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Abstract: With the increase in the elderly population in China and the growing number of individuals
who are unable to walk normally, research on lower limb exoskeletons is becoming increasingly
important. This study proposes a complete dynamic model parameter identification scheme for the
human–machine coupling model of lower limb exoskeletons. Firstly, based on the coupling model,
the excitation trajectory is optimized, data collection experiments are conducted, and the dynamic
parameter vector of the system is identified using the least squares method. Secondly, this lays the
foundation for designing adaptive control based on RBF neural network approximation. Thirdly, the
Lyapunov function is used to prove that the RBF neural network adaptive controller can achieve
stable tracking of the lower limb exoskeleton. Finally, simulation analysis reveals that increasing
the gains of the RBF controllers effectively reduces tracking errors. Furthermore, the tracking errors
and control torques show that adaptive control based on the RBF neural network approximation
works well.

Keywords: lower limb exoskeleton; parameter identification; the least squares method; RBF neural
network adaptive controller

1. Introduction

According to some references, by 2030, 18.2% of Chinese people will be over 65 years
old [1]. Additionally, the number of people with physical disabilities will reach 24.12 million,
accounting for 29.07% of the total number of disabled individuals, among which there
are approximately 1.58 million people with lower limb paralysis [2]. Currently, China
is becoming an aging society, and with the growth of the elderly population and the
occurrence of various accidents, the number of people who have difficulty in walking is
increasing year by year. However, due to various reasons, only a small portion of the
population can receive timely and effective rehabilitation treatment [3]. This can cause
significant potential harm to the lives of the patients and their families [4]. At this point, the
emergence of lower limb exoskeletons brings significant help to patients and their families.
Lower limb exoskeletons can assist patients in effective rehabilitation training, improve
their lower limb motor function, and alleviate the burden on the patients’ caregivers.
The emergence of lower limb exoskeletons brings new hope to patients and improves
their quality of life [5]. Generally speaking, lower limb exoskeletons have two different
objectives: assisting patients in rehabilitation training, and assisting in human working
activities [6]. Robotic technologies that assist physical health and provide support for the
elderly are rapidly developing. In the past three decades, lower limb exoskeleton robotics
and assistive technologies have been a focus of attention in the industry [7]. As a typical
application of human–machine interaction devices, the perception and control of lower
limb exoskeleton robots will significantly affect the actual wearing effects of users in lower
limb assistance or augmentation [8]. Therefore, in order to achieve the swinging control of
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the lower limb exoskeleton, it is essential to design an appropriate swing controller during
the development stage [9].

Currently, an increasing number of researchers aim to enhance the development and
improvement of lower limb exoskeletons through control, thereby improving their per-
formance [10]. With the rise of model-based control techniques, knowledge of the precise
dynamic mathematical model of lower limb exoskeletons is required. However, in practical
systems, various uncertainties exist that have a significant impact on the model-based
controllers, thereby severely affecting their performance. Therefore, designing a reason-
able control algorithm to address the uncertainties in lower limb exoskeleton systems has
become a research hotspot [11]. Currently, optimization control strategies for lower limb
exoskeletons need to meet the criteria of safety, stability, effective rehabilitation, assistance,
and efficient control simultaneously [12]. Furthermore, for lower limb exoskeletons, con-
trollers need to demonstrate good tracking performance and stability while minimizing
tracking errors [13]. Therefore, appropriate control algorithms are required to ensure the
stability and robustness of lower limb exoskeletons during motion [14]. Currently, the
main control strategies for lower limb exoskeletons include position tracking control, force
impedance control, biological signal control, and more. Among them, position tracking
control serves as the foundation for other control methods [15]. Additionally, the control
modes of exoskeletons primarily involve active control and passive control. In active
control, the exoskeleton provides necessary assistance and closely follows human motion.
In passive control, the human body acts as the load for the exoskeleton, and the exoskeleton
is entirely driven by external forces. The key aspect of passive control lies in studying the
dynamic model of the exoskeleton [16]. From this perspective, the development of control
systems is one of the most critical parts of exoskeleton systems. RBF neural networks are
chosen due to their excellent generalization ability, simple structure, and the ability to
approximate any nonlinear function with arbitrary precision. They can be used to estimate
the unknown parts of the hyper-local model [17]. Reference [18] considers the exoskeleton
as a nonlinear motion system and applies RBF neural networks for real-time identification
of the system. The current hip and ankle joint angles of the exoskeleton, along with the
previous knee joint angle, are defined as the network inputs at the current time. A general
error function is defined, which includes tracking errors of the exoskeleton and interaction
torques between the pilot and the exoskeleton to ensure convergence. Subsequently, a
mathematical model of the human–machine system is established. It can be seen that the
RBF neural network controller performs well in controlling the lower limb exoskeleton
robot through simulation experiments.

