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Abstract: Energy consumption is one of the most critical factors in determining the kinematic
performance of quadruped robots. However, existing research methods often encounter challenges
in quickly and efficiently reducing the energy consumption associated with quadrupedal robotic
locomotion. In this paper, the deep deterministic policy gradient (DDPG) algorithm was used to
optimize the energy consumption of the Cyber Dog quadruped robot. Firstly, the kinematic and
energy consumption models of the robot were established. Secondly, energy consumption was
optimized by reinforcement learning using the DDPG algorithm. The optimized plantar trajectory
was then compared with two common plantar trajectories in simulation experiments, with the same
period and the number of synchronizations but varying velocities. Lastly, real experiments were
conducted using a prototype machine to validate the simulation data. The analysis results show that,
under the same conditions, the proposed method can reduce energy consumption by 7~9% compared
with the existing optimal trajectory methods.

Keywords: quadruped robot; deep reinforcement learning; robot movement; energy efficiency

1. Introduction

Quadruped robots, due to their excellent working ability in complex terrain and
dangerous environments [1], have been widely used in rescue operations [2], military
contexts [3], exploration missions [4], and mining activities [5], offering significant ad-
vantages such as low cost and high completion rates. However, the rapid depletion of
energy reserves during locomotion remains a critical issue, resulting in short operating
time. Reducing the motion energy consumption without losing the motion performance
has become a key challenge to achieving longer operational duration and high-performance
robot service.

Various methods, including gait planning [6–8], trajectory planning [9,10], and rein-
forcement learning [11–15], have been used to enhance the control of four-legged robots.
Wang et al. proposed a soft gait control strategy that minimized tracking error and jitter
to improve the quadrupedal crawling robot’s stable passage in a sidehill environment [6].
Li et al. proposed a gait-switching control method for quadrupedal robots based on the
combination of dynamic and static and improved the robot’s ability to adapt to different
terrains using Matlab–Adams co-simulation [7]. Chen et al. proposed a quadrupedal robot
that was able to adapt to multiple terrains based on the idea of trajectory planning by
combining the Cartesian space with the joint space [8]. Chen et al. proposed a quadrupedal
robot that was able to adapt to multiple terrains based on the idea of trajectory planning
by combining the Cartesian space with the joint space’s bionic foot trajectory [9]. Levin
et al. reported on learning hand–eye coordination for robotic grasping through deep learn-
ing and big data [11]. Haarnoja et al. proposed a sample-efficient deep reinforcement
learning (RL) algorithm based on maximum entropy artificial intelligence for real robots to
learn to walk [12]. Tan et al. utilized deep reinforcement learning techniques to automate
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quadrupedal robots’ agile locomotion [13]. Nagabandi A et al. conducted a study on learn-
ing online adaptation in the context of model-based reinforcement learning to enable robots
to learn to adapt to dynamic real-world environments through reinforcement learning [15].
Notably, the robot’s autonomous movement, recognition of the terrain to plan its path, etc.,
were realized by reinforcement learning. This shows that reinforcement learning methods
have very high potential value.

The current conventional methods for studying robot energy consumption are as fol-
lows. Yang et al. proposed a trotting gait foot trajectory based on cubic spline interpolation
and investigated the variation in energy consumption due to different gait parameters of
the quadrupedal robot SCalf by simulation [16]. Benotsmane et al. found that an industrial
robot executed three defined reference trajectories with reduced accuracy using an MPC
controller, but was always faster and required less energy [17]. G. Wang et al. proposed a
quadratic planning force-allocation controller to reduce the energy consumption of a hexa-
pod robot by optimizing the instantaneous power at each time step [18]. Mikolajczyk et al.
investigated the current state of the art of bipedal walking robots that use natural bipedal
locomotion (humans and birds) as well as innovative synthetic solutions and probed the
energy efficiency of bipedal robots [19]. These methods have made good progress in the
control of legged robots. The feasibility of the traditional [19–23] approach can be directly
observed since it usually uses different platforms for simulation, planning, and control, and
the obtained data are imported into the robot control system for experiments. However,
repeated attempts are inefficient and often accompanied by problems such as damage to
the body, slow progress, and unsatisfactory results. Therefore, it is very difficult to consider
the energy consumption with the traditional approach, and reinforcement learning can
play an important role in this regard.

