path planning control prob-

lems for mobile robots are described in section one. The mathematical modeling of the
operating system for a mobile robot is described in section two. The design of the optimal
path for mobile robots using the DQL algorithm is described in section three. Finally, the
solution’s effectiveness is tested, compared, and analyzed through simulations and exper-
iments with the QL algorithm in section four.

2. Mathematical Modeling of an Operating System for a Mobile Robot
2.1. Obstacle Modeling in the Mobile Robot Operating Environment

The obstacle model was built on a rectangular box. Among the static and dynamic
path optimization techniques that collect obstacle estimates, the optimal geometry allows
for the easy estimation of any obstacle shape. The obstacles formed using cubes are shown
in Figure 1. In Figure 1a, by using this geometry to plan the robot in 2D, blocks can be
replaced while avoiding 3D obstacles. A realistic scene with 3D blocks (chairs, tables, etc.)
is shown in Figure 1b. A binary map of the modeled environment is shown in Figure 1c.

(a) (b)

(c) (d)

Actuators 2024, 13, x FOR PEER REVIEW 4 of 18

(e)

Figure 1. Regarding obstacle estimation for route planning, the following should be listed: (a) a
description of the 3D modeling of indoor environments; (b) a description of the 3D modeling of an
indoor room; (c) a description of a binary map of the environment; (d) a description of the approxi-
mation of the obstacles by rectangles; (e) a description of the binary environment.

2.2. Mathematical Model
The mobile robot moves from the start point (𝑥 , 𝑦) to the destination point target

(𝑥 , 𝑦); the purpose of robot path planning is to find the optimal path from the start point
to the target point. This path is connected by n nodes (𝑁 , 𝑖 = 1. . . 𝑛), and (n − 1) each seg-
ment is two consecutive nodes connected to each other. We assume that the robot moves
in an environment with m known obstacles, as shown in Figure 1. Each obstacle is mod-
eled surrounded by a rectangle with four vertices 𝑝 (𝑥 , 𝑦) . . . 𝑝 (𝑥 , 𝑦) and four edges 𝑜𝑏𝑠_𝑠𝑒𝑔 (𝑡 ∈ 1. . .4 , 𝑗 ∈ 1. . . 𝑚 .
where 𝑝 is the bottom left corner of the rectangle. Similar to obstacles in the environ-
ment, the mobile robot is also estimated by a rectangle of four points, and their coordinates
change according to the robot’s current position. The mathematical equation of each seg-
ment defined by the two points (𝑝 , 𝑝) of a rectangle enclosing an obstacle is given by
Equation (1):

𝑠𝑒𝑔(𝑝 , 𝑝) = 𝑦 − 𝑦 = 𝑦 − 𝑦𝑥 − 𝑥 (𝑥 − 𝑥)𝑀𝑖𝑛(𝑥 , 𝑥) ≤ 𝑥 ≤ 𝑀𝑎𝑥(𝑥 , 𝑥) (1)

The following notation describes the indices and parameters used in the mathemati-
cal model:

N: number of nodes on the trajectory created from the starting point to the destina-
tion.

m: number of obstacles in the environment.
• 𝑖(𝑖 ∈ 1. . . 𝑛 : fragment index generated by the node 𝑖 and 𝑖 + 1.
• 𝑗(𝑗 ∈ 1. . . 𝑚): index of the 𝑗 obstacle in the navigation environment.
• 𝑘, 𝑙(𝑘, 𝑙 ∈ 1. . .4): indices of the point that defines an obstacle.
• 𝑟(𝑟 ∈ 1. . .4): index of segment r from the rectangle approximating the mobile robot.
• 𝑡(𝑡 ∈ 1. . .4): index of the segment r that defines the rectangle of an obstacle.
• 𝑁 : 𝑖 node of the path.
• 𝑜𝑏𝑠 (𝑗 ∈ 1. . . 𝑚): 𝑗 obstacle.
• 𝑝𝑎𝑡ℎ_𝑠𝑒𝑔 (𝑁 , 𝑁)(𝑖 ∈ 1. . . 𝑛 − 1): 𝑖 segment of the path defined by two nodes (𝑁 , 𝑁).
• 𝑜𝑏𝑠_𝑠𝑒𝑔 (𝑝 , 𝑝)(𝑘, 𝑙 ∈ 1. . .4)𝑗(𝑗 ∈ 1. . . 𝑚): 𝑙 segment of the 𝑗 obstacle defined

by two points (𝑝 , 𝑝).
• CurrentPos: current location of the robot.

Figure 1. Regarding obstacle estimation for route planning, the following should be listed: (a) a
description of the 3D modeling of indoor environments; (b) a description of the 3D modeling of
an indoor room; (c) a description of a binary map of the environment; (d) a description of the
approximation of the obstacles by rectangles; (e) a description of the binary environment.

The mathematical model’s decision variables are computed as follows:

Bi,t,j =

1i f∃P1, P2

∣∣{P1, P1} ∈ (path_segi) ∧ {P1, P1} ∈
(
obs_segtj

)
∀j(j ∈ {1 . . . m}, ∀t(t ∈ {1 . . . 4}), ∀i(i ∈ {1 . . . n{}}

0 Otherwise
(2)

Ai,t,j =

1i f∃P1, P2

∣∣{P1, P1} ∈ (path_segr) ∧ {P1, P1} ∈
(
obs_segtj

)
∀j(j ∈ {1 . . . m}, ∀r, t(t ∈ {1 . . . 4}),

0 Otherwise
(3)

Actuators 2024, 13, 26 5 of 18

The objective function is to find the shortest path according to Equation (4):

Minimize
(

∑i=n−1
1=1

√
(xi+1 − xi)

2 + (yi+1 − yi)
2, ∀ ∈ {1 . . . n− 1}

)
(4)

Equation (5) requires each node to be unique:

(xi+1 ̸= xi) ∨ (yi+1 ̸= yi), ∀i ∈ {1 . . . n− 1} (5)

The path segments do not overlap in the environment with Equation (6):

∑i=n−1
i=1 ∑j=m

j=1 Bi,t,j = 0, ∀i ∈ {1 . . . n}, t ∈ {1 . . . 4}, j ∈ {1 . . . m{}} (6)

The way for nodes of the robot to overcome obstacles is calculated by Equation (7).

∑j=m
j=1 Ar,t,j = 0, ∀r, t ∈ {1 . . . 4}, j ∈ {1 . . . m{}} (7)

All variables A and B must be binary to satisfy the requirement of Equation (8):

Bi,t,j ∈ {0, 1}, Ar,t,j ∈ {0, 1}∀i ∈ {1 . . . n}, r, t ∈ {1 . . . 4}, j ∈ {1 . . . m{}} (8)

3. Deep Q-Learning and Q-Learning Algorithms in Path Planning for Mobile Robots
3.1. Q-Leaning

The Q-learning (QL) algorithm uses the concept of reward and punishment as created
in the environment in Figure 2. Figure 2 illustrates how a mobile robot selects an action
based on the appropriate policy, executes that action, and receives status (s) and rewards
(r) from the navigation environment. A state contains the robot’s current position in its
workspace while optimizing paths, while an action is a movement whereby the robot
transitions from one state to another.

