
Citation: Yang, W.; Zou, S.; Li, L.;

Huang, K.; Lai, G. Direct Adaptive

Fuzzy Control with Prescribed

Tracking Accuracy for Orbit

Adjustment of Satellites. Actuators

2024, 13, 19. https://doi.org/

10.3390/act13010019

Academic Editor: Hongli Ji

Received: 28 November 2023

Revised: 22 December 2023

Accepted: 2 January 2024

Published: 4 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Direct Adaptive Fuzzy Control with Prescribed Tracking
Accuracy for Orbit Adjustment of Satellites
Weijun Yang 1 , Shizhuan Zou 2, Liang Li 2, Kai Huang 2 and Guanyu Lai 2,∗

1 School of Mechanical and Electrical Engineering, Guangzhou City Polytechnic, Guangzhou 510405, China;
ywj@gcp.edu.cn

2 School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
2112104129@mail2.gdut.edu.cn (S.Z.); 2112204166@mail2.gdut.edu.cn (L.L.);
2112204121@mail2.gdut.edu.cn (K.H.)

* Correspondence: lgy124@gdut.edu.cn

Abstract: In this paper, we investigate the orbit-adjustment problem of satellite systems in the pres-
ence of nonlinear uncertainties in kinematics and dynamics. We propose a novel direct adaptive
fuzzy control scheme with prescribed tracking accuracy to address uncertain nonlinear dynamics by
employing advanced fuzzy logic systems and integrating a class of sophisticated smooth functions,
thereby ensuring convergence of the tracking error within a precisely defined interval. The inge-
niously designed control scheme guarantees negative semi-definiteness of the Lyapunov function,
ensuring boundedness for all variables. Moreover, our groundbreaking control approach requires
only one adaptive law, completely eliminating any direct correlation with the number of nonlinear
functions. Simulation results unequivocally validate the remarkable effectiveness and superiority of
our innovative control approach.

Keywords: prescribed performance; adaptive fuzzy control; satellite orbit control; backstepping method

1. Introduction

Geodetic satellites play a pivotal role in navigation systems, such as Global Naviga-
tion Satellite Systems (GNSSs), environmental monitoring encompassing global warming,
desertification, floods, space meteorology studies, as well as satellite-based positioning
from any location on Earth [1–6]. From the perspective of ensuring the continuous and
accurate operation of satellites, orbit control emerges as an indispensable task.

For satellite systems with small disturbances, the pole placement method can be em-
ployed to achieve satisfactory control performance [7]. In [8], a method that utilizes the
Dixon resultant to enhance pole placement provides constraints ensuring the existence of
real solutions for multivariate polynomial systems. An improved hybrid H2/H∞ control
scheme, incorporating pole placement, is proposed in [9], achieving attitude stabilization
and vibration suppression for flexible spacecraft. In [10], a robust control model for study-
ing satellite formation problems is established based on the high-fidelity linearization of
relative motion dynamics. Similar results based on the control of a linear satellite model can
be found in [11–13]. However, the schemes mentioned above are all aiming at linearized
models. Although linearization has the advantages of analytical simplicity and suitability
for classical controllers, it has limitations for systems with severe nonlinear effects. More-
over, it cannot handle input–output saturation and other nonlinear effects. Thus, how to
design a controller for nonlinear satellite attitude systems is a topic worth investigating.

