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Abstract: The efficient design optimization of electric machines for electric power steering (EPS)
applications poses challenges in meeting demanding performance criteria, including high power
density, efficiency, and low vibration. Traditional optimization approaches often fail to find a global
solution or suffer from excessive computation time. In response to the limitations of traditional
approaches, this paper introduces a novel methodology by incorporating a Gaussian process-based
adaptive sampling technique into a surrogate-assisted optimization process using a metaheuristic
algorithm. Validation on a 72-slot/8-pole interior permanent magnet (IPM) machine demonstrates
the superiority of the proposed approach, showcasing improved exploitation–exploration balance,
faster convergence, and enhanced repeatability compared to conventional optimization methods.
The proposed design process is then applied to two surface PM (SPM) machine configurations with
9-slot/6-pole and 12-slot/10-pole combinations for EPS applications. The results indicate that the
12-slot/10-pole SPM design surpasses the alternative design in torque density, efficiency, cogging
torque, torque ripple, and manufacturability.

Keywords: design optimization; electric machines; electric power steering systems; electric vehicles;
gaussian process; adaptive sampling

1. Introduction

In the era of electric mobility, the pursuit of efficient and high-performance electric
power steering (EPS) systems has become central to the evolution of vehicular dynamics.
The electric machine, at the heart of these systems, plays a pivotal role in converting
electrical energy into precise mechanical assistance. Electric machines for EPS systems are
required to meet demanding performance requirements, including high power density,
efficiency, low noise and vibration, and fault tolerance [1]. Additionally, compactness
and lightweight characteristics are essential for seamless integration into vehicles without
compromising space or adding excessive weight.

Addressing specific design goals, such as the reduction of torque ripple and cogging
torque, becomes crucial as the rotating movement is converted into the linear movement
of the steering rack [2,3]. These factors directly impact the vibration and overall driving
comfort of the vehicle. Ensuring fault tolerance is equally important to guarantee continued
system functionality after a failure [4]. As electric vehicles (EVs) become mainstream, opti-
mizing the performance characteristics of EPS machines has become critical. However, the
limitations of traditional machine design approaches are becoming apparent, necessitating
more powerful and efficient design methodologies.
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Rotating electrical machines, due to their complex geometry and nonlinear magnetic
saturation characteristics, are often designed using numerical methods like Finite Element
Analysis (FEA) rather than analytical approaches. While computer simulations such as
FEA aid in the design process, the optimization of electrical machines for varying per-
formance characteristics poses challenges. These challenges include multi-variable and
multi-objective optimization problems requiring exploration of the entire design space.
However, the computational expense associated with FEA makes full design space explo-
ration impractical, particularly as the number of design variables increases [5–9].

In response to the limitations of conventional optimization approaches, recent years
have seen active research in metaheuristic, algorithm-based machine design optimization.
Techniques utilizing genetic algorithms, particle swarm optimization, and similar methods
based on FEA have been explored. Although these metaheuristic algorithms offer optimal
solutions, they demand substantial computations, resulting in significant computation
time. To address this, recent studies have investigated surrogate-assisted metaheuristic
algorithms [10,11]. The approach exemplified in [11] proposes a systematic design optimiza-
tion process for internal permanent magnet synchronous machines (IPMSMs), utilizing
surrogate models (SMs), such as Kriging, artificial neural networks (ANNs), and support
vector regression (SVM). While these approaches significantly reduce computation time
without compromising accuracy, the selection of effective samples for SM construction and
evolutionary search algorithms has not yet been fully discussed.

The accuracy and efficiency of SM is closely related to the quality and quantity of
the dataset used for training [12–14]. For optimal design, the training dataset must be
representative of the entire input space to avoid bias and allow the surrogate model
to generalize well [15–17]. Despite the critical role of dataset selection, comprehensive
discussions on optimizing the data selection strategy for efficiency and fast convergence are
lacking in past literature on electric machine design. This paper addresses this imperative
challenge by introducing a cutting-edge approach: application of Gaussian process-based
algorithms for the optimal design of EPS machines.

The Gaussian process (GP), known for its ability to model complex and nonlinear
relationships, provides a promising avenue for systematically exploring the design space.
Its objective, in the context of electric machine design, is to identify design configurations
that maximize power density while enhancing overall performance. This paper provides a
systematic and detailed description of how the GP can be integrated into surrogate-assisted
optimization techniques using metaheuristic algorithms to develop an efficient design
optimization process. The major contributions of this paper are outlined as follows:

• Development of a design optimization process utilizing adaptive sampling that blends
exploitation and exploration to simultaneously improve model accuracy and conver-
gence speed.