Actuators 2024, 13, x FOR PEER REVIEW 5 of 18

• 𝑅𝑜𝑏_𝑠𝑒𝑔 (𝑝 , 𝑝)(𝑟, 𝑘, 𝑙 ∈ 1. . .4): 𝑟 segment of the rectangle approximating the ro-
bot.
The mathematical model’s decision variables are computed as follows:

𝐵 , , = 1𝑖𝑓∃𝑃 , 𝑃 | 𝑃 , 𝑃 ∈ (𝑝𝑎𝑡ℎ_𝑠𝑒𝑔) ∧ 𝑃 , 𝑃 ∈ (𝑜𝑏𝑠_𝑠𝑒𝑔)∀𝑗(𝑗 ∈ 1. . . 𝑚 , ∀𝑡(𝑡 ∈ 1. . .4), ∀𝑖(𝑖 ∈ 1. . . 𝑛0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (2)

𝐴 , , = 1𝑖𝑓∃𝑃 , 𝑃 | 𝑃 , 𝑃 ∈ (𝑝𝑎𝑡ℎ_𝑠𝑒𝑔) ∧ 𝑃 , 𝑃 ∈ (𝑜𝑏𝑠_𝑠𝑒𝑔)∀𝑗(𝑗 ∈ 1. . . 𝑚 , ∀𝑟, 𝑡(𝑡 ∈ 1. . .4),0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3)

The objective function is to find the shortest path according to Equation (4): 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝑥 − 𝑥) + (𝑦 − 𝑦) , ∀∈ 1. . . 𝑛 − 1 (4)

Equation (5) requires each node to be unique: (𝑥 𝑥) ∨ (𝑦 𝑦) , ∀𝑖 ∈ 1. . . 𝑛 − 1 (5)

The path segments do not overlap in the environment with Equation (6): ∑ ∑ 𝐵 , , = 0, ∀𝑖 ∈ 1. . . 𝑛 , 𝑡 ∈ 1. . .4 , 𝑗 ∈ 1. . . 𝑚 (6)

The way for nodes of the robot to overcome obstacles is calculated by Equation (7). ∑ 𝐴 , , = 0, ∀𝑟, 𝑡 ∈ 1. . .4 , 𝑗 ∈ 1. . . 𝑚 (7)

All variables A and B must be binary to satisfy the requirement of Equation (8): 𝐵 , , ∈ 0,1 , 𝐴 , , ∈ 0,1 ∀𝑖 ∈ 1. . . 𝑛 , 𝑟, 𝑡 ∈ 1. . .4 , 𝑗 ∈ 1. . . 𝑚 (8)

3. Deep Q-Learning and Q-Learning Algorithms in Path Planning for Mobile Robots
3.1. Q-Leaning

The Q-learning (QL) algorithm uses the concept of reward and punishment as created
in the environment in Figure 2. Figure 2 illustrates how a mobile robot selects an action
based on the appropriate policy, executes that action, and receives status (s) and rewards
(r) from the navigation environment. A state contains the robot’s current position in its
workspace while optimizing paths, while an action is a movement whereby the robot tran-
sitions from one state to another.

Figure 2. Q-learning algorithm.

The Q value was built for the robot to decide to earn the greatest reward. This is
calculated as follows in Equation (9): 𝑄(𝑠 , 𝑎) + 𝛼 𝑟(𝑠 , 𝑎) + 𝛾 max 𝑄((𝑠 , 𝑎) − 𝑄((𝑠 , 𝑎) (9)

Figure 2. Q-learning algorithm.

The Q value was built for the robot to decide to earn the greatest reward. This is
calculated as follows in Equation (9):

Q(st, at) + α

[
r(st, at) + γmax

aϵA
Q((st+1, a)

]
−Q((st, at) (9)

where α represents the learning rate, γ is the discount factor, and stmax
a∈A

Q(st+1, a) signifies

the maximum Q-value among all feasible actions in the new state at, and denotes the
immediate reward/penalty earned by the agent after executing a move at state st+1.

Based on Equation (9), it is a state matrix which acts as a lookup table. From there, for
each state of the robot, we found the action with the most significant Q value (Figure 3).

Actuators 2024, 13, 26 6 of 18

Actuators 2024, 13, x FOR PEER REVIEW 6 of 18

where 𝛼 represents the learning rate, 𝛾 is the discount factor, and 𝑠 𝑚𝑎𝑥∈ 𝑄(𝑠 , 𝑎) sig-
nifies the maximum 𝑄 − 𝑣𝑎𝑙𝑢𝑎 among all feasible actions in the new state 𝑎 , and de-
notes the immediate reward/penalty earned by the agent after executing a move at state 𝑠 .

Based on Equation (9), it is a state matrix which acts as a lookup table. From there,
for each state of the robot, we found the action with the most significant Q value (Figure
3).

Figure 3. The table of Q parameters according to the state–action matrix.

Reinforcement learning is a random process; therefore, the Q values will differ before
and after the action. This is called a temporary difference, based on Equation (10). 𝑇𝐷(𝑎, 𝑠) + 𝑟(𝑠 , 𝑎) + 𝛾 max 𝑄((𝑠 , 𝑎) − 𝑄((𝑠 , 𝑎) (10)

Thus, the matrix 𝑄(𝑠 , 𝑎) needs to update the weights based on Equation (11): 𝑄 (𝑠 , 𝑎) = 𝑄 (𝑠 , 𝑎) + 𝛼𝑇𝐷 (𝑎 , 𝑠) (11)

where α is an arithmetic coefficient. Through the times the robot performs actions, 𝑄(𝑠 , 𝑎) will gradually converge.
The programming program for the Q-learning algorithm for robot pathfinding is ex-

pressed as follows (Algorithm 1):

Algorithm 1: Classical Q-learning algorithm begins
Initialization: 𝑸(𝒔𝒕, 𝒂𝒕) ← 𝟎 , (states and 𝒎 actions)
for (each episode):
(1) Set 𝒔𝒕 ← a random state from the states set s;

while (𝒔𝒕 goal stage)
(2) Choose 𝑎𝒕 in 𝒔𝒕 by using an adequate policy (𝜺 -greedy, etc.);
(3) Perform action 𝑎𝒕 and receive reward/penalty and 𝒔𝒕 ;
(4) Update 𝑸(𝒔𝒕, 𝒂𝒕) using Equation (9); 𝒔𝒕 ← 𝒔𝒕
end-while
end-for
end

The size of the Q table increases exponentially with the number of states and actions
in an environment with conditions.

In this situation, the process becomes computationally expensive and requires con-
siderable memory to hold the Q values. Imagine a game in which each state has 1000 ac-
tions. A table with one million cells is required. Given the vast amount of computational

Figure 3. The table of Q parameters according to the state–action matrix.

Reinforcement learning is a random process; therefore, the Q values will differ before
and after the action. This is called a temporary difference, based on Equation (10).

TD(a, s) + r(st, at) + γmax
aϵA

Q((st+1, a)]−Q((st, at) (10)

Thus, the matrix Q(st, at) needs to update the weights based on Equation (11):

Qt(st, at) = Qt−1(st, at) + αTDt(at, st) (11)

where α is an arithmetic coefficient. Through the times the robot performs actions, Q(st, at)
will gradually converge.

The programming program for the Q-learning algorithm for robot pathfinding is
expressed as follows (Algorithm 1):

Algorithm 1: Classical Q-learning algorithm begins

Initialization:
Q(st, at)← {0} , (states and m actions)
for (each episode):
(1) Set st ← a random state from the states set s;

while (st ̸= goal stage)
(2) Choose at in st by using an adequate policy (ε -greedy, etc.);
(3) Perform action at and receive reward/penalty and st+1;
(4) Update Q(st, at) using Equation (9);
st ← st+1
end-while
end-for
end

The size of the Q table increases exponentially with the number of states and actions
in an environment with conditions.