Partial progress has been made in the control of nonlinear satellite models [14–17].
In [14], an optimal adaptive fuzzy-based controller is designed for the satellite attitude
control problem with a faster response than the other optimal control method. In [15], the
authors design an event-triggered sliding model control based on the modified Rodrigues
parameters. In [16], a novel constrained magnetic linear quadratic regulator is proposed.
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This regulator can generate a control torque which is nearly equivalent to the mechanical
torque. Such a control method reduces the complexity of the controller design when the
satellite considers the actuator dynamics and reduces the computational burden compared
with MPC control in satellite attitude control [17]. Most control schemes are developed
based on linearized models or satellite models with certain degrees of nonlinearity, thereby
avoiding the challenges introduced by uncertain nonlinear dynamics in controller design and
development. Consequently, the mentioned control schemes demonstrate good performance
for known satellite models. However, the presence of uncertainties during satellite operation
remains a factor that cannot be overlooked [18]. Considerable progress has been made in dealing
with other nonlinear systems that exhibit modeling uncertainties [19–27]. Due to the excellent
approximation capabilities of fuzzy logic systems, many control schemes currently adopt
fuzzy logic systems to approximate the nonlinear functions of positions. It should be
pointed out that when applying such a technique, an important yet challenging problem
is to make the number of adaptive laws for handling unknown fuzzy weight vectors or
matrices independent of the number of fuzzy rules. To overcome this problem, a norm-
based estimation approach (NBEA) was first proposed systematically in [28], which,
until now, gained widespread applications. Despite the advantages of the approach, the
time derivative of the Lyapunov function cannot be ensured to be negative definite or
negative semidefinite, so the asymptotic convergence of the tracking error to zero or a
prescribed interval cannot be established. To remove such a restriction, a new and novel
scheme referred to as a direct adaptive fuzzy controller (DAFC) was proposed in our recent
study [29] for a class of single-input single-output (SISO) nonlinear systems. However, how
to generalize such a scheme to the multi-input multi-output (MIMO) case still remains to
be answered. In reality, addressing the challenge of establishing a nonlinear control scheme
with predetermined performance for satellite orbit control systems with uncertainties is an
ongoing difficulty.

Building upon the aforementioned observations, we present an adaptive fuzzy control
scheme with predetermined performance for satellite models characterized by uncertain-
ties and non-parametric nonlinearity. This proposed control scheme guarantees tracking
performance in all three dimensions of the satellite system while simultaneously reducing
the number of required adaptive laws to be designed. The main contributions can be
summarized as follows:

a For satellite systems with nonlinear dynamics and uncertainties in modeling, we
tackle the presence of uncertain nonlinear functions by harnessing a fuzzy logic
system that incorporates a class of elegant smooth functions. Simultaneously, we take
into account a refined fuzzy weight function that encompasses the approximation
error of the fuzzy logic system. Ultimately, based on the Lyapunov function, we
devise a feedback controller to ensure the stable operation of the satellite within
predetermined orbits in diverse directions.

b Our control scheme effectively circumvents the potential singularity issues that may
arise in backstepping controller design, ensuring the absence of differential terms
involving virtual controllers. Furthermore, by incorporating a norm, we guarantee
that the inclusion of fuzzy logic systems does not lead to an increase in the number of
adaptive laws. In our proposed control scheme, a solitary adaptive law suffices for
design purposes.

c We establish an L2 norm bound to evaluate the transient performance of tracking
errors and propose a methodology for adjusting the reference trajectory, enabling a
reduction in the established L2 norm bound as required. This approach allows us to
achieve satisfactory transient performance of tracking errors in addition to meeting
the specified steady-state tracking performance.

The subsequent sections of this paper are structured as follows: Section 2 provides
background knowledge and presents the problem statement. Section 3 showcases the
design of the feedback controller and conducts a stability analysis on the satellite system.
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The obtained results are then verified through simulation experiments in Section 4. Finally,
Section 5 encompasses the conclusion.

2. Preliminaries and Problem Statement

In this section, we introduce the kinematic equations of the satellite model and some
knowledge related to fuzzy logic systems.

2.1. System Description

In Figure 1, a visually captivating schematic diagram showcases the interplay between
Earth and the satellite in space, where the equatorial plane is elegantly represented by
the x–y plane, while z symbolizes the polar axis. By skillfully solving the Euler–Lagrange
equation, we can gracefully derive the ensuing dynamical equations for our esteemed
satellite model [30] as follows:

ṙ1 = r2 + f̄1(r1)

ṙ2 = r1θ2
2 cos2 ϕ1 + r1 ϕ2

2 −
c
r2

1
+ f̄2(r1, r2) +

1
m ur

θ̇1 = θ2 + f̄3(r̄, θ1)

θ̇2 = −2 r2θ2
r1

+ 2θ2 ϕ2
sin ϕ1
cos ϕ1

+ f̄4(r̄, θ̄) + 1
mr1 cos ϕ1

uθ

ϕ̇1 = ϕ2 + f̄5(r̄, θ̄, ϕ1)