Furthermore, through extensive literature review, it is evident that determining the
inertial parameters of the robot is necessary to develop advanced control algorithms.
The design of nonlinear robot controllers typically relies on the robot model, and their
performance directly depends on accurate inertial parameters. Due to the complexity of
certain robot structures and the nonlinear nature of loads, determining dynamic parameters
can be challenging, and parameter identification is the only effective method to obtain
precise inertial parameters [19]. As model-based control is crucial, the identification of
inertial parameters has gained extensive attention from researchers [20]. Identifying the
inertial parameters first requires establishing a mathematical model and linearizing it
to obtain a coefficient matrix for parameter identification [21]. In the offline dynamic
identification stage the coefficient matrix is utilized, and the parameters are calculated
using the least squares method [22].

It can be seen that the control of lower limb exoskeletons is crucial in their research.
Model-based control methods have been used to achieve a desirable control performance.
This study focuses on lower limb exoskeleton robots. Considering the individual differences
among people, this work firstly determines the inertial parameters of the human–machine
coupling model through experiments to establish a foundation for control simulations,
rather than using average anatomical values as the model’s inertial parameters. In the
control simulation stage, assuming the exoskeleton operates in passive control mode, an
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adaptive controller based on RBF neural network approximation is designed to track the
desired trajectory. Simulations are conducted using MATLAB to indicate the control effects
of the RBF neural network controller.

2. Materials and Methods
2.1. Coupled Dynamics Model of 2-DOF Lower Extremity Exoskeleton and Human Body

In this paper, a Lagrange modelling approach is utilized to research the dynamics of
a lower limb exoskeleton robot and the human body. The Lagrange method firstly finds
the total kinetic energy Ek and the potential energy Ep of the model, and then puts Ek and
Ep into the Lagrange function to get La = Ek − Ep. Then, the Lagrange function equation
can be derived from its partial derivation to find out the magnitude of the actuating torque
needed to rotate the corresponding joints in the model.

Figure 1 shows the schematic diagram of a 2-DOF lower extremity exoskeleton coupled
with the human body. The corresponding symbols for the physical parameters in the figure
are shown in Table 1. We treat the human body and lower limb exoskeleton as a whole in
this section.

Actuators 2023, 12, x FOR PEER REVIEW 4 of 14 
 

 

( ) ( , ) ( ) ficM C G            (7) 

In Equation (7), ( )M  , ( , )C    and ( )G   represent the Inertia matrix, Coriolis ma-

trix and Gravity matrix, 2

fic   represent the dual joint friction torque, 2   repre-

sent the dual joint control torque. 
Convert the dynamic model into a linear form: 

( ) ( , ) ( ) ( , , )ficM C G A X              (8) 

L2

L1

c2

 θ1 

 θ2 

y

x

m1

m2

c1

 

Figure 1. Model of Lower Extremity Exoskeleton and Human Body. 

Table 1. Symbolic representation of physical parameters for the coupled model. 

Meaning of Parameters Notation 

Hip joint angle/Knee joint angle 1 / 2  

Thigh length/Shank length L1/L2 

Thigh mass/Shank mass m1/m2 

Thigh center of mass/Shank center of mass c1/c2 

Thigh moment of inertia/Shank moment of inertia I1/I2 

In Equation (8), 8X   represents the parameter vector to be identified, 
2 8( , , )A      represents the regression matrix composed of the angle, angular velocity, 

and angular acceleration of the hip and knee joints. The specific forms of the parameter 
vector to be identified and the regression matrix are provided in Appendix A. 