In this situation, the process becomes computationally expensive and requires consid-
erable memory to hold the Q values. Imagine a game in which each state has 1000 actions.
A table with one million cells is required. Given the vast amount of computational time [31],
one of the main problems when using the QL algorithm in path optimization is that access-
ing all of the action–state pairs during the mining process is complex, which affects orbital
convergence.

3.2. Deep Q-Leaning

The DQL algorithm replaces the regular Q table with a neural network. Instead of
mapping a (state–action) pair to a Q-value, the neural network maps the input states to
(action and Q-value) pairs, as shown in Figure 4.

Actuators 2024, 13, 26 7 of 18

Actuators 2024, 13, x FOR PEER REVIEW 7 of 18

time [31], one of the main problems when using the QL algorithm in path optimization is
that accessing all of the action–state pairs during the mining process is complex, which
affects orbital convergence.

3.2. Deep Q-Leaning
The DQL algorithm replaces the regular Q table with a neural network. Instead of

mapping a (state–action) pair to a Q-value, the neural network maps the input states to
(action and Q-value) pairs, as shown in Figure 4.

Figure 4. Deep Q-learning in Q value assessment.

State evolution data were used for the neural network input, and the Q value corre-
sponded to each separate output node of the neural network. Therefore, each predicted Q
value of an individual action is in state.

The proposed model for deep learning neural networks has four layers: one input
layer, two hidden layers, and one output layer (Figure 5). There were 1856 training pa-
rameters in the first hidden layer, comprising architecture neurons that are entirely asso-
ciated with 28 laser sensor inputs. A total of 4160 parameters were trained in the second
hidden layer, including 64 neurons and 64 inputs from the first.

Figure 5. Architectural model.

A programming program for the DQL algorithm is as follows (Algorithm 2):

Algorithm 2:
Input: data 𝑋 = (𝑥 , 𝑥 , . . . , 𝑥), learning factor α, discount factor, epsilon-greedy policy ∈, robot pose, safety constraints
Output: 𝑄(𝑠, 𝑎; 𝜃), states’ s є S, actions a є A, weight θ
Begin

Input
layer

Hidden
layer

Hidden
layer

Output
layer

Figure 4. Deep Q-learning in Q value assessment.

State evolution data were used for the neural network input, and the Q value corre-
sponded to each separate output node of the neural network. Therefore, each predicted Q
value of an individual action is in state.

The proposed model for deep learning neural networks has four layers: one input layer,
two hidden layers, and one output layer (Figure 5). There were 1856 training parameters
in the first hidden layer, comprising architecture neurons that are entirely associated with
28 laser sensor inputs. A total of 4160 parameters were trained in the second hidden layer,
including 64 neurons and 64 inputs from the first.

Actuators 2024, 13, x FOR PEER REVIEW 7 of 18

time [31], one of the main problems when using the QL algorithm in path optimization is
that accessing all of the action–state pairs during the mining process is complex, which
affects orbital convergence.

3.2. Deep Q-Leaning
The DQL algorithm replaces the regular Q table with a neural network. Instead of

mapping a (state–action) pair to a Q-value, the neural network maps the input states to
(action and Q-value) pairs, as shown in Figure 4.

Figure 4. Deep Q-learning in Q value assessment.

State evolution data were used for the neural network input, and the Q value corre-
sponded to each separate output node of the neural network. Therefore, each predicted Q
value of an individual action is in state.

The proposed model for deep learning neural networks has four layers: one input
layer, two hidden layers, and one output layer (Figure 5). There were 1856 training pa-
rameters in the first hidden layer, comprising architecture neurons that are entirely asso-
ciated with 28 laser sensor inputs. A total of 4160 parameters were trained in the second
hidden layer, including 64 neurons and 64 inputs from the first.

Figure 5. Architectural model.

A programming program for the DQL algorithm is as follows (Algorithm 2):

Algorithm 2:
Input: data 𝑋 = (𝑥 , 𝑥 , . . . , 𝑥), learning factor α, discount factor, epsilon-greedy policy ∈, robot pose, safety constraints
Output: 𝑄(𝑠, 𝑎; 𝜃), states’ s є S, actions a є A, weight θ
Begin

Input
layer

Hidden
layer

Hidden
layer

Output
layer

Figure 5. Architectural model.

A programming program for the DQL algorithm is as follows (Algorithm 2):
The robot makes decisions and performs actions according to the Q-based (ε-greedy)

policy. A mobile robot must successfully consider more than short-term gains over the long
term. It is necessary to mention any prizes it might win in Class 1, Class 2, and Class L-1
future class. In addition, because the environment is unpredictable, the mobile robot can
never be sure to receive the same reward the next time it carries out the same activities.
Robots can diverge further as they advance in the future. Therefore, we employed a future
discount reward in this study. The following formula is used to calculate the return on the
future dilution factor at time t:

Rt = rt + γrt+1 + γ2rt+2 + . . . + γT−trT , 0 ≤ γ ≤ 1 (12)

where rt is the direct reward, and T is the time step at which the robot action ends; the
further in the future the reward, the less the robot considers it.

Actuators 2024, 13, 26 8 of 18

Algorithm 2:

Input : data X = (x1, x2, . . . , xN), learning factor α, discount factor, epsilon-greedy policy ∈,
robot pose, safety constraints
Output : Q(s, a; θ), states’ s ∈ S, actions a ∈ A, weight θ

Begin
Initialize replay memory D to capacity N
Initialize Q(s, a; θ) with random weights
Initialize Q(s, a′; θ′), with random weights

for episode = 1, M do
Randomly set the robots pose in the scenario Observe initial states of robots s
for t = 1, T due to:
Select an action at

With probability, select a random action at
Otherwise select at = argmaxa′Q(st, a′; θ)
Execute action at, observer state st+1, compute reward Rt

Store training (st, at, Rt, st+1) in relay memory EASY
Sample random minibatch of transition (st, at, Rt, st+1) from EASY

Calculate the predicted value Q
(

sj, aj; θ
)

Calculate the target value for each minibatch transition
If st+1 is the terminal state, the yj = Rj

Otherwise yj = Rj + γmaxa′j
Q′

(
s′j, a′j; θ′

)
Train neural networks using (yj −Q

(
sj, aj; θ

)
)

2

end for

The goal of the robot is to interact with the environment by choosing actions that
maximize future rewards. We used a technique called experience replay, in which we record
the robot’s experience at each time step, et = (st, at, Rt, st+1), in a data set Dt = {e1, . . . , et},
which is pooled over many learning cycles (episodes) at the end of the learning cycle into
replay memory.

It is necessary to update the weights of neural networks. We first sampled random
transitions from replay memory D with finite memory size N. For each given transformation,
the algorithm performs the following steps:

- Step 1: Transition through the neural network for the current state to obtain the
predicted value Q(sj, aj; θ).

- Step 2: If the transition sampled is a collision sample, then the evaluation for this
pair (sj, aj) is directly set as the termination reward. Otherwise, forward neural
networks are performed for the next state s’, the maximum overall network output
is calculated, and the target for the action is computed using the Bellman equation
(r + maxa′j

Q′
(

s′j, a′j; θ′
)

). For all other activities, the target value is set to be the same

as that initially returned in step 1.
- Step 3: The Q-learning update algorithm uses the following loss function:

L(θ) =
1
N ∑n

i=1 (yj −Q
(
sj, aj; θ

)
)

2 (13)

The neural network weights were changed using a loss function through backpropaga-
tion and stochastic gradient descent. The mobile robot stores the learned neural networks
in its brain when the training is over and uses them for future testing and work.