This paper focuses on the energy consumption of the legs of the Cyber Dog quadruped
robot during locomotion. To optimize the energy consumption, reinforcement learning was
performed using the deep deterministic policy gradient (DDPG) algorithm, the optimal
energy consumption data were extracted in a simulated environment, and then the energy
consumption of the robot was compared with that of two common foot end trajectories [9]
under the same experimental conditions. The power output of each joint of the robot’s
leg was reduced while maintaining the speed of movement, thus optimizing energy con-
sumption under the same conditions. The paper is structured as follows. Section 2 models
the robot’s kinematics and energy consumption and analyzes two common end-of-foot
trajectories. Section 3 describes the experimental methodology and setup to lay the re-
search foundation for subsequent experiments. Section 4 compares the optimal end-of-foot
trajectories obtained through reinforcement learning with the conventional end-of-foot tra-
jectories and compares the energy consumption at the same speed, period, and number of
synchronizations through simulation experiments. The reliability of the simulation results
was confirmed by prototype experiments. The results obtained from the study are used in
Section 5 to evaluate the advantages of the discussed methods. Finally, concluding remarks
are made, and future research directions are outlined. The method in this paper can reduce
the energy consumption in the movement of quadrupedal robots, extend the endurance
of quadrupedal robots in complex and dangerous environments, and reduce the risk of
accidental injuries caused by experiments with high-value robots in real environments.

2. Robot Modeling

The Cyber Dog quadrupedal robot is an in-house prototype developed by Xiaomi
equipped with three degrees of freedom in each leg and high-performance servo motors.
These motors provide a maximum output torque of 32 Nm and a maximum speed of
220 rpm, allowing the robot to move at speeds of 3.2 m/s. The Cyber Dog’s design
ensures high-torque and high-speed performance with a fast response. The robot is further
equipped with the NVIDIA JETSON XAVIER NX platform, which integrates 384 CUDA
cores, 48 Tensor Cores, six Carmel ARM CPUs, and two deep learning acceleration engines
for fast interaction between simulation data and real prototypes. The training platform
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was based on the Matlab simulation platform Simulink, and the 3D diagram of the Cyber
Dog quadruped robot was imported into the Simulink simulation platform to establish the
intelligent body simulation system. The system meets the simulation requirements, such as
joint limitation and ground contact, and has the ability of reinforcement learning.

In order to better train for energy optimization in simulation, the following assump-
tions were adopted:

The study focused only on the motion of the robot on the plane and ignored the friction
between the joints.

The rolling motion of the robot’s hip joints was not considered when walking on a plane.
Considering these preconditions, Matlab configured the external environment param-

eters for the intelligent body to interact with Simulink. The model contained 111 obser-
vations, including the Cartesian coordinates of the torso, the orientation, the joint angles,
the 3D velocities, the angular velocities, the joint velocities, and the joint moments. This
facilitated a more consistent setup of reward terms in the reward function, consistent with
the research described in this paper. For this paper, the dimensions of the simulated robot
were aligned with those of the real-world robot to improve the accuracy of the simulation.
Furthermore, the fidelity of the physics simulator was enhanced by carefully tuning the
parameters of the robots in the simulation, such as the joint rotation ranges and motor
control ranges. Figure 1a,b illustrate the real and simulated models.
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Figure 1. Cyber Dog quadruped robot: (a) Cyber Dog quadrupedal robot prototype; (b) Cyber Dog
quadruped robot simulation model.

2.1. Kinematics Modeling
2.1.1. Swing Phase of Leg Mechanism

A body coordinate system (Ow, −xw, yw, zw) was established on the quadruped robot;
Ow is the coordinate origin at the center of the torso of the robot model. The leg mechanism
can be regarded as a series of connecting rods constituting a connecting rod mechanism in
each joint of the leg to establish the connecting rod coordinate system (Oi, −xi, yi, zi) with
i = 0, 1, 2, 3, and 4, as shown in Figure 2.

