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Damian Gąsiorek, Hartmut Witte and

Mariusz Ptak

Received: 21 November 2023

Revised: 31 December 2023

Accepted: 2 January 2024

Published: 5 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Design and Research of Series Actuator Structure and Control
System Based on Lower Limb Exoskeleton Rehabilitation Robot
Chenglong Zhao 1,2,3, Zhen Liu 2,*, Liucun Zhu 3,4,* and Yuefei Wang 1

1 School of Mechanical and Marine Engineering, Beibu Gulf University, Qinzhou 535011, China;
zhaochenglong@bbgu.edu.cn (C.Z.); yfwang@bbgu.edu.cn (Y.W.)

2 Department of Integrated Systems Engineering, Nagasaki Institute of Applied Science,
Nagasaki 851-0193, Japan

3 Advanced Science and Technology Research Institute, Beibu Gulf University, Qinzhou 535001, China
4 Research Institute for Integrated Science, Kanagawa University, Yokohama 259-1293, Japan
* Correspondence: z-liu_zhen@nias.ac.jp (Z.L.); l-lczhu@bbgu.edu.cn (L.Z.)

Abstract: Lower limb exoskeleton rehabilitation robots have become an important direction for devel-
opment in today’s society. These robots can provide support and power to assist patients in walking
and movement. In order to achieve better interaction between humans and machines and achieve
the goal of flexible driving, this paper addresses the shortcomings of traditional elastic actuators
and designs a series elastic–damping actuator (SEDA). The SEDA combines elastic and damping
components in parallel, and the feasibility of the design and material selection is demonstrated
through finite element static analysis. By modeling the dynamics of the SEDA, using the Bode plot
and Nyquist plot, open-loop and closed-loop frequency domain comparisons and analyses were
carried out, respectively, to verify the effect of damping coefficients on the stability of the system,
and the stiffness coefficient ks = 25.48 N/mm was selected as the elastic element and the damping
coefficient cs = 1 Ns/mm was selected as the damping element. A particle swarm optimization
(PSO)-based algorithm was proposed to introduce the fuzzy controller into the PID control system,
and five parameters, namely the the fuzzy controller’s fuzzy factor (ke, kec) and de-fuzzy factor (kp1,
ki1, kd1), are taken as the object of the algorithm optimization to obtain the optimal fuzzy controller
parameters of ke = 0.8, kec = 0.2, kp1 = 0.5, ki1 = 8, kd1 = −0.1. The joint torque output with and without
external interference is simulated, and the simulation model is established in the MATLAB/Simulink
environment The results show that when fuzzy PID control is used, the amount of overshooting
in the system is 14.6%, and the regulation time is 0.66 s. This has the following advantages: small
overshooting amount, short rise time, fast response speed, short regulation time, good stability
performance, and strong anti-interference ability. The SEDA design structure and control method
breaks through limitations of the traditional series elastic actuator (SEA) such as its lack of flexibility
and stability, which is very helpful to improve the output effect of flexible joints.

Keywords: series elastic–damping actuator; lower limb exoskeleton; rehabilitation robot; fuzzy control

1. Introduction

The concept of rehabilitation robots first emerged in the 20th century; however, limited
technological advancements at that time hindered the application of robots in the field
of rehabilitation. In recent years, significant progress has been achieved in rehabilitation
robotics due to continuous advancements in mechanical engineering control technology
and sensor technology. This progress spans various medical domains, including neural
rehabilitation, physical rehabilitation, and musculoskeletal rehabilitation [1]. These robots
can assist patients in walking and movement, aiding in joint mobility, muscle exercises, and
balance training. They hold particular importance for individuals with lower limb impair-
ments and amputees, contributing to accelerated rehabilitation processes, and improved
rehabilitation experiences and outcomes, ultimately enhancing patients’ quality of life.
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The key factors determining the performance of lower limb exoskeleton rehabilitation
robots lie in their mobility, specifically how they demonstrate natural, smooth, and adapt-
able human-like walking during motion. This aspect is highly crucial for the practicality
of the robots and their interaction with humans [2]. There are various ways to achieve
fluidity in robotic walking, such as designing appropriate gait generation algorithms, ad-
justing gait parameters through control algorithms to suit changing environments and
tasks, or equipping the robot with a variety of sensors, such as inertial measurement units
(IMUs), force sensors, visual sensors, etc., to acquire real-time environmental and robot
status information. This feedback can be utilized to modify gait and posture, ensuring the
robot’s motion is stable. Furthermore, the incorporation of flexible materials and structures
in robots allows impact to be reduced during collisions, facilitating smoother and more
fluid motion.

A serial elastic actuator (SEA) is a driving system commonly used in robotics, exoskele-
ton devices, and other mechanical systems. Its main principle involves utilizing elastic
elements such as springs, cables, or gas bags to store and release energy, thereby facilitating
the driving and motion of mechanical systems. The distinguishing feature of this actuator is
its capacity to store and release energy, which helps mitigate the impact and vibrations that
traditional rigid actuators might generate [2]. This enhances the mobility of robots, elevates
the comfort and naturalness of exoskeleton devices, and promotes smoother and more
efficient motion. The concept and principle design of serial elastic actuator (SEAs) were
introduced by the MIT Leg Laboratory [3], and they have been applied to bipedal robots,
enabling torque control [4]. Researchers, led by Marco Hutter at ETH Zurich, developed
the high-performance quadruped robot StarlETH, incorporating linear SEAs as the drivers
for each joint [5]. These joint SEAs not only enhance the accuracy of torque control loops
but also ensure energy efficiency, allowing StarlETH to exhibit remarkable mobility in
unstructured environments. Venema et al. employed cable-driven joint SEAs, translating
the force from linear elastic elements into joint torsion. They simplified the motor to an
ideal velocity source model, validating the output force characteristics of SEAs [6].