4. Simulation and Experimental Results

This study proposes a DQL-based obstacle avoidance trajectory planning strategy for
a mobile robot operating in an unexplored area using a LIDAR sensor. The LIDAR sensor
acquires the distance value in the system and decides what steps to take next based solely

Actuators 2024, 13, 26 9 of 18

on the distance of the obstacle to the mobile robot. Our proposed framework is depicted in
Figure 6.

Actuators 2024, 13, x FOR PEER REVIEW 9 of 18

The neural network weights were changed using a loss function through backprop-
agation and stochastic gradient descent. The mobile robot stores the learned neural net-
works in its brain when the training is over and uses them for future testing and work.

4. Simulation and Experimental Results
This study proposes a DQL-based obstacle avoidance trajectory planning strategy for

a mobile robot operating in an unexplored area using a LIDAR sensor. The LIDAR sensor
acquires the distance value in the system and decides what steps to take next based solely
on the distance of the obstacle to the mobile robot. Our proposed framework is depicted
in Figure 6.

Figure 6. Robot Operating System (ROS) model.

Our navigation framework consists of two main stages: (1) In the Offline stage, tra-
jectories are sampled using the robot’s kinematic model. A 3D map structure is created
around the robot by a LIDAR sensor and a hector SLAM algorithm. The voxels are cate-
gorized as “Priority” or “Support” based on their proximity to the nearest sampling point.
(2) During the online stage, sensor data are translated into categorized voxels to compute
occupancy values for each trajectory. The neural network generates a discrete action based
on these observations. The online stage continues until a terminal state (goal or collision)
is reached.

Action Space: In this paper, we utilize a 2D vector space to depict our actions as 𝑎 =𝑣 𝜔 ∈ 𝑅 as we conduct simulations on a differential drive robot controlled by linear v
and angular ω velocity commands.

Reward function: The reward function is calculation is Equation (12).

𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑟 𝑖𝑓 𝑑 𝜏 𝑟 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑛 𝑛 𝑜𝑟 𝑑 𝜏 𝑟 = 𝑟 + 𝑟 𝑒𝑙𝑠𝑒 (14)

where: 𝑟 = 𝛽 𝑑 − 𝑑 (15)

 𝑟 = 𝛽𝑛 (16)

We set a positive reward goal 𝑟 for the robot when the mobile robot reaches the
target. Suppose the episode ends by exceeding a threshold 𝜏 , reaching the closest ob-
stacle’s distance value 𝑑 , or reaching the maximum number of steps 𝑛 per episode.
In that case, we penalize it with a negative reward 𝑟 . To reduce the training time spent
by the robot in inefficiently exploring its state space, we introduce a step reward function 𝑟 to evaluate states other than the end cases.

Figure 6. Robot Operating System (ROS) model.

Our navigation framework consists of two main stages: (1) In the Offline stage, trajec-
tories are sampled using the robot’s kinematic model. A 3D map structure is created around
the robot by a LIDAR sensor and a hector SLAM algorithm. The voxels are categorized as
“Priority” or “Support” based on their proximity to the nearest sampling point. (2) During
the online stage, sensor data are translated into categorized voxels to compute occupancy
values for each trajectory. The neural network generates a discrete action based on these
observations. The online stage continues until a terminal state (goal or collision) is reached.

Action Space: In this paper, we utilize a 2D vector space to depict our actions as
a = [v ω] ∈ R2 as we conduct simulations on a differential drive robot controlled by linear
v and angular ω velocity commands.

Reward function: The reward function is calculation is Equation (12).

Reward =

rgoal i f dtarget

t < τtarget

r f ail else i f nt > nmaxstep or dobs
t < τ f ail

rstep
t = rtarget

t + rstep
t else

(14)

where:
rtarget

t = βtarget
(

dtarget
t−∆t − dtarget

t

)
(15)

rstep
t =

βtarget

nmaxstep (16)

We set a positive reward goal rtarget for the robot when the mobile robot reaches
the target. Suppose the episode ends by exceeding a threshold τ f ail , reaching the closest
obstacle’s distance value dobs

t , or reaching the maximum number of steps nmax per episode.
In that case, we penalize it with a negative reward r f ail . To reduce the training time spent
by the robot in inefficiently exploring its state space, we introduce a step reward function
rstep

t to evaluate states other than the end cases.
The step function target rtarget

t is calculated by finding the difference between the
current and previous time steps’ target distance. This difference is then multiplied by
the user-defined scalar beta target to adjust the reward/penalty weight on the navigation.
Depending on the distance difference’s sign, the function penalizes or rewards the current
state. The step function rstep

t penalizes the robot for not reaching the goal. The penalty
value µstep pen remains constant for each time and is determined by the user-defined
scalar βtarget step and nmaxstep. Including the previous action in observations helps the
robot escape dead spots by compelling it to choose different activities. To address the
potential issue of local minima, we introduce a mechanism to encourage exploration. By
incorporating the previous action in the observations, we compel the robot to diversify its
activities, thus mitigating the risk of getting stuck in unproductive states. This approach

Actuators 2024, 13, 26 10 of 18

promotes a more adaptive and exploratory behavior, enabling the robot to navigate more
effectively through complex environments. Moreover, using a user-defined scalar β step
pen and nmaxstep allows for fine-tuning the penalty for not reaching the goal, providing
flexibility in adjusting the learning process to specific task requirements. Combining these
strategies contributes to a more robust and efficient navigation system, enhancing the
robot’s ability to overcome challenges and achieve its objectives.

In this process, the unnatural acceleration or deceleration actions of the system are
required during resonance. The action value frequently fluctuates, physically shocks the
robot, and reduces path performance. Therefore, the action values are returned to the input
in the order of the network action after being held in memory.

In addition, reinforcement learning was simulated on the Robot Operating System
and Gazebo simulator (ROS–GAZEBO), and the experiments were conducted on actual
mobile robots by using scenarios and analyzing the experiment.

In this study, a mobile robot was experimentally built with specific specifications and
a steel body size of 70 cm × 50 cm × 38 cm. Its 10 cm diameter wheels handle nearly
any surface in the home. The two motor shafts hold 1200-tick encoders. This differential
drive platform is comprehensive and can rotate in place. The wheels move only on one
side, with two DC motors attached to the encoder. The robot was equipped with a Jetson
Nano 4G embedded computer processor. ROS programming software specifications, motor
encoder information, and other I/O via packets from the Jetson Nano 4G walker server all
micro-control to the personal computer (PC) client and return control commands. Signals
were obtained for power from the Linda 3600 A2 sensors, camera, and inertial measurement
unit (IMU). ROS software provides library functions for navigation, path planning, obstacle
avoidance, and many other robotic tasks. Figure 7 displays the experimental model of the
mobile robot.

Actuators 2024, 13, x FOR PEER REVIEW 10 of 18

The step function target 𝑟 is calculated by finding the difference between the
current and previous time steps’ target distance. This difference is then multiplied by the
user-defined scalar beta target to adjust the reward/penalty weight on the navigation. De-
pending on the distance difference’s sign, the function penalizes or rewards the current
state. The step function 𝑟 penalizes the robot for not reaching the goal. The penalty
value µstep pen remains constant for each time and is determined by the user-defined
scalar 𝛽 step and 𝑛 . Including the previous action in observations helps the
robot escape dead spots by compelling it to choose different activities. To address the po-
tential issue of local minima, we introduce a mechanism to encourage exploration. By in-
corporating the previous action in the observations, we compel the robot to diversify its
activities, thus mitigating the risk of getting stuck in unproductive states. This approach
promotes a more adaptive and exploratory behavior, enabling the robot to navigate more
effectively through complex environments. Moreover, using a user-defined scalar 𝛽 step
pen and 𝑛 allows for fine-tuning the penalty for not reaching the goal, providing
flexibility in adjusting the learning process to specific task requirements. Combining these
strategies contributes to a more robust and efficient navigation system, enhancing the ro-
bot’s ability to overcome challenges and achieve its objectives.