θ1, θ2, and θ3 denote the joint angles of each joint in the leg mechanism; l1, l2, and l3
denote the lengths of each connecting rod of the leg mechanism. The Denavit–Hartenberg
(D–H) parameters for when the leg mechanism was in the swing phase are detailed in
Table 1.

Table 1. D–H parameters for the swing phase of the right anterior (RF) leg mechanism.

i ai−1/mm αi−1/(◦) θ/(◦) di/mm

1 0 0 θ1 0
2 l1 90 θ2 0
3 l2 0 θ3 0
4 l3 0 0 0
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Using the homogeneous matrix Ti−1
i to represent the spatial posture of each joint of

the leg, the kinematic equation for the swing phase is Equation (1):

w
4 Tsw = w

0 Tsw · 0
1Tsw · 1

2Tsw · 2
3Tsw · 3

4Tsw

w
4 Tsw =


c1c23 −c3s23 s1 l3c1s23 + l2c1c2 + l1c1 + a/2
s1c23 −s1s23 −c1 l3s1c23 + l2s1c2 + l1s1 − b/2
s23 c23 0 l3s23 + l2s2 − h
0 0 0 1

 (1)

where s23 = sin(θ2 + θ3), c23 = cos(θ2 + θ3), si = sinθi, and ci = cosθi.
Px, Py, and Pz, which can be obtained from Equation (1), are the origin vector elements

of the position of the foot end relative to the basic coordinate system, and they are expressed
in Equation (2).

psw
x = l3c1s23 + l2c1c2 + l1c1 + a/2

psw
y = l3s1c23 + l2s1c2 + l1s1 − b/2

psw
z = l3s23 + l2s2 − h

(2)

The inverse transformation of the chi-square matrix [7] is used to obtain the transfor-
mation equation of the foot end position with respect to the angle of the joint associated
with the lateral swing θsw1, the angle of the thigh joint θsw2, and the angle of the calf joint
θsw3, as shown in Equation (3):

θ1sw = arctan(
psw

y + b
2

h−psw
z
)

θ2sw = arcsin

[
D2√

(psw
x − a

2 )
2
+D1

2

]
− arccos

[
psw

x − a
2√

(psw
x − a

2 )
2
+D1

2

]

θ3sw = arccos
(

psw
x − a

2−l2s2
l3

)
− arcsin

[
D2√

(psw
x − a

2 )
2
+D1

2

]
+ arccos

[
psw

x − a
2√

(psw
x − a

2 )
2
+D1

2

] (3)

where
D1 =

√
(h − psw

z )2 +
(

psw
y + b

2

)2
− l1

D2 =
l32−(psw

x − a
2 )

2−
(√

(h−psw
z )2+(psw

y + b
2 )

2−l1

)2
−l22

2l2

.
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2.1.2. Supporting Phase of Leg Mechanism

When the leg mechanism is in the support phase, there is no side swing motion;
therefore, the θ1 of the side swing joints is constant at zero. The spatial coordinate system
of each joint of the leg in this phase is shown in Figure 3. The θ2, θ3, and θ4 denote the joint
angles of the shoulder, knee, and ankle joints, respectively. In addition, the D–H parameters
of the supported phase are shown in Table 2.
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Table 2. D–H parameters for the support phase of the right front (RF) leg mechanism.

i ai−1/mm αi−1/(◦) θ/(◦) di/mm

1 0 0 θ4 0
2 l3 0 θ3 0
3 l2 0 θ2 0
4 0 0 θ1 0

Then the kinematics equations of the supported phase are expressed in Equation (4).

0
3Tsp = 0

1Tsp · 1
2Tsp · 2

3Tsp

0
3Tsp =


c3c4 − s3s4 −c3s4 − c4s3 0 l2(c3c4 − s3s4) + l3c4
c3s4 + c4s3 c3c4 − s3s4 0 l2(c3s4 + c4s3) + l3s4

0 0 1 0
0 0 0 1

 (4)

Px, Py, and Pz, derived from Equation (4), are the origin vector elements of the
foot’s end phase with respect to the position of the base coordinate system when the leg
mechanism is in the support phase; they are expressed in Equation (5).