Assuming that there are N sets of sampling points in the experiment, the sampling 

regression matrix 2 8NA   and the sampling torque vector 2 1N   can be repre-

sented as: 

(1) (1)

(2) (2)

( ) ( )

,

N N

A

A
A

A








   
   
    
   
   
      

  (9) 

The parameter vector to be identified can be obtained using the least square method: 

1ˆ ( )T TX A A A    (10) 

Due to the presence of signification noise in the sampled data, designing a suitable 
excitation trajectory can help suppress the noise and thereby improve the accuracy of the 

parameter vector to be identified. 
The excitation trajectory can be represented using a second-order Fourier series: 

Figure 1. Model of Lower Extremity Exoskeleton and Human Body.

Table 1. Symbolic representation of physical parameters for the coupled model.

Meaning of Parameters Notation

Hip joint angle/Knee joint angle θ1/θ2
Thigh length/Shank length L1/L2
Thigh mass/Shank mass m1/m2
Thigh center of mass/Shank center of mass c1/c2
Thigh moment of inertia/Shank moment of inertia I1/I2

According to the kinetic energy formula, the translational kinetic energy and the
rotational kinetic energy of the center of mass, respectively, make up the kinetic energy of
the thigh Ek1 and the shank Ek2 :

Ek1 =
1
2

m1c2
1

.
θ

2
1 +

1
2

I1
.
θ

2
1 (1)

Ek2 = 1
2 m2(l2

1

.
θ

2
1 + c2

2

.
θ

2
1 + c2

2

.
θ

2
2 + 2L1c2

.
θ

2
1 cos θ2

+2L1c2
.
θ1

.
θ2 cos θ2 + 2c2

2

.
θ1

.
θ2) +

1
2 I2(

.
θ1 +

.
θ2)

2 (2)

From the potential energy equation, the potential energy of the thigh Ep1 and the
shank Ep2 can be obtained:

Ep1 = −c1m1g cos θ1 (3)
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Ep2 = −m2g[L1 cos θ1 + c2 cos(θ1 + θ2)] (4)

where gravitational acceleration g = 9.8 m/s2.
Then the Lagrange function La can be written as:

La

(
θ1, θ2,

.
θ1,

.
θ2

)
= Ek1 + Ek2 − Ep1 − Ep2 (5)

Lagrange dynamic method is used to solve the system’s equations, and the Lagrange
equation is:

T =
∂

∂t
∂La

∂
.
θ
− ∂La

∂θ
(6)

where θ = [θ1, θ2]
T ∈ R2 represents the dual angle vector representing the coupled model,

T represents the joint generalized vector.
According to the above derivation, the dynamic model of the coupled human lower

extremity exoskeleton can be represented as:

M(θ)
..
θ + C(θ,

.
θ)

.
θ + G(θ) + τf ic = τ (7)

In Equation (7), M(θ), C(θ,
.
θ) and G(θ) represent the Inertia matrix, Coriolis matrix

and Gravity matrix, τf ic ∈ R2 represent the dual joint friction torque, τ ∈ R2 represent the
dual joint control torque.

Convert the dynamic model into a linear form:

M(θ)
..
θ + C(θ,

.
θ)

.
θ + G(θ) + τf ic = A(θ,

.
θ,

..
θ)X = τ (8)

In Equation (8), X ∈ R8 represents the parameter vector to be identified, A(θ,
.
θ,

..
θ) ∈ R2×8

represents the regression matrix composed of the angle, angular velocity, and angular acceler-
ation of the hip and knee joints. The specific forms of the parameter vector to be identified
and the regression matrix are provided in Appendix A.