ϕ̇2 = −θ2
2 cos ϕ1 sin ϕ1 − 2 r2θ2

r1
+ f̄6(r̄, θ̄, ϕ̄) + 1

mr1
uϕ

(1)

where r, θ, and ϕ represent the distance between the satellite and the center of the Earth, the
angle traversed by the satellite in the equatorial plane, and the inclination of the satellite
on the z-axis, respectively; c = 4× 1014 N ·m2/kg is a constant related to the universal
gravitational constant and the Earth mass; m is the mass of the satellite; the nonlinear
function f̄i(·) for i = 1, . . . , 6 represents the uncertainties present in the satellite orbital
control system; and r̄ = [r1, r2]

T , θ̄ = [θ1, θ2]
T , ϕ̄ = [ϕ1, ϕ2]

T represent the input variables
of the nonlinear functions f̄i(·).

Remark 1. For control schemes employing pole placement, it is imperative to linearize the nonlinear
functions of the system in its equilibrium state. Without a loss of generality, let us consider a circular
orbit situated on the equator as the satellite’s trajectory. Once in orbit and undisturbed, the satellite
can autonomously rotate with an angular velocity ω along a circular path with radius r0. The state
equation of the satellite system can be derived as follows:{

ẋ = Ax + Bu
y = Cx

(2)

where x = [r1, r2, θ1, θ2, ϕ1, ϕ2], u = [ur, uθ , uϕ], and y represent the output of the system. The
state matrix, input matrix, and output matrix of the system are given by

A =



0 1 0 0 0 0
3ω2 0 0 2ωr0 0 0

0 0 0 1 0 0
0 − 2ω

r0
0 0 0 0

0 0 0 0 0 1
0 0 0 0 −ω2 0


, B =



0 0 0
1
m 0 0
0 0 0
0 1

mr0
0

0 0 0
0 0 1

mr0


(3)

C =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

. (4)
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For linear system (2), designing a feedback controller is straightforward. However, satellite
modeling involves uncertain nonlinear functions, and we need to perform orbit control in three
dimensions. This compels us to consider control schemes tailored for nonlinear systems.

Assumption 1. The reference signals rd, θd, and ϕd are known and bounded, with their first
derivatives also existing.

Figure 1. Schematic diagram of artificial satellite orbit control.

2.2. Fuzzy Logic Systems

Due to the universal approximation capability of FLSs, they have been widely inte-
grated with adaptive control to address uncertainties in nonlinear systems. The rule base
stores fuzzy rules that associate input variables with output variables and consists of the
following linguistic rules:

Rl : I f x1 is Fl
1 and . . . and xn is Fl

n

Then y is Bl

where x = [x1, . . . , xn]T and y are the FLS input vector and output vector, respectively.
Fl

i and Bl are fuzzy sets connected with the membership functions uFl
i
(xi) and uBl (y). In

general, the FLS can be represented as follows:

y(x) =
∑N

l=1 ȳl ∏n
i=1 uFl

i
(xi)

∑N
l=1 ∏n

i=1 uFl
i
(xi)

(5)

where the parameter N represents the number of rules and ȳl = max
y∈R

uBl (y). From (5), the

fuzzy basis function is decomposed into

ϕl(x) =
∏n

i=1 uFl
i
(xi)

∑N
l=1 ∏n

i=1 uFl
i
(xi)

. (6)
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Denote θT = [ȳ1, . . . , ȳn] and ϕ(x) = [ϕ1(x), . . . , ϕn(x)]T . The FLS can be expressed
as the form of the product between the fuzzy weight vector and the basis function vector:

y(x) = θT ϕ(x). (7)

Lemma 1 ([31]). Assuming Θ(x) is a continuous function defined on a compact set Ω, there exists
any small constant ε > 0 and an FLS such that

sup
x∈Ω
|Θ(x)− θT ϕ(x)| ≤ ε. (8)

3. Prescribed Adaptive Fuzzy Control Scheme

In this section, we design an adaptive fuzzy control scheme with predetermined
performance. A stability analysis is conducted based on the proposed scheme, and the
successful establishment of the L2 norm has improved dynamic performance.