The inverse transformation of the chi-square matrix was used to obtain the transforma-
tion equation θ2sp, θ3sp for the foot-end position with respect to the angle of the transverse
support related to the knuckle, as shown in Equation (6).

psp
x = l2(c3c4 − s3s4) + l3c4

psp
y = l2(c3s4 + c4s3) + l3s4

(5)
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θ2sp = arcsin

[
D2√

(psp
x − a

2 )
2
+D1

2

]
− arccos

[
psp

x − a
2√

(psp
x − a

2 )
2
+D1

2

]

θ3sp = arccos
(

psp
x − a

2−l2s2
l3

)
− arcsin

[
D2√

(psp
x − a

2 )
2
+D1

2

]
+ arccos

[
psp

x − a
2√

(psp
x − a

2 )
2
+D1

2

] (6)

where
D1 =

√
h2 +

(
psp

y + b
2

)2
− l1

D2 =
l32−(psp

x − a
2 )

2−
(√

h2+(psp
y + b

2 )
2−l1

)2
−l22

2l2

.

The kinematic inverse solution provided a theoretical basis for the subsequent pro-
gramming of the control system in the Matlab simulation by obtaining the variables of
each joint.

2.2. Energy Model

To analyze the energy consumption of the Cyber Dog, it was necessary to establish an
energy consumption model. For the energy consumption of the Cyber Dog in this paper,
only the mechanical power was considered, so the calculation of energy consumption
was obtained by integrating the mechanical power into the gait cycle, where power is
the product of joint moment and joint angular velocity. This is shown in Equation (7),
where T is the gait cycle, E is the energy consumption in one gait cycle, and P is the joint
power. In this paper, the dynamics of the robot are not considered; the joint moments and
joint angular velocities of the robot can be observed, and the data were obtained by the
oscilloscope module in Simulink.

E =
∫ T

0 Pdt

E =
∫ T

0

∣∣∣∣τi,j ·
·

θi,j

∣∣∣∣dt
(7)

In the second line of Equation (7), i is the i-th leg of the quadruped robot, j is the j-th

joint of the quadruped robot, τ is the quadruped robot’s joint moment, and
·
θ is the angular

velocity of the quadruped robot’s joints.

2.3. Foot Trajectory Analysis

A well-designed foot-end trajectory can reduce joint moments and angular accelera-
tion, reduce energy consumption, and increase the energy consumption rate. The composite
pendulums and linear foot trajectories, commonly used foot trajectories, and the end-of-foot
trajectory of a robot walking one step read by the Simulink oscilloscope module, as shown
in Figure 4, were compared with the trajectories obtained from subsequent simulations
of energy consumption. The gait parameters considered were S = 0.2 m, T = 0.8 s, and
H = 0.15 m, which represent the displacement of the robot’s X-axis walking in one gait
cycle, the gait period, and the maximum height of the robot’s foot lift in the Z-axis di-
rection, respectively. In this paper, the side swing motion of the leg mechanism of the
quadruped robot was not explored, so the motion of the foot end in the y-axis direction
was not considered.
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3. Methods

RL, the experimental method of this paper, is generally regarded as a process run
by a Markov decision process (MDP), which is composed of the element groups {S, A, P,
R, γ}. S = S1, S2 . . . St are the state sets, which are the sets of all states that the MDP can
have. As shown below, the state St at any moment is a specific state in the state set s, where
st = s, s ϵ S. A is the set of all behaviors that the actors can perform. Finally, P (st+1|st, at)
represents what a given agent performs at time step t, and γ ∈ (0, 1) is the discount factor.
Although P (st+1|st, at) is usually a complex, high-dimensional unknown task, samples
can be collected through simulation or in the real world, and R (st, at) is the reward value
obtained by st when the agent performs the action of at. A policy in RL is defined as the
mapping from the state space to the operation space. In the strategy search, the goal is to
find the optimal strategy π to maximize the long-term expected reward:

η(π) = Eρπ(s)π(a|s)[Q
π(s, a)] (8)

where

Qπ(st, at) = Est+1,at+1,...