Assuming that there are N sets of sampling points in the experiment, the sampling
regression matrix A ∈ R2N×8 and the sampling torque vector τ ∈ R2N×1 can be represented
as:

A =


A(1)

A(2)

...
A(N)

, τ =


τ(1)

τ(2)

...
τ(N)

 (9)

The parameter vector to be identified can be obtained using the least square method:

X̂ = (AT A)
−1

AT
τ (10)

Due to the presence of signification noise in the sampled data, designing a suitable
excitation trajectory can help suppress the noise and thereby improve the accuracy of the
parameter vector to be identified.

The excitation trajectory can be represented using a second-order Fourier series:

θd = θ0 +
n
∑

k=0
(ai,k sin(kωt) + bi,k cos(kωt))

.
θd =

n
∑

k=0
(ai,kkω cos(kωt)− bi,kkω sin(kωt))

..
θd =

n
∑

k=0

(
−ai,k(kω)2 sin(kωt)− bi,k(kω)2 cos(kωt)

) (11)
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In Equation (11), i = 1, 2, k = 1, · · · , n, t ∈ [0, T] and T represents the duration of the
data collection experiment for design, ω represents the set base frequency, k represents
the set sampling parameter, θi,0 represents the initial bias angle of the exoskeleton hip and
knee joints, and ai,k and bi,k represent the parameters to be optimized. Considering the
joint angle limitation range during human movement [23] as well as our hardware device
restriction, the constraint intervals for the excitation trajectory are shown in Table 2.

Table 2. The constraint intervals for the excitation trajectory.

Constraint Terms Constraint Intervals

Hip joint angle/ Knee joint angle (rad) [0.0872, 1.2217]/[−1.6232, −0.2269]
Hip/Knee angular velocities (rad/s) [−1.6449, 1.6449]

Hip/Knee angular accelerations (rad/s2) [−5.1677, 5.1677]

In MATLAB, the Equation (11) is sampled to obtain a sampled regression matrix. By
using the particle swarm algorithm to optimize the obtained matrix, the parameters ai,k
and bi,k to be optimized can be obtained. The condition number of the sampling regression
matrix is selected as the fitness function (Cond(A)) for the optimization process. Meanwhile,
the set excitation trajectory should follow the constraint conditions shown in Table 2. Based
on the final set, the excitation trajectory is as follows:

Fit(A) =


Cond(A) if


0.0872 <θ1< 1.2217

1.6232 <θ2 < −0.2269
1.6449 <

.
θ,

..
θ < 1.6449

In f Otherwise

(12)

2.2. Adaptive Control of Exoskeleton Based on RBF Neural Network Approximation

The most classic control algorithms for exoskeletons include PID control, neural
network control, fuzzy control, iterative learning control, and robot inversion control [24].
The PD controller is the most widely used control algorithm, especially in a nonlinear
control system. The PD controller’s leading characteristics can be utilized to enhance the
dynamic performance and robustness of the control system [25]. RBF neural networks,
due to their good performance and simple structure, can avoid unnecessary and complex
calculations that are commonly used in a nonlinear system [26]. Compared to the PD
controller, the RBF neural network can eliminate the error caused by disturbance and
accelerate convergence speed [27].

In practical application engineering, there may be unknown external disturbance
acting on the torque τd applied to the exoskeleton [28]. When an unknown external
disturbance is added to system, the mathematical expression for the model of the limb
exoskeleton is:

M
..
θ + C

.
θ + G = τ − τd − τf ric (13)

The M, C, G matrices represent the inertia matrix, Coriolis acceleration, and gravity
matric of the identified exoskeleton and human body system.

The input of the system θd(t) is the desired angle vector for the exoskeleton’s hip and
knee joints, and the output θ(t) is the actual tracked angle vector for the exoskeleton’s hip
and knee joints. Therefore, the error of the system is given by:

e(t) = θd(t)− θ(t) (14)

In order to achieve a better control performance, it is necessary to compensate for the
unknown disturbances. Because the RBF neural network has a good error compensate ca-
pability, it is used to compensate for the unknown external disturbances in the exoskeleton.
The error function is defined as:

q =
.
e + Λe (15)
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In Equation (15) Λ = ΛT > 0, which represents the magnification. By combining
Equations (14) and (15), we obtain:

.
θ = −q +

.
θd + Λe (16)