SEAs have the advantages of structural shock resistance, low mechanical output
impedance, and strong ability to adapt to the environment compared with rigid actua-
tors [7], but in the simplification of the kinetic model of the elastic element, the kinetic
model is imperfect as a result of simplifying the SEA into a pure stiffness link or damping
link, and it is difficult to realize flexible driving like in human skeletal muscle by relying on
the elastic element only. In addition, in the analysis of the dynamics model, many scholars
regard the motor as an ideal velocity output source or position output source, ignoring
the inertia characteristics of the motor itself, which causes large errors [8]. In addition,
most drive control methods do not take into account the existence of various external
disturbances in the system itself, while the perturbation problem is unavoidable in practical
application [9].

In view of the above problems, this paper firstly improves the SEA, and proposes a
structure combining the spring and damper. The damper is used to improve the damping
device in order to attenuate the vibration produced by the impact very quickly [10], and the
damper is combined with the elastic element to constitute a new type of actuator, the series
elastic–damping actuator (SEDA). Solidworks is used to complete the three-dimensional
model design of SEDA, and finite element static analysis of the key components is used to
verify the reasonableness and reliability of the structure and material selection. Secondly,
the motor is regarded as an ideal force output source, and since the motor output force is
directly proportional to the excitation current (voltage) in the range of output capacity [11]
and the change time of the excitation current is almost negligible for a mechanical system
such as an SEDA, it is more reasonable to simplify the motor as a kind of force output
source. Furthermore, the open-loop and closed-loop system transfer functions of the force
source drive are obtained through the Laplace transform. The influences of the elasticity
coefficient and damping coefficient on the system are analyzed. Then, the system’s stability
is analyzed using the Nyquist stability criterion, and its force output bandwidth and output
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impedance are obtained by the Bode plot, which proves the reasonableness of this structure.
Finally, for the control of the output force of the SEDA, the fuzzy control is introduced on
the basis of traditional PID control algorithms and is carried out on the MATLAB/Simulink
platform. The Simulink platform was simulated and analyzed to verify the correctness of
the fuzzy PID controller design.

2. Background

In our previous research efforts, we designed an exoskeleton robot for lower limb re-
habilitation. This robot includes three degrees of freedom at the hip, knee, and ankle joints.
It is equipped with RMD-X8pro1:9V3 servo motors and utilizes CAN communication.
The three-dimensional model of the robot is shown in Figure 1. The designed structure
involves direct rigid joint actuation, known as rigid control, providing rapid response
speed and high control precision. The exoskeleton features a length adjustment mecha-
nism to accommodate patients of different heights. The entire robot is constructed using
7075 aluminum material, meeting the anticipated strength requirements. However, the
total weight of the robot has reached 35 kg, rendering it relatively cumbersome. Partic-
ipant fitting results are depicted in Figure 2, illustrating that the robot falls short of the
lightweight design objective. Moreover, the rigid mechanical structure is uncomfortable for
users and could potentially cause secondary harm. Previous research also revealed that
significant impact forces are generated when the human heel contacts the ground. Hence,
the design of lower limb exoskeleton rehabilitation robots should ensure structural strength
and precise positioning while also enhancing human–environment interaction, all while
taking into account the lessons learned from our previous studies.
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The experiments were conducted using Quanser’s Optitrack optical 3D motion capture
system equipped with six FLEX 3 infrared cameras for spatial 3D localization, together
with a 3D force measuring table and Motive data analysis software version 2.0.0. A three-
dimensional space with a length of 5 m, a width of 4.4 m and a height of 2.6 m was installed
indoors, and one healthy male subject was selected to participate in the lower limb joint
motion capture experiment (age 25 years old, body weight of 75 Kg, height of 175 cm),
taking walking as the basic motion mode, taking the horizontal road surface as the basic
constraints, and combining the characteristics of the muscle activity groups in the human
body’s walking with the passive infrared optics’ reflecting principle. The lower limbs of
the human body were positioned in a non-linear, non-contrasting, non-directional, and
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non-directional direction. A total of 17 marker points were pasted on the lower limbs in a
non-linear and asymmetric way, walking barefoot, and the lower limbs were synchronized
with the three-dimensional force measuring table, with a sampling frequency of 100 Hz,
so that the motion parameters of the human body’s various joints and the GRF (ground
support return force) curves could be obtained, as shown in Figure 3.
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In Figure 3b, it can be found that the average moment generated by the hip and knee
joints is larger in the normal walking process of a person, so we take these two joints as the
active joints and install the external joint drive system. Through the GRF curve in Figure 3c,
it can be seen that there are two peaks appearing in the curve, the first one is the impact
peak, also called the passive peak, which comes from the force recoiled by the ground to
the foot and calf at the initial moment when the heel initially touches the ground, and the
second peak, also called the active peak, which occurs at about the middle moment, which
comes from the force generated by the foot to support the weight of the body. According to
the angle changes in each joint in Figure 3a, angle limits are set at the hip and knee joints,
as shown in Figure 4. A passive joint is used at the ankle joint, as shown in Figure 5, which
consists of a calf and foot assembly attached to the ankle joint. A spring is used to generate
an auxiliary torque during dorsiflexion, featuring an adjustable initial ankle angle and
magnitude of the dorsiflexion auxiliary torque, which collects energy at a certain gait stage
and is able to release the stored energy at an appropriate time.
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The design for enhancing the flexibility of lower limb exoskeleton rehabilitation robots
should not be limited solely to the ankle joint, but should encompass a holistic approach to
the robot’s integration, taking into account the hip and knee joints. Consequently, a series
elastic execution mechanism is proposed to be combined with rigid structures, applied
to various joints of the robot. This approach, while preserving the existing functionality,
simplifies the robot’s structure, reduces its weight, ensures safe interaction with patients,
and enables the implementation of innovative rehabilitation strategies.