[
Σ

T
Σ

t = 0
γtr(st, at)

]
(9)

where Qπ(s) is the state distribution under policy π, that is, the probability of accessing
state S under policy π, and Qπ (st, at) is the state action value function for calculating state
action pairs. From st+1 to P (st+1|st, at) and to π(at|st) and t are terminal time steps. The
reward function in reinforcement learning is as follows, which includes speed stability,
straight walking, trunk vibration deviation, keeping forward and energy consumption, to
encourage the robot to achieve the expected training results more quickly.

rt = Arv + Bry offset + CrFuselage stable + DrKeep moving + ErE (10)

where rv = (v0 − vx)
2 is the quadruped robot’s reward for training while maintaining

its speed, v0 is the real-time velocity of the robot’s motion, vx is the velocity that the robot
motion needs to reach, and A is the weighting factor for the velocity term. ryo f f set = y2 is
the deviation of the fuselage in the y direction, which is related to whether the fuselage can
walk in a straight line; B is the weighting factor of the y-axis offset term. rFuselagestable = ẑ2

represents the z-direction offset of the quadruped robot’s trunk during the movement,
and C is the weight factor of the fuselage z-direction offset term. rKeepmoving = TS

Tf
in

order to maintain the training time of the quadruped robot, Ts is the sampling time of
the environment, Tf is the simulation time of the environment, and D is the weighting

factor for the keep-moving incentive term. rE =
∫ 10

0 τi,j ·
·

θi,jdt is the energy consumption
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of the quadruped robot, where the environmental simulation time is 10 s, so the integral
range is 0–10; the coefficient E is the weighting factor for the energy consumption incentive
item. Each of the weighting coefficients A, B, C, D, and E needs to be obtained through
subsequent simulations.

Considering the challenges of concurrently optimizing the quadrupedal robot’s speed
of motion, straight-line walking, and energy consumption, which involve complex and
difficult training, extended time requirements, and the risk of converging to the local
optimal solution, this study divided the learning process into two stages. The first stage
employed the DDPG algorithm to train the quadrupedal robot to maintain a stable speed
and direction of motion. This was achieved by pruning the double-q learning, delaying
the update of the goal and policy networks, and implementing goal policy smoothing to
avoid overestimating the value function; the energy consumption term was not considered
at this time, so the energy consumption term weighting factor E = 0. The second phase
used the same DDPG algorithm to maintain stable motion on the basis of the linear motion
of the quadruped robot while minimizing energy consumption. One notable advantage
of this approach is that it provides faster simulation speeds, reduces experimental bias,
and ensures that the robot is simulated with minimal energy consumption under ideal
conditions. The reinforcement learning flowchart is shown in Figure 5; according to the joint
moments and joint angular velocities fed back by the robot, the intelligent body unfolded
its actions after intelligent decision-making and obtained feedback about the previous
moment’s behavior, i.e., reward, from the changing state, which guided the subsequent
behavioral decisions. Observations and actions for reinforcement of learning are shown in
Table 3.
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Figure 5. Simulink reinforcement learning flowchart. The black box is the module of the environment
state and reward function observed by the RL Agent, the red box is the module of the RL Agent,
and the blue box is the module of the environment, i.e., the quadruped robot system simulated in
this paper.

Table 3. Observation and action content for reinforcement of learning.

Observation (Major) Action

Hip joint angular velocity (RF) Hip joint torque (RF) Hip joint torque (RF)
Femoral joint angular velocity (RF) Femoral joint torque (RF) Femoral joint torque (RF)

Knee joint angular velocity (RF) Knee joint torque (RF) Knee joint torque (RF)
Hip joint angular velocity (RH) Hip joint torque (RH) Hip joint torque (RH)

Femoral joint angular velocity (RH) Femoral joint torque (RH) Femoral joint torque (RH)
Knee joint angular velocity (RH) Knee joint torque (RH) Knee joint torque (RH)
Hip joint angular velocity (LF) Hip joint torque (LF) Hip joint torque (LF)

Femoral joint angular velocity (LF) Femoral joint torque (LF) Femoral joint torque (LF)
Knee joint angular velocity (LF) Knee joint torque (LF) Knee joint torque (LF)
Hip joint angular velocity (LH) Hip joint torque (LH) Hip joint torque (LH)

Femoral joint angular velocity (LH) Femoral joint torque (LH) Femoral joint torque (LH)
Knee joint angular velocity (LH) Knee joint torque (LH) Knee joint torque (LH)
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The training was performed on a Matlab-based training platform with the Cyber Dog
quadruped robot model. The model parameters were consistent with the body and joint
sizes of a real quadruped robot. Two participant networks and two critic networks were
used for the training network. The participant and critic networks consisted of three fully
connected hidden layers with 128 neurons each and used the ReLU activation function.
Furthermore, the algorithm was implemented using 10 random seeds, and details of the
other training parameters are shown in Table 4.