Taking the derivative of Equation (16) with regards to time and left-multiplying by
the matrix M, we obtain:

M
.
q = M(

..
θd −

..
θ + Λ

.
e) = M(

..
θd + Λ

.
e)−M

..
θ (17)

Substituting Equations (13) to (17) into the previous equation, we obtain:

M
.
q = −Cq− τ + f + τd (18)

The expression for f in Equation (18) is:

f = M(
..
θd + Λe) + C(θd + Λe) + G + τf ric (19)

The unknown f represents the model uncertainty in practical engineering applications,
and it needs to be approximated. Equation (19) indicates that this uncertainty is a nonlinear
function, which can be approximated using an RBF neural network. The chosen RBF neural
network is a three-layer feedforward network with a single hidden layer, which is more
straightforward and computationally straightforward than higher level neural networks,
while still satisfying our model’s control requirements. The transformation from the input
layer to the hidden layer is nonlinear. The input signals of the network are denoted as
x = [eT .

eT qT
d

.
qT

d
..
qT

d ]. The transformation function in the hidden layer is the radial
basis function, represented as hj, j = 1, 2, . . ., m. The radial basis function is used in the
Gaussian kernel function, and its expression is:

hj(x) = exp[−
‖x− cj‖2

b2
j

] (20)

In Equation (20), cj represents the center of the j-th radial basis function, and bj
represents the width of the j-th radial basis function.

The transformation from the hidden layer to the output layer in the RBF neural
network is a linear transformation. The output expression is as follows:

f̂ = ŴT H(x) (21)

Let
W̃ = W − Ŵ (22)

In Equation (22), ‖W‖F ≤Wmax and ŴT represent the weight matrix of the RBF neural
network, while H(x) represents the output matrix of the radial basis functions.

Since the role of the neural network is to compensate for the model uncertainty, the
control law of the designed RBF neural network controller is as follows:

τ = ŴT H(x) = Kvq− v (23)

In Equation (23), Kv represents the amplification coefficient of the error, while v
represents the robust term used to overcome approximation errors in the neural network.

2.3. Adaptive Analysis of Neural Network Stablility and Converagence

By substituting the control law (23) into Equation (18) and simplifying, we obtain:

M
.
q = −(Kv + C)q + ξ1 (24)
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where ξ1 = W̃T H(x) + (ε + τd) + v.
Designing the robust term v as follows:

v = −(εN + τd)sgn(q) (25)

In Equation (25), εN and bd represent the upper bounds of ‖ε‖ and τd.
The expression for the Lyapunov function is defined as:

L =
1
2

qT Mq +
1
2

tr(W̃T F−1W̃) (26)

In Equation (26), F is a positive definite matrix, and taking the derivative of Equation (26),
we obtain:

.
L = qT M

.
q +

1
2

qT
.

Mq + tr(W̃T F−1
.

W̃) (27)

By substituting Equation (22) into the previous equation, we obtain:

.
L = −qTKvq +

1
2

qT(
.

M− 2C)q + trW̃T(F−1
.

W̃ + HqT) + qT(ε + τd + v) (28)

Taking into account the characteristics of the exoskeleton, we choose the adaptive law
of the neural network as: .

W̃ = FHqT (29)

Therefore: .
L = −qTKvq + qT(ε + τd + v) (30)

Due to:

qT(ε + τd + v) = qT(ε + τd) + qTv = qT(ε + τd)− ‖q‖(εN + τd) ≤ 0 (31)

Based on the above analysis, we can conclude that:
.
L ≤ 0. When

.
L ≡ 0, q ≡ 0,

according to LaSalle’s invariance principle, the closed-loop system is asymptotically stable,
when t→ ∞ , q→ 0 and the tracking error e corresponds to zero.