3. SEDA (Series Elastic Damping Actuator) Design
3.1. Overall Structure of SEDA

The overall structure of the SEDA designed in this study is illustrated in Figure 6.
It primarily consists of a servo motor, ball screw, linear springs, spring plates, guide
rods, dampers, bearings, and other components. The driver incorporates eight linear
springs mounted on guide rods, forming the foundation of a traditional SEA. Additionally,
four dampers are added to create the SEDA. The distribution of elastic elements is symmet-
ric, ensuring stable operation of the driver. The entire driver is partitioned by spring plates,
achieving flexibility in both forward and reverse directions.
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The operational principle of SEDA is as follows: In SEDA, the motor is driven by a
control signal, causing the transmission shaft to rotate. The rotational movement of the
transmission shaft drives the nut to compress the spring without an oil liner, extending
or retracting the ball screw, and subsequently propelling the crank structure to rotate.
The crank structure imparts rotational motion to the thigh or shin. When the thigh or
shin encounters external impact, the entire SEDA, apart from the spring partitioning
components, moves collectively along the guide axis. This transmits the applied force to
the dampers and springs. The springs themselves lack damping capability, and without
dampers, bouncing issues might arise in the leg. The combination of springs and dampers
not only absorbs the impact of external load fluctuations but also attenuates vibrations,
achieving stability and realizing mechanical flexibility and stability in the joints. The
improved effect is depicted in Figure 7.

3.2. Finite Element Static Analysis

During walking, impacts are generated on the SEDA, and its structure is susceptible to
potential damage. The material selection for SEDA needs to balance lightweight design with
ensuring appropriate strength and deformation characteristics. Therefore, finite element
analysis (FEA) is performed using the SolidWorks Simulation plugin to create displacement
contour maps, stress contour maps, deformation contour maps, and more [12]. This aids in
obtaining a better understanding of the SEDA’s structural behavior. Given the relatively
slow walking speed of the lower limb exoskeleton rehabilitation robot, static analysis is
focused on key components.
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3.2.1. SEDA Subjected to Axial Thrust

The SEDA subjected to radial thrust is depicted in Figure 8. Since components such as
the lead screw and bearings are standard parts, their strength analysis is currently omitted.
Apart from standard components, all other materials employ 7050 aluminum alloy with a
yield strength of 435 MPa and a tensile strength of 495 MPa.
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for the strength verification. The mesh type used is a solid mesh, the Jacobian point of the 

Figure 8. Axial thrust model of SEDA.

As shown in Figure 9, with the increasing radial force, the critical region for potential
SEDA failure is the fixed sleeve. To simplify the mechanical structure, elements such as
bolts, springs, and motors that have little relevance to the strength analysis were removed
for the strength verification. The mesh type used is a solid mesh, the Jacobian point of
the high quality mesh is 16 points, the cell type is a solid cell, the cell size is 3.54919 mm,
the tolerance is 0.17746 mm, the total number of cells is 10,098, and the total number of
nodes is 18,472. As illustrated in Figure 9a, the simplified geometric model is depicted,
while Figure 9b represents the meshed model. The resulting responses are displayed in
Figure 9c,d. The green arrow in the figure indicates the direction of fixture fixation and the
purple arrow indicates the direction of applied force. From the figures, it is apparent that
when a radial force F of 5000 N is applied, the maximum equivalent stress that may lead
to failure is 45.7 MPa, and the maximum overall deformation is 0.046 mm. Both values
remain within acceptable limits.
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3.2.2. SEDA Subjected to Radial Thrust

The model of a SEDA subjected to axial thrust is shown in Figure 10. As the screw
shaft and bearings are standard components, their strength analysis is temporarily omitted.
Apart from standard components, the remaining materials utilize a 7050 aluminum alloy
with a yield strength of 435 MPa and a tensile strength of 495 MPa.
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Figure 10. SEDA radial thrust model.

As shown in Figure 11, with the continuous increase in axial force, the susceptible
locations for potential damage in the SEDA are the guide rod and the drive plate. The
mechanical structure is simplified to some extent by excluding structural components such
as bolts, springs, and motors that have minimal relevance to the strength analysis. The
mesh type used is a hybrid mesh, the Jacobian point of the high quality mesh is 16 points,
the cell type is a shell cell, the cell size is 5.94583 mm, the tolerance is 0.297291 mm, the
total number of cells is 41,237, and the total number of nodes is 74,032. As illustrated in
Figure 11a, a simplified geometric model is presented, while Figure 11b represents the
corresponding mesh model. The results of the analysis are displayed in Figure 11c,d. The
purple arrow in the figure indicates the direction of the applied force.From the figures, it is
evident that when a radial force of 3000 N is applied, the maximum equivalent stress prone
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to damage reaches 396 MPa, and the maximum overall deformation is 0.5 mm; both values
fall within the permissible range.
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Based on the above finite element strength analyses of key components of the SEDA
under radial or axial loads, it can be concluded that the structural design and material
selection of SEDA are rational.

4. Analysis of the Dynamic Characteristics of SEDA

During the walking process, the impact force generated upon foot–ground contact is
transmitted through the lower limbs to various joints in the body. Rigid driving mechanisms
can result in instantaneous vibrations that significantly affect the stability of walking. The
SEA involves installing a set of elastic elements between the power source and the load,
allowing for better adaptation to external environments and simulating the movement
characteristics of human muscles. This approach meets the requirements of rehabilitation
robots for smoothness, adaptability, and safety [13]. Currently, elastic elements, primarily
springs such as linear and torsional springs, are commonly used. However, relying solely
on these elements only approximates the properties of human muscles and falls short of
achieving flexible driving akin to human skeletal muscles. Dampers are devices designed
to enhance damping by quickly attenuating vibrations caused by impacts. By paralleling
dampers with elastic elements, a spring–damping system is formed, generating a new
driving system model. This constitutes a significant part of the primary research focus of
this paper.

4.1. SEDA Design Principle

Common actuation methods for drivers include motor-driven, hydraulic-driven, and
pneumatic-driven systems, among which motor-driven systems stand out due to their
simplicity in structure, high transmission efficiency, and precise positioning. Therefore,
a servo motor is chosen as the power source in this context, with a lead screw as the
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transmission mechanism and a spring as the elastic element, ultimately linked to the load.
The traditional schematic design principle of the elastic-driven actuator is illustrated in
Figure 12.
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Figure 12. Schematic diagram of elastic actuator design.