In this process, the unnatural acceleration or deceleration actions of the system are
required during resonance. The action value frequently fluctuates, physically shocks the
robot, and reduces path performance. Therefore, the action values are returned to the in-
put in the order of the network action after being held in memory.

In addition, reinforcement learning was simulated on the Robot Operating System
and Gazebo simulator (ROS–GAZEBO), and the experiments were conducted on actual
mobile robots by using scenarios and analyzing the experiment.

In this study, a mobile robot was experimentally built with specific specifications and
a steel body size of 70 cm × 50 cm × 38 cm. Its 10 cm diameter wheels handle nearly any
surface in the home. The two motor shafts hold 1200-tick encoders. This differential drive
platform is comprehensive and can rotate in place. The wheels move only on one side,
with two DC motors attached to the encoder. The robot was equipped with a Jetson Nano
4G embedded computer processor. ROS programming software specifications, motor en-
coder information, and other I/O via packets from the Jetson Nano 4G walker server all
micro-control to the personal computer (PC) client and return control commands. Signals
were obtained for power from the Linda 3600 A2 sensors, camera, and inertial measure-
ment unit (IMU). ROS software provides library functions for navigation, path planning,
obstacle avoidance, and many other robotic tasks. Figure 7 displays the experimental
model of the mobile robot.

Figure 7. In the diagram, 0 is the left (−90°), 1 is the left front (−45°), 2 is the front (0°), 3 is the right
front (45°), and 4 is the right (90°); a mobile robot’s actions are directed.
Figure 7. In the diagram, 0 is the left (−90◦), 1 is the left front (−45◦), 2 is the front (0◦), 3 is the right
front (45◦), and 4 is the right (90◦); a mobile robot’s actions are directed.

4.1. Set Status for a Mobile Robot

This state is an environment that observes and describes the current position of the
robot. The state size is 28, with 24 values for the laser distance sensor, the distance to the
target, and the angle to the target.

4.2. Set Action for a Mobile Robot

The robot could perform actions only in each state. The linear speed of the mobile
robot in this situation was always 0.15 m/s. This is the act of determining the angular rate.
The authors used a mobile robot model (Figure 8) that could only perform the five possible
tasks listed in Table 1.

Actuators 2024, 13, 26 11 of 18

Actuators 2024, 13, x FOR PEER REVIEW 11 of 18

4.1. Set Status for a Mobile Robot
This state is an environment that observes and describes the current position of the

robot. The state size is 28, with 24 values for the laser distance sensor, the distance to the
target, and the angle to the target.

4.2. Set Action for a Mobile Robot
The robot could perform actions only in each state. The linear speed of the mobile

robot in this situation was always 0.15 m/s. This is the act of determining the angular rate.
The authors used a mobile robot model (Figure 8) that could only perform the five possible
tasks listed in Table 1.

Figure 8. Structure diagram of the hardware control mobile robot.

Table 1. Action and angular velocity.

Action Angular Velocity
0 −1.5
1 −0.75
2 0
3 0.75
4 1.5

4.3. Setup of a Reward for a Mobile Robot
The mobile robot performs an action in this state. It then receives a reward. Reward

design is crucial to learning. Rewards can be either positive or negative. When the robot
achieves its goal, it receives a sizeable positive compensation. When the robot collides
with an obstacle, it receives a large negative reward.

4.4. Parameter Setting for the Controller
Parameter setting for the controller is listed in Table 2.

Table 2. Action and angular velocity. 𝑇 6000 (s) Time step of one cycle 𝛾 0.99 The discount factor 𝛼 25 × 10 Learning speed

Figure 8. Structure diagram of the hardware control mobile robot.

Table 1. Action and angular velocity.

Action Angular Velocity

0 −1.5
1 −0.75
2 0
3 0.75
4 1.5

4.3. Setup of a Reward for a Mobile Robot

The mobile robot performs an action in this state. It then receives a reward. Reward
design is crucial to learning. Rewards can be either positive or negative. When the robot
achieves its goal, it receives a sizeable positive compensation. When the robot collides with
an obstacle, it receives a large negative reward.

4.4. Parameter Setting for the Controller

Parameter setting for the controller is listed in Table 2.

Table 2. Action and angular velocity.

T 6000 (s) Time step of one cycle

γ 0.99 The discount factor

α 25 × 10−5 Learning speed

ξ 1.0 Probability of choosing a random action

ξreduce 0.99 Reduction rate of epsilon. When a cycle ends,
epsilon decreases

ξmin 0.05 Minimum stats of epsilon

Batch size sixty-four Activate a group of training templates

Train start Sixty-four Start of input training

Memory 106 Memory size

Actuators 2024, 13, 26 12 of 18

4.5. Simulation Results on ROS-GAZEBO

In this study, the control robot system created a scenario similar to that of a simulated
factory in ROS-Gazebo to bridge the gap between the simulated environment and the
natural world.

In this environment, various obstacles were built to test the proposed QL and DQL
navigation algorithms. The territory includes walls, static blocks, mobile people, targets,
and mobile robots. The mobile robot must reach the target while avoiding static and
dynamic obstacles, as illustrated in Figure 9.

Actuators 2024, 13, x FOR PEER REVIEW 12 of 18

𝜉 1.0 Probability of choosing a random ac-
tion 𝜉reduce 0.99 Reduction rate of epsilon. When a cycle

ends, epsilon decreases 𝜉 0.05 Minimum stats of epsilon
Batch size sixty-four Activate a group of training templates
Train start Sixty-four Start of input training
Memory 10 Memory size

4.5. Simulation Results on ROS-GAZEBO
In this study, the control robot system created a scenario similar to that of a simulated

factory in ROS-Gazebo to bridge the gap between the simulated environment and the nat-
ural world.

In this environment, various obstacles were built to test the proposed QL and DQL
navigation algorithms. The territory includes walls, static blocks, mobile people, targets,
and mobile robots. The mobile robot must reach the target while avoiding static and dy-
namic obstacles, as illustrated in Figure 9.

Figure 9. Path planning simulation environment for mobile robots in ROS-Gazebo.

The training process for a robot can undergo several cycles. Each cycle ended when
the robot acquired the target position, hit an obstacle in its path, or when the time for each
cycle ended.

In this environment, various types of obstacles, including pedestrians, static blocks,
and walls, were randomly placed to test the performance of the proposed mobile robot
navigation algorithm. The task of the robot is to avoid static and dynamic barriers by
maintaining a safe distance from them and reaching the target positions in the shortest
distance and fastest time.

The path planning results of mobile robots using two algorithms, QL and DQL, in
dynamic environments were assessed in this study. Figure 10 shows a realistic environ-
ment for path planning for a mobile robot, where the workspace is 12 m ×12 m with ob-
stacles and the minimum distance between blocks is 0.6 m. For all tests, the robot starts
from position (1, 1) and finds the path to the target (11, 11). Table 3, below, presents the
results.

Figure 9. Path planning simulation environment for mobile robots in ROS-Gazebo.