• Validation of the developed optimization process through its application to a 72-slot/8-
pole IPMSM for traction applications.

• Comprehensive design and analysis of surface permanent magnet (SPM) machines to
address design challenges for EPS applications.

• Comparative analysis and design optimization of two promising PM machine topolo-
gies: SPM machines equipped with fractional-slot concentrated windings (FSCW)
with 9-slot/6-pole and 12-slot/10-pole.

• Experimental verification of the optimal design through the construction and testing
of a prototype machine.

The subsequent sections of this paper are organized as follows: Section 2 provides
an overview of the Gaussian process-based adaptive sampling algorithm proposed in this
paper and presents validation results on the performance of the proposed algorithm through
a case study. Details on the chosen baseline machine topologies for an EPS application and
their basic electromagnetic performance are presented in Section 3. Section 4 describes a
design optimization process utilizing the proposed adaptive sampling technique to find
the global optimal solution for an EPS motor. Section 4 also presents the results of the
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comparative study in which the proposed optimization process is applied to two promising
machine configurations. Finally, experimental verification results for the final optimized
design are presented in Section 5 by comparing the measured machine performance with
FE predictions.

2. Gaussian Process-Based Adaptive Sampling Algorithm

The Gaussian Process (GP), also known as the Kriging method, serves as an inter-
polation technique for predicting data in a high-dimensional space based on input and
output data. Widely applied in the design optimization of electrical machines, the GP
algorithm significantly reduces computational time by constructing surrogate models from
pre-computed simulation results, especially beneficial for extensive nonlinear numerical
calculations. Recent research has concentrated on building surrogate models that ensure
required accuracy with minimal computation, emphasizing the efficacy of surrogate-based
optimization (SBO) with adaptive sampling for efficient and accurate design exploration.

Adaptive sampling, a pivotal technique in optimization processes, iteratively refines
the surrogate model by strategically introducing new samples into crucial regions of
the design space. This refinement, guided by response surface information from the
existing surrogate model, facilitates the efficient construction of surrogate models, enabling
improved accuracy with reduced sample size and calculation time. Two primary techniques
for sample selection criteria, exploitation and exploration, play essential roles in optimizing
the efficiency of the process [18].

Exploitation involves generating the next sample by identifying the point predicted
as the best value of the function based on given information, employing techniques like
K-fold cross-validation [19,20] and leave-one-out cross validation (LOOCV) [21]. Figure 1a
shows an example of a case where additional sampling using an exploit (yellow dots)
is applied. The advantage of using this technique is that it allows for efficient design
space exploration to improve sample distribution and reduce the time spent searching
for the optimal point. [22]. However, caution is necessary to avoid overlooking the space
of interest.
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On the other hand, exploration generates subsequent samples to gather information
from the design space with large variance or empty space that may lead to better results.
Figure 1b shows an example of additional sampling using exploration. Techniques based
on the distance between samples [23,24], the variance of samples [25–27], and space-
filling [28] are widely used in exploration due to their advantages in reducing uncertainty
and improving the prediction accuracy of surrogate models. However, the computational
burden may increase if samples are created in unnecessary space.



Actuators 2024, 13, 13 4 of 20

The paper addresses the exploitation–exploration tradeoff, a significant challenge
in multi-variable, multi-objective optimization problems. Various adaptive sampling
algorithms have been proposed to solve this problem, including expected improvement
(EI), probability of improvement (PI), and upper confidence bound (UCB). Among them,
we chose the Gaussian process-based UCB (GP-UCB) sampling method, which employs
an efficient sampling approach with flexible parameter tuning capabilities to enhance the
accuracy of surrogate models and improve the optimization efficiency.