Table 4. Training environment parameters.

Hyper Parameter Value

Value limit for torque commands 25
Actor learning rate 0.0004
Critic learning rate 0.002

Max steps 400
Score averaging window length 250

Stop training value 190
Save agent value 200

Joint control range −45~45◦

Max episodes 20,000

The results of continuous reinforcement learning were used to correct the reward
function parameters. This yielded weighting coefficients A, B, C, D, and E of −2, −20, −50,
25, and −0.2 for each reward term, respectively. Thus, the robot could keep walking in a
straight line, and the energy consumption reached the optimal state of the reward function
in Equation (11); the reward function curve is shown in Figure 6.

rt = −2rv − 20ry offset − 50rFuselage stable + 25rKeep moving − 0.2rE (11)

The training process in Figure 6 shows that the energy consumption of the quadruped
robot at this time is theoretically the optimal cycle that RL thinks can consume the least
energy and maintain the speed of stable walking.
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Figure 6. Reinforcement learning reward function curves: (a) reward function curve in the first stage;
(b) reward function curve in the second stage. The range of values of rt is (−∞,+∞).

A theoretical analysis of the energy-optimal motion state of a quadruped robot can
be performed using reinforcement learning. However, due to the autonomous nature of
the learning process, effective gait cycles cannot be established. The method used in this
paper was to extract the simulation data with the minimum energy consumption from
the cycle with the optimal reward function, add the transform sensor module in Simulink,
and connect it to an oscilloscope to observe the changes in the x and z coordinates of the
robot’s foot-end. The foot-end trajectory record with the smallest energy consumption was
extracted as the foot-end trajectory of the simulated trajectory, and the obtained trajectory
is shown in Figure 7.
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Figure 7. Simulation of foot-end trajectories.

The kinematic inverse Equations (3) and (6) were implemented within the Simulink
function module by Matlab. Then, the spatial position coordinates x, y, and z of the
three foot-end trajectories were imported into the simulation system for simulation. An
oscilloscope was connected to the joints to record the joint moments and angular velocities,
and the difference in energy consumption between the simulated foot-end trajectories and
the above trajectories at the same period and velocity can be calculated using Equation (7).
For the control of the position and pose of the robot, PID control was used, and the control
was built using Simulink in Matlab, as shown in Figure 8. The gait planning in the PID
control used a diagonal gait, as shown in Figure 9, where the left front leg, right front leg,
right hind leg, and left hind leg of the robot are divided and denoted by LF, RF, RH, and
LH; the white squares represent the lifting of the leg in the swing phase, and the black
squares represent the landing of the leg in the support phase, where T is the gait period,
which was set to 0.8 s in this experiment. The equation for the relationship between the
body velocity v and the step length S and the foot-end period Tm is as follows: v = S/Tm,
where Tm is the period of 0.2 s for one step of foot-end walking.
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4. Result and Discussion

In this section, simulation and prototype experiments are performed to compare the
energy of the simulated foot-end trajectories with two common plantar trajectories at the
same period and velocity, and the results of the experiments are discussed.