The training process for a robot can undergo several cycles. Each cycle ended when
the robot acquired the target position, hit an obstacle in its path, or when the time for each
cycle ended.

In this environment, various types of obstacles, including pedestrians, static blocks,
and walls, were randomly placed to test the performance of the proposed mobile robot
navigation algorithm. The task of the robot is to avoid static and dynamic barriers by
maintaining a safe distance from them and reaching the target positions in the shortest
distance and fastest time.

The path planning results of mobile robots using two algorithms, QL and DQL, in
dynamic environments were assessed in this study. Figure 10 shows a realistic environment
for path planning for a mobile robot, where the workspace is 12 m × 12 m with obstacles
and the minimum distance between blocks is 0.6 m. For all tests, the robot starts from
position (1, 1) and finds the path to the target (11, 11). Table 3, below, presents the results.

The results in Table 3 show that both controllers effectively guide the mobile robot
in planning the most efficient path. Specifically, with the DQL controller, the trajectory
is enhanced, resulting in a shorter distance traveled, although the improvement is not
considered significant. At the same time, the computational time needed to determine the
optimal rotation and motion is notably improved. In the dynamic environment mirroring
that of the QL algorithm in case 1, the distance covered is 17.758 m over 12.314 s. In
contrast, with the DQL algorithm, the system covers a distance 0.629 m shorter in almost
half the time, taking only 7.927 s. In case 2, the distance covered is 18.416 m over 14.637 s.
Conversely, with the implementation of the DQL algorithm, the system covers a distance
1.181 m shorter in almost half the time, taking only 8.324 s. These findings suggest that the
DQL algorithm produces superior outcomes compared to the QL algorithm.

Actuators 2024, 13, 26 13 of 18

Actuators 2024, 13, x FOR PEER REVIEW 13 of 18

Table 3. Simulation results in ROS-GAZEBO.

No. Algorithm
Case 1 Case 2

Distance (m) Run Time (s) Distance (m) Run Time (s)
1 QL 17.758 12.314 18.416 14.637
2 DQL 17.129 7.927 17.235 8.324

(a) (b)

Figure 10. Path planning results of mobile robot using two algorithms, QL and DQL, in a dynamic
environment; they should be listed as (a) Case 1 and (b) Case 2.

The results in Table 3 show that both controllers effectively guide the mobile robot in
planning the most efficient path. Specifically, with the DQL controller, the trajectory is
enhanced, resulting in a shorter distance traveled, although the improvement is not con-
sidered significant. At the same time, the computational time needed to determine the
optimal rotation and motion is notably improved. In the dynamic environment mirroring
that of the QL algorithm in case 1, the distance covered is 17.758 m over 12.314 s. In con-
trast, with the DQL algorithm, the system covers a distance 0.629 m shorter in almost half
the time, taking only 7.927 s. In case 2, the distance covered is 18.416 m over 14.637 s.
Conversely, with the implementation of the DQL algorithm, the system covers a distance
1.181 m shorter in almost half the time, taking only 8.324 s. These findings suggest that
the DQL algorithm produces superior outcomes compared to the QL algorithm.

4.6. Experiment Results
The experimental studies on robots with the two proposed algorithms involved

many obstacles in this environment, including walls, tables, chairs, and students walking.
The mobile robot must reach the target while avoiding the static and dynamic barriers
(Figure 11). In this study, the robot was subjected to the following experimental cases:

Figure 10. Path planning results of mobile robot using two algorithms, QL and DQL, in a dynamic
environment; they should be listed as (a) Case 1 and (b) Case 2.

Table 3. Simulation results in ROS-GAZEBO.

No. Algorithm
Case 1 Case 2

Distance (m) Run Time (s) Distance (m) Run Time (s)

1 QL 17.758 12.314 18.416 14.637
2 DQL 17.129 7.927 17.235 8.324

4.6. Experiment Results

The experimental studies on robots with the two proposed algorithms involved many
obstacles in this environment, including walls, tables, chairs, and students walking. The mo-
bile robot must reach the target while avoiding the static and dynamic barriers (Figure 11).
In this study, the robot was subjected to the following experimental cases:

Actuators 2024, 13, x FOR PEER REVIEW 14 of 18

Figure 11. Realistic environment of the robot club room.

Case 1: The actual environment for mobile robot path planning, where the workspace
is a 4.5 m × 6.8 m robot club room with obstacles. The experimental study in Case 1 is
presented in Figure 12.

Figure 12. Experimental image of the mobile robot movement room.

Case 2: A mobile robot running down the hallway. The obstacles in this environment
are pillars in the corridor and a cargo box that blocks the middle of the route. The distance
from the starting point to the destination in a straight line (as the crow flies) is 20 m. The
experimental study in Case 2 is presented in Figure 13.

Figure 11. Realistic environment of the robot club room.

Actuators 2024, 13, 26 14 of 18

Case 1: The actual environment for mobile robot path planning, where the workspace
is a 4.5 m × 6.8 m robot club room with obstacles. The experimental study in Case 1 is
presented in Figure 12.

Actuators 2024, 13, x FOR PEER REVIEW 14 of 18

Figure 11. Realistic environment of the robot club room.

Case 1: The actual environment for mobile robot path planning, where the workspace
is a 4.5 m × 6.8 m robot club room with obstacles. The experimental study in Case 1 is
presented in Figure 12.

Figure 12. Experimental image of the mobile robot movement room.

Case 2: A mobile robot running down the hallway. The obstacles in this environment
are pillars in the corridor and a cargo box that blocks the middle of the route. The distance
from the starting point to the destination in a straight line (as the crow flies) is 20 m. The
experimental study in Case 2 is presented in Figure 13.

Figure 12. Experimental image of the mobile robot movement room.

Case 2: A mobile robot running down the hallway. The obstacles in this environment
are pillars in the corridor and a cargo box that blocks the middle of the route. The distance
from the starting point to the destination in a straight line (as the crow flies) is 20 m. The
experimental study in Case 2 is presented in Figure 13.

Actuators 2024, 13, x FOR PEER REVIEW 15 of 18

Figure 13. Experimental image of the mobile robot movement room with a robot running along the
hallway.

Case 3: The mobile robot runs along the hallway with 20 kg of weight, as shown in
Figure 13. The obstacles in this environment are pillars in the corridor and a cargo box
that blocks the middle of the way. The experimental study in Case 3 is presented in Figure
14.

Figure 14. Experimental image of the mobile robot movement room with a robot running along the
hallway with 20 kg of weight.

As shown in the Figures 12–14 test results, the mobile robot starts at the door position
(1, 1) and finds the path to the target (red, 5.5 m from the door). The experimental results
of the two algorithms are listed in Table 4.

Table 4. Simulation results in ROS–GAZEBO.

No. Algorithm
Case 1

Distance (m) Run Time (s)

1
QL 6.271 72.132

DQL 5.753 47.853

2
QL 6.314 74.097

DQL 5.958 51.845

3
QL 6.264 72.124

DQL 5.386 45.734
 Case 2

Figure 13. Experimental image of the mobile robot movement room with a robot running along the
hallway.

Case 3: The mobile robot runs along the hallway with 20 kg of weight, as shown in
Figure 13. The obstacles in this environment are pillars in the corridor and a cargo box that
blocks the middle of the way. The experimental study in Case 3 is presented in Figure 14.

As shown in the Figures 12–14 test results, the mobile robot starts at the door position
(1, 1) and finds the path to the target (red, 5.5 m from the door). The experimental results of
the two algorithms are listed in Table 4.