The GP-UCB-based adaptive sampling proposed in this paper generates the next
sample from data with the largest sum of mean and variance, as shown by the yellow
line in Figure 2. The GP-UCB function U(x) for an input variable x can be expressed as
follows [29]:

U(x) = µ(x) + κσ(x) (1)

where µ(x) is the mean value calculated by GP regression, σ(x) is the variance, and κ
is a hyperparameter to control the characteristics of the confidence bounds. The larger
the hyperparameter, the larger the upper bound, and the algorithm favors solutions that
explore currently unexplored regions of the design space. On the other hand, when κ is
small, the algorithm focuses more on finding high-performance solutions.
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When tackling problems involving one-dimensional design variables, the sampling
process is straightforward, involving the computation of responses across the entire design
space. However, in electric machine design, the abundance of design variables gives rise to
the “curse of dimensionality”, rendering exhaustive exploration of the entire design space
excessively computationally time-consuming. Additionally, electric motors designed for
e-mobility applications commonly involve multiple objective functions, including torque,
mass, cost, and efficiency. In the following sections, the application of the proposed GP-
UCB-based design optimization process to two case studies will be presented, effectively
delivering a comprehensive optimal solution to multi-objective, multi-variable problems.

2.1. Proposed Optimization Process

Figure 3 presents a comparative analysis between the conventional SM-based opti-
mization process and the proposed optimization process employing the GP-UCB-based
adaptive sampling technique. Both methods start with initial samples generated via a de-
sign of experiment (DOE) technique to construct an initial surrogate model, approximating
the performance response of the electric machine under consideration. In the traditional
approach depicted in Figure 3a, the prediction results of the SM model are iteratively
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compared with FE calculation results, and the calculated FEA results are incorporated into
the model training set to enhance accuracy until convergence criteria are met. In contrast,
as illustrated in Figure 3b, the proposed technique leverages GP-UCB and a metaheuristic
algorithm to identify the Pareto front for the given objective function. This information
is then utilized to generate the subsequent dataset for SM training. However, it is ac-
knowledged that GP-UCB predictions may encounter local minima due to approximation
errors. To avoid this challenge, the proposed optimization process integrates a space-filling
technique to generate additional samples from undiscovered regions. This has a similar
effect to mutation in a genetic algorithm.
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2.2. Case Study: 72-Slot/8-Pole IPM Traction Machine

This section presents the results of the case study conducted to validate the perfor-
mance of the proposed adaptive sampling algorithm. The chosen reference model is an
interior permanent magnet synchronous machine (IPMSM) originally designed in [30],
featuring 72 slots, 8 poles, and hairpin windings on the stator. The choice of this reference
model was based on the recognition that the proposed optimization process may not per-
form well when faced with very complex datasets. IPMSMs are known to be challenging
to model, with significant nonlinearities due to deep magnetic saturation. Figure 4 shows
a cross-section of the baseline IPMSM with key design parameters, and Table 1 provides
information on the key parameters of the reference motor.

The two objective functions for this case study are the torque density of the machine
and the total active material cost, which are expressed as follows:

minimize:
1. −(Tpk/mtotal) [Nm/kg]
2. Active material cost [$]

where Tpk is the peak torque and mtotal is the total mass of active materials. The assumed
material costs are $2.36/kg for the iron core, $118/kg for magnets, and $9.44/kg for copper.

Table 1. Main parameters of the 72-slot/8-pole IPMSM motor.

Parameter Value

Slot/Pole 72/8
Peak current density 25 Arms/mm2

Maximum current 400 Arms
Airgap length 0.75 mm

Rotor outer diameter 150 mm
Stator outer diameter mm

Stack length 90 mm
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To assess the efficacy of the proposed algorithm, critical performance metrics are
examined, including exploitation–exploration balance, convergence speed, sensitivity to
initial sampling, and repeatability. The SM is established using the GP-based algorithm
detailed in [11], with NSGA-II employed for metaheuristic optimization. NSGA-II pa-
rameters include a crossover probability of 0.9 and a mutation probability of 0.05. The
hyperpameter for GP-UCB is set to 1, and root-mean-square-error (RMSE) serves as a
key metric, comparing SM and FEA results and acting as a convergence criterion. The
mathematical expression of RMSE can be written as:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)× 100% (2)

where yi is the ith data calculated using FEA, and ŷi is the predicted value by SM.
Convergence occurs when the RMSE value is less than 0.5% of the average of the

results of all accumulated FEA calculations. This can be expressed as follows:

RMSE ≤ 1
n

n

∑
i=1

yi × 0.5% (3)

The adaptive sampling technique aims to optimize a balance between exploitation
and exploration, promoting comprehensive exploration while exploiting regions likely
to contain optimal solutions. Figure 5 compares exploitation–exploration balance among
three sampling techniques: Latin hypercube sampling (LHS), NSGA-II, and the proposed
GP-UCB-based adaptive sampling. Figure 5d demonstrates superior performance of the
GP-UCB-based method, enhancing the Pareto front and concentrating sample distribution
near it, with the same number of the initial 200 samples. Alternatively, if fewer samples are
used in the GP-UCB-based method, similar performance can still be achieved compared to
the other two techniques.