3.1. A Class of Smooth Functions

Before proceeding with the controller design, we introduce a class of smooth functions,
denoted as

sgi(ξ) =


ξ
|ξ| , |ξ| ≥ δi

ξ

(δ2
i −ξ2)2+|ξ| , |ξ| < δi

, i = 1, . . . , 6 (9)

and a class of switch functions, denoted as

fi(ξ) =

{
1, |ξ| ≥ δi
0, |ξ| < δi

, i = 1, . . . , 6 (10)

are introduced to facilitate the controller design. For clarity, the notations δi, i = 1, . . . , 6
are positive constants and ξ represents the error between the state variable and the
reference signal.

3.2. Feedback Controller Design

For the radial subsystem, the error variables are defined as follows:{
ξr1 = r1 − rd
ξr2 = r2 − α∗r1

(11)

where rd is the satellite trajectory tracking reference signal, and α∗r1
will be provided in the

subsequent design of the virtual controller.

The radial controller design:

The derivative of ξr1 is

ξ̇r1 = ṙ1 − ṙd = ξr2 + α∗r1
+ f̄1(r1)− ẏr = ξr2 + α∗r1

+ ∆1 − δ2sg1 (12)

where ∆1 is a function related to the fuzzy logic system and its approximation error,
defined as

∆1 = f̄1(r1) + δ2sg1(ξ1) + ṙd = θ∗T1 φ1 + d1 = θ∗0 ψ1 (13)

where θ∗0 is relevant to the fuzzy weight vector and the fuzzy logic systems error. The
adaptive parameter θ∗0 is expressed as

θ∗0 = [θ∗T1 , . . . , θ∗T6 , d1, . . . , d6]. (14)
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We use θ∗i to represent the fuzzy weight vector, such as ȳl in (5); di to represent the
error constant, such as ε in (8); and ωi, i = 1, . . . , 6 to represent the vector related to the
basis functions as follows:

ψ1 = [φ1, 0, . . . , 0︸ ︷︷ ︸
5

, 1, 0, . . . , 0︸ ︷︷ ︸
5

]T , (15)

ψi = [0, . . . , 0︸ ︷︷ ︸
i−1

, φi, 0, . . . , 0︸ ︷︷ ︸
6−i

, 0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
6−i

]T (16)

where φi denotes the fuzzy basis function similar to ϕ in (6). Then, one can obtain that

θ∗ = ||θ∗0 ||∞ = sup
t≥0
||θ∗0 (t)|| (17)

We denote ωi = sgi(ξi)
√

ψT
i ψi.

We combine the unknown weight vector θ∗Ti and the approximation error di into an
unknown vector function θ∗, and θ∗ is bounded. Unlike traditional fuzzy logic systems that
ignore approximation errors, we further consider the handling of errors. The boundedness
of θ∗ is guaranteed, and this property is related to the calculation of the convergence time.

The Lyapunov function is chosen as

V1,1 =
1
2
(|ξr1 | − δ1)

2 f1, (18)

and its derivative is

V̇1,1 = (|ξr1 | − δ1) f1sg1(ξr1)(ξr2 + α∗r1
+ θ∗Ψ1). (19)

The virtual controller α∗r1
is chosen as

α∗r1
= −c1(|ξr1 | − δ1)sg1(ξr1)− θω1 (20)

Substituting (20) into (19), we have

V̇1,1 ≤− c1(|ξr1 | − δ1)
2 f1 + (ξr1 | − δ1) f1(|ξr2 | − δ2) f2sg2

2 + θ̃τ1 (21)

for τ1 = (|ξr1 | − δ1) f1sg1ω1.

Remark 2. Traditional backstepping control schemes involve directly solving derivatives of the
virtual controller. As the system order increases, the computational complexity also increases.
Dynamic surface control and command filtering control address this issue by designing filters to
replace the derivatives of the virtual controller. While these methods resolve the issue of complexity,
the design of filters can be complex, and they also introduce the challenge of error compensation. In
our approach, we successfully address the problem of exploding complexity by using a fuzzy logic
system combined with smooth functions.