4.1. Simulation Experiment

The experimental setup had a gait period of 0.8 s, divided into a support phase and a
swing phase, each with a duration of 0.4 s. Figure 7 demonstrates the comparison of the
robot movement power consumption with different plantar trajectories at three different
speeds, 1 m/s, 1.2 m/s, and 1.4 m/s, within the same motion time. It can be seen that
the simulation trajectory did not have obvious peak fluctuations in one gait cycle, and the
change in the power was much more stable; the other two trajectories both had obvious
sudden changes in the power at the moments of the interaction between the swing phase
and the support phase, which exacerbated the energy consumption. Figure 10 shows that
the simulated foot trajectory was more competitive than other common foot tracks, along
with the power of the composite cycloid foot trajectory and the straight foot trajectory at
three different speeds. The energy consumption in different cases was obtained by the
calculation of Equation (7), and the energy reduction of this paper’s method over the other
two common foot ends at different speeds was calculated by Equation (12), as shown
in Table 5. It shows that the end-of-foot trajectories with velocities of 1 m/s, 1.2 m/s,
and 1.4 m/s reduced the energy consumption by 9% to 12% compared with the other two
trajectories. However, the ability to reduce energy consumption diminished with increasing
speed. This may be due to the need to further optimize the joint moments and joint angular
velocities for high-attitude motion states as the robot moves faster.

Dt =
Emin − ES

Emin
(12)

In Equation (12), Emin is the energy consumption value of the other two foot-end trajec-
tories with less energy consumption during the movement, Es is the energy consumption
value of the simulated foot-end trajectory during the movement, and Dt is the energy
consumption reduction.

Table 5. Energy consumption of three foot trajectories (kJ) at speed.

1 m/s 1.2 m/s 1.4 m/s

Simulation trajectory 1.6236 1.8152 2.8261
Composite pendulum line trajectory 1.8451 2.0489 3.1021

Straight path 2.3571 2.7571 3.2871
Decrement 12% 11% 9%
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Figure 10. Power consumption comparison of the three trajectories at a speed of (a) 1 m/s; (b) 1.2 m/s;
(c) 1.4 m/s, where 0~0.4 s is the first cycle and 0.4~0.8 s is the second cycle.

4.2. Prototype Experiment

In contrast to simulation environments, real-world environments have a multitude
of disturbances, such as joint friction and varying environmental conditions. Hence, it is
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important to validate the methodology presented in this paper by testing it on a physical
prototype. In order to evaluate the difference between the direct data obtained from the
simulation and the data obtained in the real environment, the data obtained from the
simulation was integrated into the Cyber Dog quadruped robot.

A 150-meter-long plane was chosen as the experimental area. The environmental
variables were identical to the simulated environment. As shown in Figure 11, cue cards
were placed every 10 m in the experimental area in order to measure the stability of
the robot’s movement speed. The simulation data were transferred through the Type-C
interface of the Cyber Dog. An energy consumption experiment was conducted during
100 m of robot travel using three different trajectories—a simulated trajectory, a compound
pendulum trajectory, and a straight-line trajectory—and comparing the energy consumption
of the robot on the basis of the level of power drop on the controller board.
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Figure 11. Experimental environment for real prototype movement.

The robot was placed in the experimental environment and tasked with walking 100 m
at a speed of 1 m/s. Comparison experiments on power consumption were conducted
using different foot trajectories, and the position variations of the robot’s left forelimb (LF)
foot were recorded during a gait cycle; the results are shown in Figure 12.

As evident from the experimental results in Figure 12, the power consumption in
the real experiment with a simulation trajectory at a speed of 1 m/s was only 9%, which
is significantly lower than the 18% power consumption with the composite pendulum
trajectory and the 25% power consumption of the linear trajectory. In comparison with the
higher power consumption of the composite pendulum trajectory, the simulated trajectory
reduced the energy consumption by 9%. It is worth noting that the simulation results of
the experiments conducted at a speed of 1 m/s showed that the energy consumption can
be reduced by 12% using the method of this paper, but the results of the real experiments
showed that the method of this paper can reduce the energy consumption by 9%, and the
comparison revealed that there was a 3% error amplitude between the simulation and the
real experiments, which may be attributed to the omission of factors such as the robot’s
thermal power and joint friction loss in the energy consumption calculations. Considering
that the value of the battery’s power display is not reliable, but there may be display errors,
the experiment was carried out after using a multimeter to measure the battery’s voltage
at the end of each charge to make it equal to 25 V to ensure that the robot consumed the
same amount of energy during the experiment. The Cyber Dog could walk 3600 m at 1 m/s
using a composite pendulum foot-end trajectory in a fully charged state. Using the foot-end
trajectory simulated in this paper to move at 1 m/s at full power, the Cyber Dog could
walk 3924 m, which is an increase of 324 m in walking distance, and significantly improved
the robot’s endurance in complex and changing environments.
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Figure 12. Screenshots of Cyber Dog walking with different plantar trajectories in a real environment
and the trajectory motion of the corresponding plantar trajectories in one cycle: (a1) Cyber Dog
screenshot of the robot simulation trajectory walking experiment; (b1) real prototype: simulation
trajectory diagram; (a2) Cyber Dog screenshot of the robot composite cycloid trajectory walking
experiment; (b2) real prototype: composite cycloid trajectory diagram; (a3) Cyber Dog screenshot of
the robot’s linear trajectory walking experiment; (b3) real prototype: straight line trajectory diagram.
In the figure, T is the robot movement time and Q is the robot power consumption.