Furthermore, the proposed GP-UCB-based method exhibits accelerated convergence,
as shown in Figure 6. During the first iteration with 50 samples, RMSE values for the
GP-UCB-based method (0.57%) outperform those for the other methods (1.42% and 2.25%).
In fact, the RMSE value of the GP-UCB method almost satisfies the predefined convergence
condition in (2) in one iteration. This improved convergence speed is attributed to the
adaptive sampling technique prioritizing regions with high uncertainty or sensitivity,
refining the surrogate model more rapidly. Consequently, the GP-UCB-based adaptive
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sampling demonstrates robustness across multiple optimization runs by reducing the
sensitivity to the quality of the initial sample generated by random sampling techniques
such as LHS.
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The performance of the optimization process can vary depending on the initial sample
distribution [31]. Figure 7 illustrates the distribution and initial Pareto front of samples
generated from five independent runs of LHS. Performing optimizations for each dataset
generated by the random sampling technique can lead to repeatability issues. The proposed
GP-UCB-based optimization method helps to mitigate this repeatability problem by striking
an exploration–development balance to rapidly improve model accuracy and convergence
speed. Figure 8 shows that the GP-UCB-based adaptive sampling proved to be robust, with
nearly identical Pareto front results across the five optimization runs.
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In summary, the proposed GP-UCB-based adaptive sampling technique outperforms
traditional methods, offering enhanced exploration of the design space, improved
exploitation–exploration balance, faster convergence, reduced sensitivity to initial samples,
and improved repeatability that is evident in nearly identical Pareto fronts across multiple
optimization runs.

3. EPS Motor Design

Permanent magnet synchronous machines (PMSMs) with fractional-slot concentrated
windings (FSCWs) have gained significant attention over the past two decades, driven
by their advantages in power density, efficiency, and fault tolerance [32–34]. This section
explores two distinct FSCW-PMSM design families characterized by slot-per-pole-per-phase
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ratios of 1/2 and 2/5 for EPS applications. The 1/2 family is favored for its low harmonic
contents in stator MMFs, resulting in minimal rotor losses. However, it exhibits a relatively
low fundamental winding factor of 0.866. Conversely, the 2/5 family, with a fundamental
winding factor (kw1) of 0.933 and a least common multiple (LCM) value of 60, offers high
torque density and low cogging torque. In particular, the 2/5 family further increases the
winding factor to 0.966 when applying single-layer windings, and provides fault tolerance
capability due to zero mutual coupling between phases. For balanced torque performance
and machine losses, the 2/5 family with a double-layer winding configuration is selected
for comparison. The two baseline designs with surface-mounted magnets (SPMs) on a
rotor, featuring 9-slot/6-pole and 12-slot/10-pole combinations, are illustrated in Figure 9,
with key parameters summarized in Table 2.
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Table 2. Key machine parameters for the two baseline designs.

Parameter Design 1 Design 2

Slot/Pole 9/6 12/10
DC bus voltage 48 V
Rated current 7.57 Arms

Stator diameter 86 mm 85 mm
Rotor diameter 44 mm 47 mm

Stack length 37 mm 36 mm
Series turns 105 100

# of parallel circuit 3 2
Rotor skew Yes No

Current density 6.54 Arms/mm2 6.36 Arms/mm2

The stator design variables to be optimized consist of slot width ratio bs, slot opening
ratio bo, and tooth-tip thickness htt, as shown in Figure 10a. Among these, the slot width
ratio and slot height were determined, considering a given number of winding turns
and current density level. The current density level was set to around 6.5 Arms/mm2

at rated conditions, assuming the motor is air-cooled. The rotor design variables shown
in Figure 10a, such as magnet arc eccentricity radius rec, magnet thickness hpm, and
magnet width ratio τpm, were also optimized for optimal machine performance. The
protruding rotor caps between the magnets prevent magnet displacement during rotor
rotation. The cap structure can be categorized as rectangular or round, as shown in
Figure 10b. The rotor magnets were designed in a breadloaf shape to produce near-
sinusoidal back-emf waveforms to reduce cogging torque and torque ripple. The key
operating points considered for optimization are shown in Table 3.
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Table 3. Key operating points considered for optimization.