For the second step of backstepping control design, we design the radial control law
using the following Lyapunov function:

V1,2 =
1
2
(|ξr2 | − δ2)

2 f2 + V1,1 (22)
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and the derivative is computed as

V̇1,2 =(|ξr2 | − δ2) f2sg2ξ̇r2 + V̇1,1

≤(|ξr2 | − δ2) f2sg2(r1θ2
2 cos2 ϕ1 + r1 ϕ2

2 + ∆2 +
1
m

p

∑
i=1

uri )

− c1(|ξr1 | − δ1) f1 − k1(|ξr1 | − δ1)
4 f1 + θ̃τ1

+ (|ξr2 | − δ2) f2sg2
∂α∗r1

θ
(γτ2 − θ̇)

(23)

where the composite function is defined as

∆2 =sg2(|ξr1 | − δ1) f1 −
c
r2

1
+ f̄r2(r1, r2)−

∂α∗r1

∂r1
ṙ1 −

∂α∗r1

∂yr
ẏr −

∂α∗r1

∂θ
γτ2

=θ∗T2 φ2 + d2 = θ∗0 Ψ2.

(24)

The function ∆2 is approximated using a fuzzy logic system, addressing not only the
uncertainty in system modeling but also ensuring that the designed controller is nonsingular.

We choose the controller ur as

ur =−mc2(|ξr2| − δ2)sg2 − θω2. (25)

Substituting ur into (23), we have

V̇1,2 ≤−
2

∑
i=1

ci(|ξri | − δi)
2 fi + θ̃τ2 + (|ξr2 | − δ2) f2sg2

∂α∗r1

∂θ
(γτ2 − θ̇) (26)

for τ2 = (|ξr2 − δ2|) f2sg2ω2 + τ1.

The tangential controller design:

For the tangential subsystem, the error variable is defined as{
ξθ1 = θ1 − θd
ξθ2 = θ2 − α∗θ1

, (27)

where θd represents the angular velocity of Earth’s rotation.
The virtual controller α∗θ1

is designed as

α∗θ1
= −c3(|ξθ1 | − δ3)sg3(ξθ1)− θω3. (28)

The Lyapunov candidate function of the subsystems is considered

V2,1 = V1,2 +
1
2
(|ξθ1 | − δ3)

2 f3 (29)

We consider a complex composite function

∆3 =− δ4sg3 + f̄3(r̄, θ1) + θ̇d −
∂α∗r1

∂θ
(|ξr2 | − δ2) f2sg2γω3

=θ∗T3 φ3 + d3 = θ∗0 Ψ3

(30)
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By using (28) and (30), we can compute V̇2,1 as follows:

V̇2,1 ≤−
2

∑
i=1

ci(|ξri | − δi)
2 fi + θ̃τ3 − c3(|ξθ1 | − δ3)

2 f3

+ (|ξθ2 | − δ4) f4sg2
4(|ξθ1 | − δ3) f3

+ (|ξr2 | − δ2) f2sg2
∂α∗r1

∂θ
(γτ3 − θ̇)

(31)

for τ3 = (|ξθ1 | − δ3) f3sg3ω3 + τ2.

The controller uθ is designed as

uθ = −c4(|ξθ2 | − δ4)sg4 − θω4. (32)

We design a composite function as

∆4 =sg4(|ξθ1 | − δ3) f3 − 2
r2θ2

r1
+ 2θ2 ϕ2

sin ϕ1

cos ϕ1
−

∂α∗θ1

θ1
(θ2 + f̄3(r̄, θ1))

+ f̄4(r̄, θ̄) + (|ξr2 | − δ2) f2sg2
∂α∗r1

θ
γω4 −

∂α∗θ1

θ
γτ4

=θ∗T4 φ4 + d4 = θ∗0 Ψ4.

(33)

We consider the following Lyapunov function candidate:

V2,2 = V2,1 +
1
2
(|ξθ2 | − δ4)

2 f4 (34)

whose derivative is computed as

V̇2,2 ≤−
2

∑
i=1

ci(|ξri | − δi)
2 fi + θ̃τ4 −

4

∑
i=3

ci(|ξθi | − δi)
2 fi

+ (|ξr2 | − δ2) f2sg2
∂α∗r1

∂θ
(γτ4 − θ̇)

+ (|ξθ2 | − δ4) f4sg4
∂α∗θ1

∂θ
(γτ4 − θ̇)

(35)

for τ4 = (|ξθ2 | − δ4) f4sg4ω4 + τ3.