Building upon the foundation of traditional elastic-driven systems, the incorporation
of dampers serves the primary purposes of shock absorption and energy dissipation. By
absorbing and dissipating vibrational energy, the dampers reduce the amplitude and
duration of system oscillations. When the system experiences external disturbances or
excitations, the dampers suppress and control the vibrations. Damping forces introduce a
damping effect on system oscillations, diminishing the amplitude and quickly returning
the system to its equilibrium position. The schematic diagram of an elastic-driven system
with damping is depicted in Figure 13. In the context of the SEDA (series elastic–damping
actuator) model, the desired output force is represented as Fd, and the feedback force is
denoted as Fl. The motor’s rotation drives the movement of the lead screw, which, in turn,
operates the system’s output through the elastic link.
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Figure 13. Schematic diagram of series elastic−damping actuator design.

Considering the application context of the SEDA, the choice of control method for
the power source involves viewing the driving motor as an ideal force output source.
In comparison to position/velocity source control methods, this approach offers higher
precision. However, it requires accounting for factors such as the damping of the drive
system, resulting in a more complex structure [14]. By simplifying the SEDA schematic,
a dynamic model based on force source control is derived, as illustrated in Figure 14. To
achieve a stable output force and reduce computational complexity, a PID control algorithm
is employed in this study. This algorithm calculates the control output based on the error
between the current state and the desired state of the system, striking a balance between
stability, accuracy, and response speed [15].
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In the aforementioned model, Fa represents the propulsive force generated as the
motor’s output torque is transmitted through the oil-free, bushing-driven lead screw,
resulting in push displacement xa along the axial direction. The displacement xl is the
displacement generated at the drive output that propels the load, i.e., the human joint.
In the context of this equation, ks denotes the stiffness coefficient of the spring, cs stands
for the damping coefficient of the damper, ca represents the damping coefficient of the
motor, ma pertains to the mass of the lead screw transmission part, and ml corresponds
to the mass of the output-end load. The rotational motion of the motor generates torque,
and the relationship between the thrust Fa, which is the force output through lead screw
transmission, and the actual output force Fl is as follows:

Fa − Fl = ma
..
xa − ca

.
xa (1)

The force Fl resulting from the interaction of the spring and the damper, as well as the
differential equation for the force exerted on the lead screw, is given by:

Fl = ks(xa − xl) + cs
( .

xa −
.
xl
)

(2)

After undergoing Laplace transformation, the open-loop transfer function is obtained
as follows:

Fl(s) =
(k s + css)Fa − sks( cs + mas)Xl(s)

ks + (cs + ca)s + mas2 (3)

4.2. Analysis of Undamped Characteristics in SEDA Open-Loop System
4.2.1. SEDA Output Bandwidth

When the robot interacts with the environment, it can be assumed that the load end of
the actuator is fixed, i.e., Xl = 0. From the above formula, the open-loop bandwidth transfer
function between the actual output force Fl and the desired output force Fa can be derived
as follows:

G1(s) =
Fl(s)
Fa(s)

=
ks + css

mas2 + (cs + ca)s + ks
(4)

When the damping coefficient cs = 0, the equation becomes the following:

G2(s) =
Fl(s)
Fa(s)

=
ks

mas2 + cas + ks
(5)

In the robot walking process, the load mass of 100 kg is the limit, and the external
load force is about 1000 N. Referring to ISO 10243 (international standard) to select the
parameters of the spring [16], the total length of the selected spring is 65 mm, the inner
diameter is 8mm, and the outer diameter is 16mm. Finally, the stiffness and compression
ratio of the five types of springs, namely, small light load, light load, medium load, heavy
load, and super heavy load, are determined as shown in Table 1.

Table 1. Spring parameters.

Rigidity (N/mm) Maximum Load (N) Compression Rate Outer Diameter (mm) Inner Diameter (mm) Length (mm)

6.37 205 50% 16 8 65
13.24 343 40% 16 8 65
24.03 500 32% 16 8 65
48.35 755 24% 16 8 65
75.41 980 20% 16 8 65

The motor and lead screw have a mass of ma = 2 kg, and the motor damping coefficient
is ca = 0.2 Ns/mm. When the damper is not installed (cs = 0), the eight springs are divided
into two groups by spring separators, with each group containing four springs. The stiffness
coefficients ks for these groups are 25.48 N/mm, 52.96 N/mm, 96.12 N/mm, 193.4 N/mm,
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and 301.64 N/mm. The Nyquist and Bode plots for the open-loop transfer function of this
system are illustrated in Figure 15.
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From Figure 15, it can be observed in (a) the Nyquist plot that all characteristic
roots of the open-loop transfer function are negative, and the Nyquist plot does not pass
through the point (−1, j0). This implies that the corresponding closed-loop system is stable.
However, as the stiffness coefficient ks increases continuously, the Nyquist curve gradually
approaches the point (−1, j0), indicating a weakening of system stability. Simultaneously,
in (b) the Bode plot, it is evident that the system exhibits good amplitude and phase
tracking characteristics in the low-frequency range. The phase curve does not intersect
with −180◦, signifying excellent stability. Nevertheless, as the ks coefficient increases, the
system’s stability deteriorates, leading to phase lag in the high-frequency range and causing
overshoot in the system response [17].

4.2.2. SEDA Output Impedance

In the scenario of free movement at the load end, while maintaining the desired
output force Fd = 0, the relationship between the force exerted at the load end Fl and the
displacement Xl at the load end is expressed as follows:

Z1(s) =
Fl(s)
Xl(s)

=
−sks(c s + mas)

ks + (cs + ca)s + mas2
(6)

When the damping coefficient cs = 0 in the equation:

Z2(s) =
Fl(s)
Xl(s)

=
−ksmas2

ks + cas + mas2 (7)

The output impedance of a mechanical system is a significant parameter that describes
the relationship between system output and external loads or the environment. Represented
as Z(s), the output impedance of the SEDA is often nonlinear and can potentially change
with variations in frequency or vibration modes. Keeping all parameters constant, the
impedance Bode plot and Nyquist plot of the system are plotted for different stiffness
coefficients, as shown in Figure 9.