Operating Point Torque [Nm] Speed [r/min] Power [W]

Point 1 1.9 790 157
Point 2 1.1 1750 202

As discussed extensively in previous literature, mitigating cogging torque and torque
ripple in EPS motors is essential to prevent degradation of driving performance and
ride quality. In this section, we conduct a comprehensive comparison of fundamental
electromagnetic performance metrics, including back-emf voltage, cogging torque, and
torque ripple, for the 9-slot/6-pole machine (Design 1) illustrated in Figure 9a. Figure 11
compares the back-emf waveforms and FFT spectrum for Design 1 with and without rotor
skewing and rotor caps. Rotor skewing is observed to diminish the amplitude of back-emf
voltage while concurrently reducing harmonic components, as shown in Figure 11b. While
this reduction has a negative impact on the average torque, it is more desirable to minimize
back-emf harmonics, which are a major source of torque ripple in EPS motor applications.
Figure 12a further compares torque waveforms of Design 1 with and without rotor skewing
and rotor cap structure under the rated load condition. Consistent with the cogging torque
results in Figure 12b, rotor skewing demonstrates a reduction in both average torque and
torque ripple.
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Figure 11. Back-emf voltage waveforms of 9-slot/6-pole design at 1000 r/min. (a) Back-emf wave-
forms comparison with and without rotor skewing, (b) FFT spectrum.
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Figure 12. Cogging torque comparison of 9-slot/6-pole design with and without skewing and
rotor cap at 790 r/min. (a) Instantaneous torque waveforms at rated load, (b) cogging torque
waveforms comparison.

Figure 12 compares the cogging torque waveform with the torque waveform under
the rated load condition at 790 r/min. The results in Figure 12b show that rotor skewing
significantly reduces the cogging torque amplitude by a factor of 5, regardless of the
presence of the rotor cap. The rotor cap, which acts as a magnet stopper, contributes
to increasing the cogging torque amplitude. To balance structural and electromagnetic
considerations, the height of the rotor cap is optimized to 0.5 mm. To optimize the efficacy
of rotor skewing, we chose a skew step number of 3 and a 40/3◦ skew angle to minimize
the fundamental component of the cogging torque.

4. Design Optimization

This section provides a detailed analysis of the results of applying the multi-objective,
multi-variable design optimization process with GP-UCB-based adaptive sampling de-
scribed in Section 2 to find the global optimal solution for the EPS motor.

The optimization process can be expressed as follows:
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minimize:
1. −(Tpk/mtotal) [Nm/kg]
2. Ploss [W]
3. Tcog [Nm]

subject to: 1. Active material cost ≤ $20
2. Tripple ≤ 4%

where Ploss is the sum of the machine losses calculated at Point 1 and 2 (see Table 3), Tcog
is the cogging torque, and Tripple is the torque ripple. The definition of torque ripple is
as follows:

Torque Ripple (%) =
Tmax − Tmin

Tavg
∗ 100% (4)

where Tmax is the maximum value of the instantaneous torque waveform, Tmin is the
minimum value, and Tavg is the average value. Table 4 shows the range of the input design
variables for optimization (see Figure 10a).

Table 4. Design variables used in the optimal design and their ranges.

Design Parameter Symbol
Range

Min Max

Magnet arc eccentricity radius rec 22.5 mm 15.5 mm
Magnet width ratio τpm 0.85 0.6
Magnet thickness hpm 4 mm 3 mm
Slot opening ratio bo 0.55 0.35
Slot width ratio bs 0.55 0.35

Tooth-tip thickness htt 2.4 mm 1.2 mm

Figure 13 shows the proposed optimization process, divided into three steps: (1) Initial
setup to define objective functions and constraints, followed by parent sample generation
and evaluation through FEA; (2) Construction of the SM employing FE-calculated data until
convergence criteria are met; and (3) Surrogate-based optimization utilizing the NSGA-II
algorithm. The flowchart in Figure 13 is developed by incorporating the proposed GP-
UCB-based adaptive sampling shown in Figure 3b into the surrogate-assisted optimization
process introduced in [11]. As shown in the figure, the proposed adaptive sampling is
applied to both step 2 and step 3, leveraging the advantages of being applied to each phase.