The tilted direction controller design:

For the tilted system relative to the equatorial plane, the error variable is defined as{
ξϕ1 = ϕ1 − ϕd
ξϕ2 = ϕ2 − α∗ϕ1

. (36)

The virtual controller is designed as

α∗ϕ1
= −c5(|ξϕ1 | − δ5)sg5 − θω5 (37)

The Lyapunov candidate function of the subsystems is considered

V3,1 = V2,2 +
1
2
(|ξϕ1 | − δ5)

2 f5. (38)

We consider a complex composite function
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∆5 =− δ6sg5 + f̄5(r̄, θ̄, ϕ1)− (|ξr2 | − δ2) f2sg2
∂α∗r1

θ
γω5

− (|ξθ2 | − δ4) f4sg4
∂α∗θ1

θ
γω5

=θ∗T5 φ5 + d5 = θ∗0 Ψ5.

(39)

The derivate of (38) is calculated as

V̇3,1 ≤−
2

∑
i=1

ci(|ξri | − δi)
2 fi + θ̃τ5 −

4

∑
i=3

ci(|ξθi | − δi)
2 fi

− c5(|ξϕ1 | − δ5)
2 f5 + (|ξr2 | − δ2) f2sg2

∂α∗r1

∂θ
(γτ5 − θ̇)

+ (|ξθ2 | − δ4) f4sg4
∂α∗θ1

∂θ
(γτ5 − θ̇)

+ (|ξϕ2 | − δ6) f6sg2
6(|ξϕ1 | − δ5) f5

(40)

for τ5 = (|ξϕ1 | − δ5) f5sg5ω5 + τ4.
Controller uϕ is designed as

uϕ = −c6(|ξϕ2 | − δ6)sg6 − θω6. (41)

We design the composite function as

∆6 =sg6(|ξϕ1 | − δ5) f5 − θ2
2 cos ϕ1 sin ϕ1 − 2

r2θ2

r1
+ f̄6(r̄, θ̄, ϕ̄)

−
∂α∗ϕ1

∂ϕ1
(ϕ2 + f̄5(r̄, θ̄, ϕ1))−

∂α∗ϕ1

∂θ
γτ6 − (|ξr2 | − δ2) f2sg2

∂α∗r1

θ
γω6

=θ∗T6 φ6 + d6 = θ∗0 Ψ6.

(42)

We consider the following Lyapunov candidate function:

V = V3,1 +
1
2
(|ξϕ2 | − δ6)

2 f6 +
1

2γ
θ̃2 (43)

and compute its derivative

V̇ ≤−
2

∑
i=1

ci(|ξri | − δi)
2 fi −

4

∑
i=3

ci(|ξθi−2 | − δi)
2 fi −

6

∑
i=5

ci(|ξϕi−4 | − δi)
2 fi

+ (|ξr2 | − δ2) f2sg2
∂α∗r1

∂θ
(γτ6 − θ̇) + (|ξθ2 | − δ4) f4sg4

∂α∗θ1

∂θ
(γτ6 − θ̇)

+ (|ξϕ2 | − δ6) f6sg6
∂α∗ϕ1

θ
(γτ6 − θ̇) + θ̃τ6 −

1
γ

θ̃θ̇.

(44)

To ensure that the selected Lyapunov derivative remains non-increasing, the adaptive
laws related to the fuzzy logic system are chosen as

θ̇ = γτ6. (45)

Figure 2 illustrates a block diagram of our designed adaptive fuzzy control method
with prescribed accuracy. The diagram, focusing on the flow of system signals, presents a
control scheme for a multiple-input–multiple-output (MIMO) system. Specifically empha-
sized are the smooth functions, switch functions, and adaptive law, with the fuzzy logic
system omitted for clarity.
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Reference
Input

Orbit
adjustment
of satellite

Feedback
controller

Adaptive law
Smooth
function
Switch

function State variables

Error variables

Figure 2. A block diagram of the prescribed accuracy adaptive fuzzy control for a satellite orbit
adjustment system.

3.3. Stability Analysis

In this section, the primary focus is to establish the boundedness of closed-loop signals
and the convergence performance of errors for a satellite system. Additionally, the dynamic
behavior of errors in terms of performance is analyzed.

Theorem 1. We consider the satellite orbit control system described by (1) and assume Assumption 1
is satisfied. If the virtual controllers specified by (20), (28), and (37); the feedback controllers defined
by (25), (32), and (41); and the adaptive laws given by (45) are selected, then the following results
can be drawn that all closed-loop signal are bounded, and the position tracking error ξ1 can converge
to a predetermined interval [−δ1, δ1].