From Figure 16a,b, it can be seen that, it is evident that the output impedance Z(s)
is relatively small in the low-frequency range. However, in the high-frequency range, as
the spring stiffness coefficient ks increases, the impedance value of the system becomes
progressively larger. This indicates a trend toward a more rigid connection between the
driver and the load, resulting in decreased system stability and rendering it less suitable
for use as a driver.
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4.2.3. SEDA Impact Resistance

In the walking process of lower limb exoskeleton rehabilitation robots, when the feet
make contact with the ground, a significant impact is exerted on the robot’s body, which
can even cause damage to its components. Furthermore, the impact force between the
robot and the ground may potentially lead to secondary harm to the patients. Therefore,
effectively reducing the generation of impact force holds crucial research significance.

During the walking process, when the feet make momentary contact with the ground,
the duration is short, making it difficult to achieve adjustments solely through the expansion
or contraction of the lead screw. The SEDA can effectively utilize elastic elements and
dampers to control the impact force within a manageable range. The velocity at the moment
of contact is defined as Vl, and the force exerted at the load end is the actual output force Fl.
Consequently, the impact power Pl experienced by the robot is:

Pl = FlVl (8)

Given the aforementioned model, it is known that the mass of the rigid body, which is
the load, is ml. The initial velocity of the rigid body when it makes contact with SEDA is v0,
and the compression of the elastic element is xl. The stiffness coefficient of the spring is ks,
and the damping coefficient of the damper is cs. According to Newton’s second law, the
resulting motion differential equation can be derived as follows:

d
(
ml

.
xl
)

dt
= ksxl + cs

.
xl (9)

At time t = 0, the moment when the load ml collides with the SEDA, the initial
conditions are xl(0) = 0 and

.
xl(0) = v0. This yields:

xl =
v0

ωl
√

ξ2 + 1
sin

√
ξ2 + 1ωlt (10)

where ωl =
√

ks/ml and ξ = cs
2
√

ksml
are the natural frequency and damping ratio of the

system, respectively.
Differentiating the above formula, we obtain the velocity of the drive end as vl:

vl =
.
xl = v0cos

√
ξ2 + 1ωlt (11)
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After performing the Laplace transform, the equation becomes:

Vl(s) = v0
s

s2 + (ξ2 + 1)ω2
l

(12)

When the feet make contact with the ground, the load experiences the spring force
and damping force Fl:

Fl = ksxl + cs
.
xl (13)

Taking into account the above formulas, we arrive at:

Pl = v2
0(

kl

2ωl
√

ξ2+1
sin2

√
ξ2 + 1ωlt

+ cs
2 cos2

√
ξ2 + 1ωlt +

cs
2 )

(14)

After performing the Laplace transform, the equation becomes:

Pl(s) =
v2

0
2

css2 + css + 2ks + 4cs
(
ξ2 + 1

)
ω2

l
s2 + 4(ξ2 + 1)ω2

l
(15)

When there is no damping component, i.e., cs = 0, and the damping ratio is ξ = 0, the
formula becomes:

Pl(s) = v2
0

ks

s2 + 4ω2
l

(16)

From the above formula, it can be observed that in the absence of damping, the shock
resistance of the SEDA is mainly influenced by the stiffness coefficient of the spring and the
system’s natural frequency. With a constant rigid body mass ml and initial velocity v0, the
primary factor affecting shock resistance is the spring’s stiffness coefficient ks. The resulting
bode diagram of the system is shown in Figure 17a, while the simulation yields the GRF
curve of the lower limb exoskeleton rehabilitation robot, as shown in Figure 17b.
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As can be seen from Figure 17, the system impact resistance is relatively stable in the
low-frequency band, but in the high-frequency band, as the spring stiffness coefficient
ks increases, the impact power Pl(s) of the system becomes bigger and bigger, and the
smaller the stiffness coefficient is, the impact power of the system decreases more and more
obviously in the high-frequency band. Compared to the barefoot walking GRF plot, the
peak shock value is missing, the slope of the line segment in the initial stage has become flat,
and the vertical shock rate has decreased, which is mainly due to the elastic and damping
elements in the SEDA eliminating part of the shock force and cushioning the vibration.
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4.3. Analysis of Damped Characteristics in the SEDA Open-Loop System

Referring to the elastic element stiffness coefficient of ks = 25.48 N/mm, dampers are
added to this structure while ensuring an effective load capacity of no less than 100 kg.
The damping coefficient cs of the damper is chosen as follows: 0 Ns/mm, 0.1 Ns/mm,
0.5 Ns/mm, 1 Ns/mm, 3 Ns/mm, and 5 Ns/mm. Other parameters remain unchanged.
The output bandwidth, output impedance, and impact resistance Bode plots of the open-
loop transfer function of the system are shown in Figure 18.
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From the Bode plots shown in Figure 18a–c, which respectively represent the output
bandwidth with damping, the output impedance with damping, and the impact resistance,
it can be observed that the system exhibits good amplitude tracking and phase tracking
characteristics in the low-frequency range. The phase curve does not intersect −180◦,
indicating the system’s stability. As the damping coefficient cs increases, the resonance
peak becomes smaller, indicating improved system stability. However, a higher damping
coefficient leads to reduced comfort for individuals wearing the exoskeleton.

4.4. Analysis of SEDA Closed-Loop System Characteristics

To enhance system stability and accuracy, a closed-loop control feedback strategy is
employed. This involves measuring the system’s output and comparing it to the desired
output. Subsequently, the controller output is adjusted based on the error signal, aiming to
bring the actual output closer to the desired output.