Figure 14 shows a side-by-side comparison of the initial geometry and optimized
design for the 9-slot/6-pole model, showing the changes in tooth width, magnet geometry,
and slot openings. Table 5 compares the machine performance before and after optimiza-
tion, showing improvements across all aspects except torque ripple. Despite the inverse
relationship between torque density and losses, the optimized design exhibits a 13% in-
crease in torque density with a slight decrease in losses, and an 11% reduction in cogging
torque, from ±7.4 mNm to ±6.6 mNm. Although torque ripple increased from 2.17% to
2.94%, it is still within the targeted 3% constraint. To successfully suppress cogging torque
and torque ripple, the step skew technique mentioned earlier was applied to Design 1.

Table 5. Performance comparison of the 9-slot/6-pole design before and after optimization.

Torque Density
[Nm/kg]

Cogging Torque
[mNm]

Torque Ripple
[%]

Losses
[W]

Cost
[$]

Before opt. 1.31 7.41 2.17 64.94 20.83
After opt. 1.48 6.62 2.94 63.94 19.20

Difference [%] +12.98 −10.66 +35.48 −1.54 −8.83
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Figure 15 shows a comparison of the initial and optimized geometry for the 12/10 model.
The optimized design shows a slight change in tooth width, a wider arc angle, and reduced
magnet height. Table 6 shows the difference in performance before and after the optimiza-
tion, showing an overall improvement in performance. Losses increased slightly from
54.5 W to 55.7 W, but torque density increased by 5.2%, and cogging torque plummeted
from ±40.1 mNm to ±6.3 mNm without rotor skew, a reduction of 84%. Importantly,
for the same operating conditions outlined in Table 3, the 12/10 model had 15% lower
losses than the 9/6 model, and achieved similar levels of cogging torque and torque ripple
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without applying step skew to the rotor. Torque ripple increased from 2.1% to 2.7%, staying
within the targeted 3% constraint. Table 7 provides the change in design parameters before
and after optimization for Design 1 and Design 2, respectively.
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Table 6. Performance comparison of the 12-slot/10-pole design before and after optimization.

Torque Density
[Nm/kg]

Cogging Torque
[mNm]

Torque Ripple
[%]

Losses
[W]

Cost
[$]

Before opt. 1.71 40.12 2.08 54.58 17.48
After opt. 1.80 6.33 2.69 55.66 16.75

Difference [%] +5.23 −84.19 +29.44 +1.98 −4.21

Table 7. Parameter variations before and after optimization.

Design Parameter Symbol
Design 1 Design 2

Before After Before After

Magnet arc eccentricity radius [mm] rec 16 16 16.5 21.4
Magnet width ratio [-] τpm 0.85 0.85 0.85 0.85

Magnet thickness [mm] hpm 4.00 4.13 4.00 3.53
Slot opening ratio [-] bo 0.35 0.41 0.40 0.41
Slot width ratio [-] bs 0.40 0.48 0.40 0.40

Tooth-tip thickness [mm] htt 1.70 1.41 0.90 0.67

The NSGA-II algorithm uses a population of 50 and 40 evolutionary generations, with
a crossover probability of 0.9 and a mutation probability of 0.05. Figure 16 shows the 3D pro-
jections of the Pareto non-dominated designs and the Pareto front for Design 1 and Design
2, illustrating optimal solution sets among conflicting objective functions. Conventional
solution-finding methods based on weighting factors are susceptible to biases, elevating the
likelihood of obtaining locally optimal solutions. Hence, in modern optimization practices,
machine designers often make selections based on technical requirements, strategically
navigating tradeoffs among various objective functions. Indeed, considering the nature
of muti-objective optimization, achieving a single global solution optimizing all three
objective functions simultaneously is unattainable. Our approach involves prioritizing
the reduction of cogging torque while balancing other objectives and constraints, aligning
with the characteristics of EPS applications. It is worth noting that the displayed samples
represent a subset of the total tested, considering the scale of the plot axes.

Table 8 provides the design optimization results for Design 1 and Design 2. In par-
ticular, the 12/0 model (Design 2) shows excellent performance characteristics across
torque density, efficiency, cost, and manufacturability. Both models exhibit excellent cog-
ging torque characteristics and maintain torque ripple within the targeted 3%, which is
consistent with the desirable characteristics for EPS applications.
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Table 8. Performance comparison between the two baseline designs.