Then, the walking speed of the robot was adjusted to 1.2 m/s and 1.4 m/s for 100 m
walking experiments. The magnitude of energy consumption was obtained by comparing
how much battery power was consumed by the operator panel for different foot trajectory
movements at different speeds, calculated with Equation (13). Subsequently, experiments
were conducted to compare the power consumption of the robot when moving with three
different foot-end trajectories at varying speeds. The results are shown in Figure 13.

PC = E f − En (13)
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where Ef is the initial power, En is the remaining power after movement, Pc is the power
consumption of the robot, and the initial power is 95%.
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The comparative analysis of energy consumption at three different speeds revealed
that the simulated trajectory consumed less energy than the other two trajectories. The
energy consumption of the Cyber Dog quadrupedal robot increased with the speed of
motion in a trend, consistent with the simulation results. Under the experimental conditions
in this paper, the simulated trajectory achieved energy savings of 7% to 9% compared with
the two common plantar trajectories, and the margin of error between the simulation and
the real experiment was 3%. These simulation results are consistent with the experimental
findings, thereby validating the effectiveness of the method proposed in this paper.

4.3. Discussion

Compared with the energy consumed by the two common plantar trajectories at
varying velocities, the proposed method consistently resulted in lower overall energy
consumption for the quadrupedal robot at the same velocity. This may be attributed to
the finer control of joint motors by the RL intelligent body, which enabled the output
of smaller joint moments and joint angular velocities while maintaining the velocity in
order to reduce the power of the various joints of the quadrupedal robot at each moment.
Further optimization of robot energy consumption using reinforcement learning can explore
aspects like friction energy consumption between joints, joint onset angle, and foot lifting
height. These factors can improve the energy efficiency of the legged robot and enhance
the endurance of the robot. The method in this paper allows for training in a simulated
environment, preventing the robot from accidental damage during training, and reducing
resource wastage, which is of vital significance for high-value robots.

It is worth noting that legged and footed robots require different motion postures
under different working conditions, which have been rarely studied by reinforcement
learning. Particularly, the study of energy consumption in the robot’s high-posture motion
is one of the key focal points for future research. Furthermore, robots with different
morphologies may have different consumption for energy. It is intriguing to explore the
application of reinforcement learning for optimizing the energy consumption of robots
with different morphologies.

5. Conclusions

The following conclusions can be made through the findings of this paper:

• This paper proposes a reinforcement learning method for quadrupedal robots based
on the DDPG algorithm aimed at minimizing energy consumption in gait patterns.

• Training was performed in two stages using the DDPG TD3 algorithm, which im-
proved the learning efficiency and accuracy of the results.
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• We compared the energy consumption obtained in simulations between this paper’s
method and common foot tracks: straight line trajectories and composite pendu-
lum trajectories.

• It was found that the plantar trajectories obtained by this paper’s methods outper-
formed the other two plantar trajectories at different walking speeds of the robot,
consuming 7% to 9% less energy in the same movement time.

• This paper focused on the optimization of energy consumption of quadrupedal robots
without considering the friction between the foot end and joints, the initial attitude of
the body, and the terrain conditions.

In the future, we will take these variables into account so that the results are more
closely matched to the real situation and the error is minimized. In addition, we intend to
extend this approach to study other types of robots, further improve the universality of
this approach, and form a kind of machine learning model adapted to most of the robots.
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