Actuators 2024, 13, 20 16 of 26

Based on the aforementioned analysis, we have derived the output force Fa of the
SEDA. By substituting the formula into the actual output force Fl and introducing PID
control, we obtain:

Fa = (kp +
ki
s
+ kds)(Fd − Fl) (17)

As a result, the closed-loop feedback function of the system is obtained:

Fl(s) =
(A 3s3 + A2s2 + A1s + A0

)
Fd(s)− s2ks(cs + mas)Xl(s)

B3s3 + B2s2 + B1s + B0
(18)

In the above equation:
A0 = kiks

A1 = kics + kpks
A2 = kpcs + kdks

A3 = kdcs


B0 = kiks

B1 = kics + kpks + ks
B2 = kpcs + kdks + cs + ca

B3 = kdcs + ma

Under the closed-loop control, with the load end fixed, the closed-loop transfer function
of the SEDA’s drive force output characteristics can be obtained from the above equation:

G3(s) =
Fl(s)
Fd(s)

=
A3s3 + A2s2 + A1s + A0

B3s3 + B2s2 + B1s + B0
(19)

Under closed-loop control, the relationship between the output force Fl at the load
end and the displacement Xl of the load motion is given by:

Z3(s) =
Fl(s)
Xl(s)

=
−s2ks(cs + mas)

B3s3 + B2s2 + B1s + B0
(20)

4.4.1. Simulation of Output Torque in Closed-Loop SEDA System

Based on the established dynamic model and derived closed-loop transfer function, a
closed-loop control system based on PID control was implemented using Matlab/Simulink.
The output torque characteristics were analyzed for different spring stiffness (ks) and
damper coefficient (cs) values. After tuning, the parameters were set as kp = 8, ki = 15,
kd = 0.5. Figure 19 shows the control system diagrams and output torque characteristic
curves for different spring stiffness values while keeping cs = 1 Ns/mm. Figure 20 illustrates
the control system diagrams and output torque characteristic curves for different damper
coefficient values with ks = 25.48 N/mm.

The simulation curves reveal that when a step input of 5 Nm is applied, the overshoot
of the joint output torque increases with the increase in spring stiffness and decreases
with the reduction in the damper coefficient. This implies that a higher spring stiffness
leads to quicker system response time but greater fluctuations in output torque. On the
other hand, an increase in damper coefficient results in reduced system response time
and decreased fluctuations in output torque. Therefore, considering the trade-off between
system bandwidth, output impedance, shock resistance, and output torque overshoot, the
final choice is to employ a relatively smaller spring stiffness of ks = 25.48 N/mm as the
elastic component and a damper coefficient of cs = 1 Ns/mm as the damping element.

4.4.2. Stability Analysis of SEDA Closed-Loop System

Taking kp = 8, ki = 15, kd = 0.5, and keeping other parameters consistent with the open-
loop system, with a damping coefficient cs = 1 Ns/mm and a spring stiffness coefficient
ks = 25.48 N/mm, a comprehensive analysis of the closed-loop system’s characteristics
was conducted. The results are presented in Figure 21, where Figure 21a,b provide a
comparative analysis of the closed-loop and open-loop systems’ output bandwidth through
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Bode and Nyquist plots. Figure 21c,d present a comparative analysis of the closed-loop
and open-loop systems’ output impedance through Bode and Nyquist plots.
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Stability analysis of the open- and closed-loop transfers of the SEDA was conducted
through Bode and Nyquist plots. This analysis allows us to establish the relationship
between spring stiffness coefficient and driver stability. It also indicates the significant
influence of the damping coefficient on SEDA’s stability. Furthermore, it becomes evident
that the closed-loop system achieves more precise control compared to the open-loop
system, enabling the determination of PID control parameters for SEDA that meet the
specified requirements.
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5. SEDA Fuzzy PID Controller Design and Simulink Simulation

In the process of assisting walking with lower limb exoskeleton rehabilitation robots,
the environment is not static. Maintaining constant PID values may not yield optimal
feedback effects. The SEDA, as a flexible driving mechanism, possesses certain shock
resistance and damping effects. However, for the SEDA to interact more effectively with the
external environment, the incorporation of compliant control strategies becomes essential.
Fuzzy control is a control method based on fuzzy logic, primarily employed to handle
systems that are difficult to model accurately or involve uncertainty factors [18]. Fuzzy
control has a wide working range and a wide range of adaptability, especially suitable for
the control of nonlinear systems. It does not depend on the mathematical model of the
object, the complex object that cannot be modeled, and can also use knowledge from human
experience to design a fuzzy controller to complete the control task, whereas traditional
control methods need to know the mathematical model of the controlled object in order to
design the controller. The fuzzy controller has an intrinsic parallel processing mechanism,
exhibits strong robustness, is insensitive to changes in the characteristics of the controlled
object, and the design parameters of the fuzzy controller are easy to select and adjust.

5.1. Fuzzy PID Controller Design
5.1.1. Domain and Membership Functions of the Fuzzy PID Controller

The inputs of the fuzzy PID controller are the error (e) and the rate of change of error
(ec). The error is obtained by comparing the feedback value with the control setpoint.
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The outputs are the three tuning parameters of the PID controller: proportional gain
(kp), integral gain (ki), and derivative gain (kd). The domains for the inputs e and ec in
the fuzzy inference system are both [–6, 6], corresponding to linguistic values {Negative
Big (NB), Negative Medium (NM), Negative Small (NS), Zero (ZO), Positive Small (PS),
Positive Medium (PM), Positive Big (PB)}. Triangular membership functions (trimf) are
employed for defining the membership degrees. For the outputs kp, ki, and kd, the domain
is also [–3, 3], with linguistic values {Negative Big (NB), Negative Medium (NM), Negative
Small (NS), Zero (ZO), Positive Small (PS), Positive Medium (PM), Positive Big (PB)}.
Similarly, triangular membership functions (trimf) are utilized for establishing the degrees
of membership [19].

5.1.2. Fuzzy PID Controller Control Rules

The fuzzy control rules are the most crucial part of the fuzzy PID controller, de-
termining the control accuracy and performance of the controller. To achieve optimal
control results at different values of e and ec, the self-adjustment rules for kp, ki, and kd are
summarized as shown in Table 2.