Torque Density
[Nm/kg]

Cogging Torque
[mNm]

Torque Ripple
[%]

Losses
[W]

Cost
[$] Rotor Skew

Design 1
(9-slot/6-pole) 1.48 6.62 2.94 63.94 19.20 O

Design 2 (12-
slot/10-pole) 1.80 (+22%) 6.33 (−4%) 2.69 (−9%) 55.66 (−13%) 16.75 (−13%) X

Figure 17 presents instantaneous torque waveforms for Design 1 and Design 2 under
no load (i.e., cogging torque) and at rated load. The implementation of rotor step skew
effectively controls torque ripple to under 3% at the rated condition for Design 1, with
cogging torque amplitude sufficiently suppressed to approximately 6 mNm. Design 2, even
without rotor step skew, displays comparable torque ripple and cogging torque, suggesting
easier and more cost-effective manufacturing.

Finally, efficiency performance is compared between Design 1 and Design 2. Figure 18
illustrates the efficiency maps for the two baseline designs under the conditions outlined in
Table 2. Design 2 has a 7.7% higher fundamental winding factor than Design 1, resulting in
noticeably lower losses for the same torque. Looking at the operating points (see Table 3)
overlaid on the efficiency maps in Figure 18a,b, we can see that Design 2 has a relatively
higher operating efficiency.



Actuators 2024, 13, 13 16 of 20

Actuators 2024, 13, x FOR PEER REVIEW 16 of 20 
 

 

(see Table 3) overlaid on the efficiency maps in Figure 18a,b, we can see that Design 2 has 
a relatively higher operating efficiency. 

  
(a) (b) 

  
(c) (d) 

Figure 17. Torque waveforms of Design 1 and Design 2. (a) Cogging torque waveform for Design 
1, (b) cogging torque waveform for Design 2, (c) torque ripple waveform for Design 1, (d) torque 
ripple waveform for Design 2. 

  
(a) (b) 

Figure 18. Comparison of efficiency maps. (a) Design 1, (b) Design 2. 

5. Prototype Machine and Experimental Results 
To experimentally validate the performance of Design 2, a prototype machine was 

built and tested. Figure 19 shows a 200 W (rated) 12-slot/10-pole prototype FSCW-SPM 
machine specifically designed for EPS application. The rotor in this prototype FSCW-SPM 
machine features N42SH sintered NdFeB magnets, which have excellent thermal re-
sistance up to 120 °C. 

Figure 20a shows the back-to-back dynamometer setup used for testing. The proto-
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Figure 17. Torque waveforms of Design 1 and Design 2. (a) Cogging torque waveform for Design 1,
(b) cogging torque waveform for Design 2, (c) torque ripple waveform for Design 1, (d) torque ripple
waveform for Design 2.

Actuators 2024, 13, x FOR PEER REVIEW 16 of 20 
 

 

(see Table 3) overlaid on the efficiency maps in Figure 18a,b, we can see that Design 2 has 
a relatively higher operating efficiency. 

  
(a) (b) 

  
(c) (d) 

Figure 17. Torque waveforms of Design 1 and Design 2. (a) Cogging torque waveform for Design 
1, (b) cogging torque waveform for Design 2, (c) torque ripple waveform for Design 1, (d) torque 
ripple waveform for Design 2. 

  
(a) (b) 

Figure 18. Comparison of efficiency maps. (a) Design 1, (b) Design 2. 

5. Prototype Machine and Experimental Results 
To experimentally validate the performance of Design 2, a prototype machine was 

built and tested. Figure 19 shows a 200 W (rated) 12-slot/10-pole prototype FSCW-SPM 
machine specifically designed for EPS application. The rotor in this prototype FSCW-SPM 
machine features N42SH sintered NdFeB magnets, which have excellent thermal re-
sistance up to 120 °C. 

Figure 20a shows the back-to-back dynamometer setup used for testing. The proto-
type machine was mounted on the dynamometer and an industrial SPM machine with a 
maximum torque of 4.8 Nm, and a maximum speed of 5000 rpm was used as a prime 
mover to perform back-emf voltage testing at no-load. This dynamometer setup is con-
trolled by a custom dual-inverter motor drive, as shown in Figure 20b. 

To
rq

ue
 [N

m
]

To
rq

ue
 [N

m
]

To
rq

ue
 [N

m
]

To
rq

ue
 [N

m
]

Figure 18. Comparison of efficiency maps. (a) Design 1, (b) Design 2.