Actuators 2024, 13, 26 15 of 18

Actuators 2024, 13, x FOR PEER REVIEW 15 of 18

Figure 13. Experimental image of the mobile robot movement room with a robot running along the
hallway.

Case 3: The mobile robot runs along the hallway with 20 kg of weight, as shown in
Figure 13. The obstacles in this environment are pillars in the corridor and a cargo box
that blocks the middle of the way. The experimental study in Case 3 is presented in Figure
14.

Figure 14. Experimental image of the mobile robot movement room with a robot running along the
hallway with 20 kg of weight.

As shown in the Figures 12–14 test results, the mobile robot starts at the door position
(1, 1) and finds the path to the target (red, 5.5 m from the door). The experimental results
of the two algorithms are listed in Table 4.

Table 4. Simulation results in ROS–GAZEBO.

No. Algorithm
Case 1

Distance (m) Run Time (s)

1
QL 6.271 72.132

DQL 5.753 47.853

2
QL 6.314 74.097

DQL 5.958 51.845

3
QL 6.264 72.124

DQL 5.386 45.734
 Case 2

Figure 14. Experimental image of the mobile robot movement room with a robot running along the
hallway with 20 kg of weight.

Table 4. Simulation results in ROS–GAZEBO.

No. Algorithm
Case 1

Distance (m) Run Time (s)

1
QL 6.271 72.132

DQL 5.753 47.853

2
QL 6.314 74.097

DQL 5.958 51.845

3
QL 6.264 72.124

DQL 5.386 45.734

Case 2

Distance (m) Run time (s)

1
QL 20.123 57.372

DQL 21.235 32.735

2
QL 20.123 57.375

DQL 21.235 33.738

3
QL 20.123 57.379

DQL 19.235 30.735

Case 3

Distance (m) Run time (s)

1
QL 27.682 92.132

DQL 25.638 87.867

2
QL 27.682 92.132

DQL 25.638 87.656

3
QL 27.682 92.132

DQL 26.338 60.853

Based on the results presented in Table 4, it is evident from the experimental data that
across all three cases, the DQL algorithm consistently outperforms the QL algorithm in the
context of orbital planning for mobile robots, particularly concerning time efficiency. For

Actuators 2024, 13, 26 16 of 18

instance, in Case 1, the DQL algorithm reduces the orbit length by 0.878 m and demonstrates
a shorter duration of 26.390 s compared to the QL algorithm. Similarly, in Case 2, the DQL
algorithm shortens the orbit by 0.88 m, with a reduced time of 26.644 s, in comparison
to the QL algorithm. Finally, in Case 3, the DQL algorithm demonstrates a reduction of
1.344 m in orbit length and a shorter time of 31.279 s compared to the QL algorithm.

These outcomes strongly indicate the effectiveness of the DQL algorithm in trajec-
tory planning for mobile robots within uncertain and dynamic environments. The DQL
algorithm is adept at establishing an optimal trajectory and consistently invests more time
in generating high-quality solutions. Furthermore, the execution time variability of the
proposed DQL method increases as the number of barriers rises, highlighting its adapt-
ability. In contrast, the DQL technique consistently delivers robust results within a short
timeframe.

5. Conclusions

The deep Q-learning (DQL) algorithm is introduced in this study as a solution to create
an optimal path for mobile robots in complex and dynamic environments. The algorithm
helps the robot select the best action, speed up the learning process, find the ideal trajectory,
and provide the Q table’s most favorable value for each action–state pair in a complex
environment. The simulations and experiments show the proposed algorithm’s efficiency
and superiority compared to the QL algorithm. Additional control functions such as classi-
fication, identification using image processing, voice control, and lane identification using
intelligent control algorithms must be designed to improve the mobile robot’s trajectory
further. This is the future research direction of the authors’ research group. Implementing
these additional control functions will require a thorough understanding of the robot’s
environment and the ability to adapt to changing conditions in real-time. Developing
robust and reliable algorithms that can handle dynamic environments’ complexities and
ensure mobile robots’ safety and efficiency is essential. Additionally, integrating advanced
sensor technologies and machine learning algorithms will play a crucial role in enhancing
the capabilities of mobile robots and enabling them to navigate complex and unpredictable
environments with ease and precision. Furthermore, integrating advanced sensor tech-
nologies and machine learning algorithms will be pivotal in enhancing the capabilities of
mobile robots. This integration will enable them to navigate complex and unpredictable
environments quickly and precisely. Developing robust and reliable algorithms that can
handle the complexities of dynamic environments and ensure the safety and efficiency
of mobile robots is essential for their widespread adoption. As mobile robots become
increasingly prevalent in various industries, the ability to adapt to changing conditions in
real time and navigate through challenging environments will be crucial for their successful
deployment.

Author Contributions: Validation, V.Q.V.; Writing—review & editing, V.T.H. and V.Q.V.; Funding
acquisition, V.Q.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: This project study was supported by all researchers from the University Transport
and Communications and the Electric Power University, Vietnam.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Volos, C.K.; Kyprianidis, I.M.; Stouboulos, I.N. A chaotic path planning generator for autonomous mobile robots. Robots Auton.

Syst. 2012, 60, 651–656. [CrossRef]
2. Châari, I.; Koubâa, A.; Trigui, S.; Bennaceur, H.; Ammar, A.; Al-Shalfan, K. SmartPATH: An efficient hybrid ACO-GA algorithm

for solving the global path planning problem of mobile robots. Int. J. Adv. Robot. Syst. 2014, 11, 94. [CrossRef]

https://doi.org/10.1016/j.robot.2012.01.001
https://doi.org/10.5772/58543

Actuators 2024, 13, 26 17 of 18

3. Gharajeh, M.S.; Jond, H.B. An intelligent approach for autonomous mobile robots path planning based on adaptive neuro-fuzzy
inference system. Ain Shams Eng. J. 2021, 13, 101491. [CrossRef]

4. Vagale, A.; Oucheikh, R.; Bye, R.T.; Osen, O.L.; Fossen, T.I. Path planning and collision avoidance for autonomous surface vehicles
I: A review. J. Mar. Sci. Technol. 2021, 26, 1292–1306. [CrossRef]

5. Zhang, C.; Zhou, L.; Li, Y.; Fan, Y. A dynamic path planning method for social robots in the home environment. Electronics 2020, 9,
1173. [CrossRef]

6. Yingqi, X.; Wei, S.; Wen, Z.; Jingqiao, L.; Qinhui, L.; Han, S. A real-time dynamic path planning method combining artificial
potential field method and biased target RRT algorithm. J. Phys. Conf. Ser. 2021, 1905, 012015. [CrossRef]

7. Yang, B.; Yan, J.; Cai, Z.; Ding, Z.; Li, D.; Cao, Y.; Guo, L. A novel heuristic emergency path planning method based on vector grid
map. ISPRS Int. J. Geo-Inf. 2021, 10, 370. [CrossRef]

8. Xiao, S.; Tan, X.; Wang, J. A simulated annealing algorithm and grid map-based UAV coverage path planning method for 3D
reconstruction. Electronics 2021, 10, 853. [CrossRef]

9. Lin, T. A path planning method for mobile robot based on A and antcolony algorithms. J. Innov. Soc. Sci. Res. 2020, 7, 157–162.
10. Guo, J.; Liu, L.; Liu, Q.; Qu, Y. An Improvement of D* Algorithm for Mobile Robot Path Planning in Partial Unknown Environment.