Table 2. Corresponding values of kp, ki, kd in fuzzy PID control rules.

e
ec

NB NM NS ZO PS PM PB

NB PB/NB/PS PB/NB/PS PM/NB/ZO PM/NM/ZO PS/NM/ZO PS/ZO/PB ZO/ZO/PB
NM PB/NB/PS PB/NB/NS PM/NM/NS PM/NM/NS PS/NS/ZO ZO/ZO/NS ZO/ZO/PB
NS PM/NM/NB PM/NM/NB PS/NM/NS PS/NS/NS ZO/ZO/ZO NS/PS/PS NM/PS/PM
ZO PM/NM/NB PS/NS/NM PS/NS/NM ZO/ZO/NS NS/PS/ZO NM/PS/PS NM/PM/PM
PS PS/NS/NB PS/NS/NM ZO/ZO/NS NS/PS/NS NS/PS/ZO NM/PM/PS NM/PM/PS
PM ZO/ZO/NM ZO/ZO/NS NS/PS/NS NM/PM/NS NM/PM/ZO NM/PB/PS NB/PB/PS
PB ZO/ZO/PS NS/ZO/ZO NS/PS/ZO NM/PM/ZO NM/PB/ZO NM/PB/PB NB/PB/PB

Based on the aforementioned table, a total of 49 fuzzy control rules can be derived
as follows:

If (e is NB) and (ec is NB), then (kp is PB)(ki is NB)(kd is PS);
If (e is NB) and (ec is NM), then (kp is PB)(ki is NB)(kd is NS);
If (e is NB)and (ec is NS), then (kp is PM)(ki is NM)(kd is NB);
If (e is NB)and (ec is ZO), then (kp is PM)(ki is NM)(kd is NB);
. . .. . .
The method of conjunction (AND) is taken as “min”, and the method of disjunction

(OR) is taken as “max”. The implication method for inference is “min”. The aggregation
method is “max”, and the defuzzification method is centroid (weighted average). By using
a surface observation window, the output surfaces of kp, ki, and kd on the domain can be
visualized, as shown in Figure 22.
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5.2. Fuzzy PID Controller Modeling and Simulation
5.2.1. Parameter Optimization of PSO Algorithm

The fuzzy factor ke error for the input value and the feedback value of the maximum
error range for its domain range are equivalent in the same way the kec error rate of change
is equivalent to the displacement of the acceleration; the defuzzification factor kp1 domain
range for the output of kp is equivalent to the product of the range of changes in ki1 and kd1.
In the same way, these factors can be iteratively analyzed by intelligent algorithms such as
PSO (a particle swarm algorithm) to obtain the optimal fitness value of the best value of
the five parameters.

Particle swarm optimization (PSO), a population-based stochastic optimization tech-
nique, was proposed by Eberhart and Kennedy in 1995 [20]. Particle swarm algorithms
mimic the swarming behavior of insects, herds of animals, flocks of birds, schools of fish, etc.
These groups search for food in a cooperative manner, and each member of the group con-
stantly changes its search pattern by learning from its own experience and the experience
of the other members [21]. The PSO first initializes a group of particles N, and then finds
the optimal solution through an iterative process, and in each iteration, the particles update
the global optimal positional extremes (OPEs) and the global optimal positional extremes
(GPEs) by tracking the individual OPEs and the global optimal positional extremes to
update their speed and position; its optimization formula is given in Equation (21):

Vi+1 = ωVi + c1rand(t)(pBest[i]− Xi)+
c2rand(t)(prand(t)(pBest[g]− Xi)

(21)

where Xi+1 = Xi + Vi+1; Vi is the i-th particle’s evolutionary speed; Xi is the position of
the i-th particle; pBest[i] is the best position experienced by the i-th particle; g indicates the
position of the best particle in the population; ω is the inertia weight (adjusting its value
can change the search range and the search speed) and usually set as 0.4–1.2; c1 and c2 are
the learning factors, which are non-negative and usually set as c1 = c2 = 2; rand(t) is the
stochastic function to produce a random value of [0 1]. Each particle has a fitness value
determined by a customized objective function, and each particle stores the current optimal
value searched by itself and the optimal value in the current population, and dynamically
adjusts this information as experience.

The fuzzy PID controller parameter optimization objective function, i.e., the fitness
function, selects the integral performance index of the system, as shown in Equation (22):

J =
∫ ts

0
t|e(t)|dt (22)

where ts is the simulation time, which is the input and output error of the transfer function,
and the ITAE criterion is used for optimization, which gives less consideration to the
initial error of the system and mainly restricts the error that occurs at the later stage of
the transition process. The optimized system is generally characterized by fast, smooth
operation and a small overshoot.

The block diagram of the fuzzy PID controller optimized by the PSO algorithm is
shown in Figure 23.

The parameters of the PSO algorithm are set as follows: the number of populations is
50; the dimension of each particle is D = 5; the initial values of the defuzzification factors
ke and kec and defuzzification factors kp1, ki1, and kd1 are set to [1,1,1,1,1,1]; the maximum
number of iterations is 100; c1 = c2 = 2; ω = 0.95; the velocity range of the particles is
[−500, 500]; the particle position range is [−4, 4]; and finally, the PSO particle swarm
algorithm is used to optimize and obtain the fuzzification factors ke = 0.8 and kec = 0.2 and
defuzzification factors kp1 = 0.5, ki1 = 8, and kd1 = −0.1.
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5.2.2. Fuzzy PID Controller Modeling

Creating System Simulation Model of Fuzzy PID Controller in MATLAB/Simulink
Software version R2018a. In the MATLAB/Simulink software, a system simulation model
is established, which mainly consists of a fuzzy PID controller, a disturbance signal, a
controlled system (plant), and a control setpoint, as described in [22]. Combining the
closed-loop system transfer function and the PID parameters established earlier, a compar-
ison is made between no PID control, traditional PID control, and fuzzy PID control by
constructing a Simulink diagram, as shown in Figure 24. The fuzzy factors, defuzzification
factors, and initial values are the same as above.
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5.2.3. Simulation Analysis of Fuzzy PID Controller