5. Prototype Machine and Experimental Results

To experimentally validate the performance of Design 2, a prototype machine was
built and tested. Figure 19 shows a 200 W (rated) 12-slot/10-pole prototype FSCW-SPM
machine specifically designed for EPS application. The rotor in this prototype FSCW-SPM
machine features N42SH sintered NdFeB magnets, which have excellent thermal resistance
up to 120 ◦C.
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Figure 19. Prototype EPS motor: (a) Machine drawing, (b) stator core and windings; (c) rotor core 
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Table 9 summarizes the experimental reverse electromotive force voltage measure-
ment results. Figure 21 provides a comparison between the measured back-emf voltage 
waveform and the FE-predicted back-emf waveform. As evident in the figure, the meas-
ured waveform closely matches the FE predicted waveform, indicating excellent agree-
ment. Figure 22 shows a comparison of the FFT spectra of the FE-predicted waveform and 
measured back-emf waveform. The resulting calculated THD values are 1.94% for the sim-
ulated result and 1.38% for the experimental result, indicating that both waveforms are 
very close to the ideal sinusoidal waveform. 

Table 9. A comparison of measured and FE-predicted phase back-emf voltages at 1000 RPM. 

Test Type Phase-a Phase-b Phase-c Average 
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Figure 19. Prototype EPS motor: (a) Machine drawing, (b) stator core and windings; (c) rotor core
and magnets with the bearing and front cover attached.

Figure 20a shows the back-to-back dynamometer setup used for testing. The proto-
type machine was mounted on the dynamometer and an industrial SPM machine with a
maximum torque of 4.8 Nm, and a maximum speed of 5000 rpm was used as a prime mover
to perform back-emf voltage testing at no-load. This dynamometer setup is controlled by a
custom dual-inverter motor drive, as shown in Figure 20b.
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Figure 20. Experimental dynamometer setup. (a) Dynamometer jig, (b) inverter hardware.

Table 9 summarizes the experimental reverse electromotive force voltage measurement
results. Figure 21 provides a comparison between the measured back-emf voltage waveform
and the FE-predicted back-emf waveform. As evident in the figure, the measured waveform
closely matches the FE predicted waveform, indicating excellent agreement. Figure 22
shows a comparison of the FFT spectra of the FE-predicted waveform and measured back-
emf waveform. The resulting calculated THD values are 1.94% for the simulated result
and 1.38% for the experimental result, indicating that both waveforms are very close to the
ideal sinusoidal waveform.

Table 9. A comparison of measured and FE-predicted phase back-emf voltages at 1000 RPM.

Test Type Phase-a Phase-b Phase-c Average

Experiment 11.24 Vrms 11.24 Vrms 11.21 Vrms 11.23 Vrms
FEA 11.20 Vrms 11.20 Vrms 11.20 Vrms 11.20 Vrms
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Figure 21. Back-emf waveforms of the prototype FSCW-SPM machine. (a) Measured back-emf
voltage waveforms, (b) measured vs. FE-predicted back-emf waveforms.
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6. Conclusions

This paper presented a novel design optimization process utilizing GP-UCB-based
adaptive sampling for electric machine design. Through two case studies involving an
IPMSM for EV applications and an FSCW-SPMSM for EPS applications, the proposed ap-
proach demonstrated superior performance compared to conventional optimization meth-
ods lacking adaptive sampling. Specifically, the adaptive sampling technique significantly
improved key optimization performance measures, including exploitation–exploration
balance, convergence speed, sensitivity to initial sampling, and repeatability.

Subsequently, GP-UCB-based adaptive sampling was employed in the optimization
process to identify the optimal design for EPS applications with demanding performance
requirements. The results highlighted that an FSCW-SPM design featuring a 12-slot/10-pole
configuration exhibited exceptional torque density, high efficiency, low cost, and enhanced
manufacturability—aligning well with the desired performance characteristics for EPS
applications. The optimization results were further validated through a dynamometer
test, revealing an error of only 0.3% between the amplitude of measured and simulated
back-emf voltages, indicating excellent agreement.

Finally, it was shown that the proposed approach is applicable to various stator and
rotor configurations with minimal modifications. Categorized as a black-box approach, the
proposed method exhibits certain limitations compared to a model-based approach. These
include a lack of physical insights, limited control over the algorithm’s decision-making
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process, and the need for intensive computational resources. It is up to the judgment of
the machine designer to strike a balance between different approaches to improve the
efficiency and physical significance of the design process. Planned future work includes
further experimental validation under different loading conditions and evaluation of a
broader range of optimization algorithms and sampling techniques for different types of
electric machines.
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