In Proceedings of the 2009 Second International Conference on Intelligent Computation Technology and Automation, Changsha,
China, 10–11 October 2009; ISBN 978-0-7695-3804-4. [CrossRef]

11. Lai, X.; Wu, D.; Wu, D.; Li, J.H.; Yu, H. Enhanced DWA algorithm for local path planning of mobile robot. Ind. Robot. Int. J. Robot.
Res. Appl. 2022, 50, 186–194. [CrossRef]

12. Zong, C.; Han, X.; Zhang, D.; Liu, Y.; Zhao, W.; Sun, M. Research on local path planning based on improved RRT algorithm. Proc.
Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 235, 2086–2100. [CrossRef]

13. Tsai, C.C.; Huang, H.C.; Chan, C.K. Parallel elite genetic algorithm and its application to global path planning for autonomous
robot navigation. IEEE Trans. Ind. Electron. 2011, 58, 4813–4821. [CrossRef]

14. Saska, M.; Macăs, M.; Přeučil, L.; Lhotská, L. Robot path planning using particle swarm optimization of Ferguson splines. In
Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Diplomat Hotel
Prague, Czech Republic, 20–22 September 2006; IEEE Press: New York, NY, USA, 2006; pp. 833–839.

15. Raja, P.; Pugazhenthi, S. On-line path planning for mobile robots in dynamic environments. Neural Netw. World 2012, 22, 67–83.
[CrossRef]

16. Thuong, T.T.; Ha, V.T. Adaptive Control for Mobile Robots Based on Inteligent Controller. J. Appl. Sci. Eng. 2023, 27, 2481–2487.
17. Thuong, T.T.; Ha, V.T.; Truc, L.N. Intelligent Control for Mobile Robots Based on Fuzzy Logic Controller. In The International

Conference on Intelligent Systems & Networks; Springer: Singapore, 2023; pp. 566–573.
18. Chen, X.; Kong, Y.; Fang, X.; Wu, Q. A fast two-stage ACO algorithm for robotic path planning. Neural Comput. Appl. 2013, 22,

313–319. [CrossRef]
19. Purcaru, C.; Precup, R.E.; Iercan, D.; Fedorovici, L.-O.; David, R.-C.; Dragan, F. Optimal robot path planning using gravitational

search algorithm. Int. J. Artif. Intell. 2013, 10, 1–20.
20. Li, P.; Duan, H.B. Path planning of unmanned aerial vehicle based on improved gravitational search algorithm. Sci. China Technol.

Sci. 2012, 55, 2712–2719. [CrossRef]
21. Duan, H.B.; Qiao, P.X. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning. Int. J. Intell.

Comput. Cybern. 2014, 7, 24–37. [CrossRef]
22. Liu, J.; Wang, Q.; He, C.; Jaffrès-Runser, K.; Xu, Y.; Li, Z.; Xu, Y. QMR:Q-learning based Multi-objective optimization Routing

protocol for Flying Ad Hoc Networks. Comput. Commun. 2019, 150, 304–316. [CrossRef]
23. Low, E.S.; Ong, P.; Cheah, K.C. Solving the optimal path planning of a mobile robot using improved Q-learning. Robot. Auton.

Syst. 2019, 115, 143–161. [CrossRef]
24. Luviano, D.; Yu, W. Continuous-time path planning for multi-agents with fuzzy reinforcement learning. J. Intell. Fuzzy Syst. 2017,

33, 491–501. [CrossRef]
25. Qu, C.; Gai, W.; Zhong, M.; Zhang, J. A novel reinforcement learning based gray wolf optimizer algorithm for un-manned aerial

vehicles (UAVs) path planning. Appl. Soft Comput. 2020, 89, 106099. [CrossRef]
26. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
27. Jaradat, M.A.K.; Al-Rousan, M.; Quadan, L. Reinforcement based mobile robot navigation in dynamic environment. Robot.

Comput. Manuf. 2011, 27, 135–149. [CrossRef]
28. Ganapathy, V.; Yun, S.C.; Joe, H.K. Neural Q-learning controller for mobile robot. In Proceedings of the 2009 IEEE/ASME

International Conference on Advanced Intelligent Mechatronics, Singapore, 14–17 July 2009; pp. 863–868.
29. Oh, C.H.; Nakashima, T.; Ishibuchi, H. Initialization of Q-values by fuzzy rules for hastening Qlearning. In Proceedings of the

1998 IEEE International Joint Conference on Neural Networks Proceedings, IEEE World Congress on Computational Intelligence
(Cat. No. 98CH36227), Anchorage, AK, USA, 4–9 May 1998; Volume 3, pp. 2051–2056.

30. Jiang, J.; Xin, J. Path planning of a mobile robot in a free-space environment using Q-learning. Prog. Artif. Intell. 2019, 8, 133–142.
[CrossRef]

31. Wang, Y.-H.; Li, T.-H.S.; Lin, C.-J. Backward Q-learning: The combination of Sarsa algorithm and Q-learning. Eng. Appl. Artif.
Intell. 2013, 26, 2184–2193. [CrossRef]

https://doi.org/10.1016/j.asej.2021.05.005
https://doi.org/10.1007/s00773-020-00787-6
https://doi.org/10.3390/electronics9071173
https://doi.org/10.1088/1742-6596/1905/1/012015
https://doi.org/10.3390/ijgi10060370
https://doi.org/10.3390/electronics10070853
https://doi.org/10.1109/ICICTA.2009.561
https://doi.org/10.1108/IR-05-2022-0130
https://doi.org/10.1177/0954407021993623
https://doi.org/10.1109/TIE.2011.2109332
https://doi.org/10.14311/NNW.2012.22.005
https://doi.org/10.1007/s00521-011-0682-7
https://doi.org/10.1007/s11431-012-4890-x
https://doi.org/10.1108/IJICC-02-2014-0005
https://doi.org/10.1016/j.comcom.2019.11.011
https://doi.org/10.1016/j.robot.2019.02.013
https://doi.org/10.3233/JIFS-161822
https://doi.org/10.1016/j.asoc.2020.106099
https://doi.org/10.1007/BF00992698
https://doi.org/10.1016/j.rcim.2010.06.019
https://doi.org/10.1007/s13748-018-00168-6
https://doi.org/10.1016/j.engappai.2013.06.016

Actuators 2024, 13, 26 18 of 18

32. Kdas, P.; Mandhata, S.C.; Behera, H.S.; Patro, S.N. An Improved Q-learning Algorithm for Path-Planning of a Mobile Robot. Int. J.
Comput. Appl. 2012, 51, 40–46. [CrossRef]

33. Goswami, I.; Das, P.K.; Konar, A.; Janarthanan, R. Extended Q-learning algorithm for pathplanning of a mobile robot. In
Proceedings of the Asia-Pacific Conference on Simulated Evolution and Learning, IIT Kanpur, India, 1–4 December 2010; Springer:
Berlin/Heidelberg, Berlin, 2010; pp. 379–383.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5120/8073-1468

	Introduction
	Mathematical Modeling of an Operating System for a Mobile Robot
	Obstacle Modeling in the Mobile Robot Operating Environment
	Mathematical Model

	Deep Q-Learning and Q-Learning Algorithms in Path Planning for Mobile Robots
	Q-Leaning
	Deep Q-Leaning

	Simulation and Experimental Results
	Set Status for a Mobile Robot
	Set Action for a Mobile Robot
	Setup of a Reward for a Mobile Robot
	Parameter Setting for the Controller
	Simulation Results on ROS-GAZEBO
	Experiment Results

	Conclusions
	References