Proof of Theorem 1. We can consider the following candidate Lyapunov function:

V(t) =
1
2

ξTξ +
1

2γ
θ̃2, (46)

where ξ = [(|ξr1 | − δ1) f1, . . . , (|ξϕ2 | − δ6) f6]
T . Substituting (45) into (44), the simplified

derivative of the Lyapunov function can be obtained as follows:

V̇(t) ≤−
2

∑
i=1

ci(|ξri | − δi)
2 fi −

4

∑
i=3

ci(|ξθi−2 | − δi)
2 fi

−
6

∑
i=5

ci(|ξϕi−4 | − δi)
2 fi.

(47)

Therefore, the selected Lyapunov function is non-increasing. Clearly, we have
V(t) ≤ V(0). In other words, the boundedness of ξ and θ̃ depends on whether V(0)
is bounded. Therefore, the boundedness of ξ and θ̃ is ensured for t ∈ [0,+∞]. Since ξr1 and
yr belong to L∞, we can conclude that r1 also belongs to L∞. Furthermore, as the virtual
controller α1 is a function of ξr1 , θ̃, and r2 = ξr2 + α1, the boundedness of r2 is also ensured.
Similarly, the boundedness of other state variables in the satellite control system, such as
θ1, θ2, ϕ1, and ϕ2, is also guaranteed. Thus, the boundedness of all closed-loop signals is
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established. Combining the properties of the selected Lyapunov function and Barbalat’s
Lemma, we can conclude that limt→∞ V̇(t) = 0. Therefore, as t → ∞, ξr1 ∈ [−δ1, δ1],
ξθ1 ∈ [−δ3, δ3], ξϕ1 ∈ [−δ5, δ5], which means that the defined error can converge within our
predetermined error bounds.

Theorem 2. The bound of the L2 norm of the position error system is introduced, which is
expressed as follows:

||(|ξr1 | − δ1) f1||2 ≤
1√
c1
[

1
2γ

θ̃2(0)]
1
2 . (48)

Proof of Theorem 2. From (43), we have

V(0) =
6

∑
i=1

1
2
(|ξ̄[i](0)| − δi)

2 fi +
1

2γ
θ̃2(0), (49)

where ξ̄ = [ξr1 , ξr2 , ξθ1 , ξθ2 , ξϕ1 , ξϕ2 ]. By using the initialization conditions from [29], we can
ensure that |ξ[i]| ≤ δi, i = 1, . . . , 6, which leads to ∑6

i=1(|ξ[i]| − δi)
2 fi = 0. Then, we obtain

the result in (48).

Remark 3. By establishing the L2 norm, we can adjust the controller parameters to improve
the system’s dynamic performance. It is worth noting that we employed initial value conditions,
ensuring that adjusting the controller parameters did not affect the error function at each step.

4. Simulation Results

This section verifies the effectiveness of the fault-tolerant control scheme designed
above by considering the Geostationary Earth Orbit Satellite. The reference signal rd
was set as rd = 42,164 + 10e−0.01t. The angular velocity of the Earth rotation was set to
θd = 7.2921150× 10−5 · t. We set the satellite orbit to be equatorial; hence, ϕd = 0. The
mass of the GEOS is m = 5400 kg [32].

The controller design parameters and corresponding initial values were set as follows:
δ1 = 0.01, δ2 = 1, δ3 = 0.88, δ4 = 1, δ5 = 1, δ6 = 1, c1 = 0.01, c2 = 1, c3 = 1,
c4 = 1, c5 = 1, c6 = 1. The initial values of the state variables were set to 42,187; 0; 0;
7.2921150 × 10−5; 0.1; and 0.1. Additionally, the initial value of the adaptive law was set as
θ(0) = 0.01;

Simulation Results: The simulation results are shown in Figures 3–8. The result of the
linear control scheme for the satellite orbit adjustment system is shown in Figure 3. The
satellite orbit adjustment model was linearized around the equilibrium point to obtain
the linear model, as in Equation (2). Using the pole placement control scheme, we de-
termined the closed-loop system poles based on the specified performance criteria: rise
time ts = 300 s, damping ratio ξ = 0.5, and undamped natural frequency ωn = 0.267. The
resulting poles were set as p0r = −0.04± 0.1i and p0θ and p0ϕ = −0.0133± 0.023i, from
which the state feedback parameters were derived. The experimental results, as shown in
Figure 1, indicate that the obtained results can only guarantee the convergence of the state
error to the vicinity of 0. Additionally, the controller designed using direct pole placement
cannot be directly applied to nonlinear systems.