When a step signal of 10 Nm is input, the torque output of the joint shown in Figure 25a
represents the simulation without disturbance, and Figure 25b represents the simulation
with added disturbance.
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From the simulation curve in Figure 25a, it can be seen that when no PID control is
used, the oscillation is obvious, the amount of overshoot is 47.3%, and the regulation time
is about 5 s. When the traditional PID control is used, the oscillation is more obvious, the
amount of overshoot is 21.2%, and the regulation time is about 0.96 s. When the fuzzy
PID control is used, the system’s oscillation is obviously weakened, with the amount of
overshoot being 14.6%, and the regulation time is 0.66 s. The comparison of the simulation
results of the three control methods are shown in the simulation results comparison table
in Table 3.

Table 3. Comparison table of simulation results.

Control Method Overshoot Stabilization Time

No PID control 47.3% 5 s
PID control 21.2% 0.96 s

Fuzzy PID control 14.6% 0.66 s

In the human body’s actual walking process, the SEDA system will be disturbed by a
variety of external factors. In order to verify the robustness of the system, the disturbance
is added when the system is running for 2.5 s, and Figure 25b shows the simulation results.
From the figure, it can be seen that when the disturbance occurs, the fuzzy PID controller
has the fastest response time and the shortest regulation time, the PID controller is the
second, and the no PID control is the slowest; furthermore, the oscillation amplitude under
the fuzzy PID control is the smallest, the oscillation amplitude under the ordinary PID
control is the second, and the oscillation amplitude under the no PID control is the largest.

6. Discussion

This study shows that the SEDA is better adapted to lower limb exoskeleton rehabili-
tation robots than conventional SEAs, because the SEDA adds a damping device on top of
the elastic element, which constitutes a spring–damping closed-loop system that is more
stable and has better shock resistance. The SEDA as an important drive system for lower
limb exoskeleton rehabilitation robots, and can also be characterized by high response
frequency, accurate control accuracy, short adjustment time, good dynamic performance,
etc. The SEDA drive system is a kind of complex high-order nonlinear system with uncer-
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tainty which is time-varying and susceptible to external disturbances, and relying on the
conventional PID control cannot meet the control requirements. For the conventional PID
control, although relatively simple and easy to operate, its relevant parameters are set in
advance cannot be changed, so it cannot adapt to parameter changes or interference from
more control systems, such as the use of fuzzy control. Although it can overcome some of
the shortcomings of the PID algorithm, the steady-state accuracy is low, the dynamic per-
formance is poor, and the control effect is very undesirable, among other shortcomings [23].
Combining the fuzzy control algorithm with the conventional PID control, the fuzzy PID
control algorithm is obtained. Such a combination can not only retain the strengths of
both, but also make up for the shortcomings of both, and ultimately achieve excellent
control results.

Finally, it should be noted that in the simulation in this study, the assumed load force
limit is 1000 N; thus, there are some limitations in the spring parameters and stiffness
coefficients, the mass of the motor and the screw, the damping coefficients of the motor,
and the damping coefficients of the damper in the selection, which results in the basic
stiffness and damping of the fuzzy PID controller needing to be adjusted according to the
symptomatic degree of the residual muscle strength of the patients with dyskinesia or the
recovery of the muscle strength of the lower limb degree to be adjusted. In addition, there
are many methods of tuning the PID controller parameters, such as theoretical calculation
tuning methods and engineering tuning methods. Secondly, the development of the fuzzy
control rule table is a complex process and does not have uniqueness, which may affect
the generalizability of the research results. Therefore, future work will further improve the
robot-assisted patient training evaluation system on the basis of this study to provide a
basis for optimizing the system control parameters and rehabilitation training strategies.

7. Conclusions

Lower limb exoskeleton rehabilitation robots play a crucial role in promoting rehabili-
tation, enhancing muscle strength, improving gait, and enhancing quality of life. In this
paper, aiming at the insufficient flexibility of traditional SEAs and the issues of wearability
and safety they bring, a damping element is added to the base design to create a series elas-
tic actuator with damping (SEDA). Finite element strength analysis was conducted under
radial or axial loads to verify the feasibility of the designed structure. The analysis results
indicate that the SEDA’s structure and material selection meet the usage requirements.

By performing dynamic modeling of the SEDA, utilizing Bode and Nyquist plots, we
conducted a comparative and analytical study of the open-loop and closed-loop frequency
domains. We explored the effects of spring stiffness and damper damping coefficient on the
system’s output bandwidth, output impedance, and shock resistance. The research results
demonstrate that as the stiffness coefficient increases, the response speed becomes faster,
the rise time decreases, and the tracking performance improves. However, excessively high
stiffness values can lead to a certain degree of overshoot and compromise system stability.
As the damping coefficient increases, the system’s response speed improves, stability
enhances, and torque tracking performance becomes better. Yet, excessive damping can
consume more energy. Ultimately, we selected a stiffness coefficient of ks = 25.48 N/mm for
the elastic element and a damping coefficient of cs = 1 Ns/mm for the damper element.

Finally, according to the dynamics model of the SEDA system, a control scheme is
proposed after simplified analysis. In order to make the flexible joints interact well with the
external environment and to ensure the safety performance of the joints, a fuzzy controller
is introduced, and the step response of the system is analyzed using MATLAB/Simulink
simulation. It is concluded that, after adopting the fuzzy PID control, the control system
has the following advantages: the fuzzy PID control method is used and the control system
has the advantages of a higher stability, smaller steady state error, stronger resistance
to external load interference, etc. Although the response time is a little slower in terms
of dynamic performance, at the same time, the fuzzy PID control method reduces the
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amount of overshooting, reduces the overshooting time, and has the ability to adapt to the
environmental changes, as well as having a better control effect.
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