Figure 4 illustrates that the satellite orbit adjustment in the radial direction relative
to Earth can operate within the prescribed range of [−0.01, 0.01]. In Figures 5 and 6, the
satellite’s angular velocity tracks Earth’s rotational speed ω, with the satellite inclination
angle set to 0◦, meaning it is in the equatorial plane. Additionally, their tracking errors are
within the predetermined range. It can be observed from Figures 7 and 8 that the control
scheme we designed ensures that system state variables, control inputs, and adaptive laws
are all bounded.
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Figure 3. A diagram of the satellite orbit adjustment system tracking error.
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Figure 4. Radial trajectory tracking and tracking error r1 − rd.

The tracking errors shown in Figures 4–6 demonstrate the effectiveness of our designed
control scheme in ensuring convergence of the defined error variables within a specified
range. However, for certain control schemes employing fuzzy logic systems to handle
uncertainties, it cannot be guaranteed that the derivative of the defined Lyapunov function
is negative semi-definite, resulting in V̇ ≤ −cV + D, where c and D are positive integers.
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Consequently, this implies that the convergence error of the system is confined to a small
vicinity around 0. Therefore, proper parameter tuning becomes essential for achieving
satisfactory performance.
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Figure 5. The satellite tangential velocity tracking and tracking error θ2 −ω .

0 20 40 60 80 100 120 140 160 180 200

time(s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

in
c
lin

a
ti
o
n
 p

o
s
it
io

n
 t
ra

c
k
in

g

(a) Angle tracking.
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(b) Tracking error.

Figure 6. The tilted direction angle tracking and tracking error ϕ1 − ϕd.

The various state variables, control inputs, and adaptive law of the satellite system
are shown in Figures 7 and 8, indicating that their boundedness is guaranteed. As we are
considering the regulation of real satellite orbits, the control inputs to the system may be
relatively large.

As for the graph of θ1, since θ1 represents the accumulation of the angle traveled by
the satellite around the Earth, it is a rising straight line with a slope of the rotation rate ω
after the satellite completes one revolution, the angle accumulation is reset to zero, and the
accumulation restarts. That is, the graph of θ1 is similar to a sawtooth wave.
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Figure 7. The state variables of the satellite system.
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(a) Control input.
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Figure 8. System control input and adaptive law.

5. Conclusions

A precision control scheme based on adaptive fuzzy technology is proposed for
satellite orbit adjustment. This control scheme offers several advantages over existing
methods. Firstly, it effectively avoids the “singularity obstacle” problem that can occur
during orbit adjustment, ensuring smooth and stable operation of the satellite. Additionally,
it takes into account the approximation error of the fuzzy logic system, enhancing the
accuracy and reliability of the control scheme.
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One notable feature of our control scheme is its ability to address the “complexity ex-
plosion problem associated with backstepping control techniques. By eliminating complex
differential terms from the controller design, we simplified the implementation process
without compromising performance. This makes our control scheme more practical and fea-
sible for real-world applications. Through extensive testing and analysis, we demonstrated
that our proposed control scheme guarantees bounded closed-loop signals. This means that
all signals involved in controlling satellite orbits remain within predetermined limits, pre-
venting any undesirable behavior or instability. Furthermore, our control scheme ensures
that satellites can operate within a predetermined error range when tracking orbits in three
directions relative to Earth. This capability is crucial for maintaining the precise positioning
and navigation capabilities required by various space missions such as communication
satellites or scientific exploration missions.

In conclusion, our precision control scheme based on adaptive fuzzy technology
presents significant advancements in satellite orbit adjustment. Its capability to overcome
singularity obstacles while considering approximation errors distinguishes it from con-
ventional approaches. Furthermore, by addressing complexity explosion issues associated
with backstepping control techniques without compromising performance, our proposed
solution proves to be both effective and practical for achieving the desired outcomes.
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