3. Results
3.1. Identification of Human–Machine Coupling Parameters

The Particle Swarm Optimization (PSO) algorithm is used to optimize the excitation
trajectory, with the chosen parameters of ω = 0.2π, n =2 and θ0 = [0.611,−0.925]T . To
sample Equation (11) in MATLAB, the sampling regression matrix A is obtained. The
condition number of the sampling regression matrix is calculated. By utilizing the PSO
algorithm, the parameters ai,k and bi,k can be optimized to obtain the desired results.
The optimization results based on the PSO are as follows: a1,1 = 0.0229, b1,1 = −0.0006,
a1,2 = −24.0422, b1,2 = 17.9290, a2,1 = 13.0688, b2,1 = 22.6565, a2,2 = −3.0457,
b2,2 = −15.1847, and the fitness at this moment is 11.6060.

In the data sampling experiment, a model-free PD controller and the UEXO-I Lower
Limb Exoskeleton Prototype is used. The optimized excitation trajectory is input into the
computer to enable the exoskeleton to swing according to the optimized trajectory. In
the first step of the experiment, the exoskeleton swings alone under the control of the
PD controller, without any participation of experimental personnel. This step aims to
separate the friction parameters. As seen in Figure 2, two servo motor actuators (GDM1-
100N2/120N2) and two motor drivers (Elmo-G-SOLHOR15/100EE) drove the exoskeleton’s
thigh and shank. Two absolute encoders (INC-4-150 and INC-3-125) were used to measure
the rotational angles of the robot’s hip and knee, and four 3D force sensors (JNSH-2-10kg-
BSQ-12) were used to detect the coupling forces.



Actuators 2023, 12, 353 8 of 14

Actuators 2023, 12, x FOR PEER REVIEW 8 of 14 
 

 

3. Results 

3.1. Identification of Human–Machine Coupling Parameters 

The Particle Swarm Optimization (PSO) algorithm is used to optimize the excitation 

trajectory, with the chosen parameters of 0.2  , n=2  and 0 [0.611, 0.925]T   . To 

sample Equation (11) in MATLAB, the sampling regression matrix A  is obtained. The 
condition number of the sampling regression matrix is calculated. By utilizing the PSO 

algorithm, the parameters i,ka  and i,kb  can be optimized to obtain the desired results. 

The optimization results based on the PSO are as follows: 1,1 0.0229a  , 1,1 0.0006b   ,

1,2 24.0422a   , 1,2 17.9290b  , 2,1 13.0688a  , 2,1 22.6565b  , 2,2 3.0457a  , 

2,2 15.1847b  , and the fitness at this moment is 11.6060. 

In the data sampling experiment, a model-free PD controller and the UEXO-I Lower 

Limb Exoskeleton Prototype is used. The optimized excitation trajectory is input into the 
computer to enable the exoskeleton to swing according to the optimized trajectory. In the 

first step of the experiment, the exoskeleton swings alone under the control of the PD 
controller, without any participation of experimental personnel. This step aims to separate 
the friction parameters. As seen in Figure 2, two servo motor actuators (GDM1-

100N2/120N2) and two motor drivers (Elmo-G-SOLHOR15/100EE) drove the exoskele-
ton’s thigh and shank. Two absolute encoders (INC-4-150 and INC-3-125) were used to 

measure the rotational angles of the robot’s hip and knee, and four 3D force sensors 
(JNSH-2-10kg-BSQ-12) were used to detect the coupling forces. 

Absolute

 encoder

Force 

sensor

Servo

motor

 

Figure 2. The exoskeleton used for experiment. 

In the second step, the experimental subject, an 88 kg/1.73 m healthy adult, is driven 
by the exoskeleton without actively exerting force. The subject was standing during the 
trial, enabling the entire leg to swing and the knee to be in a natural posture. This step is 

used to determine the inertia parameters of the human body and exoskeleton. Ethical 
statements: The subject gave informed consent for inclusion before their participation in 

the study. The study was conducted in accordance with the Declaration of Helsinki, and 
protocol was approved by the Ethics Committee of the University of Electronic Science 
and Technology of China (106142023021725090). The parameters obtained from the hu-

man–machine identification experiment are shown in Table 3. 

Table 3. Identification parameters of human body and exoskeleton system. 

Parameter Value Parameter Value 

X1 10.3016 Hip joint’s coefficient of static friction (Ks1) 2.6596 

X2 3.0157 Hip joint’s coefficient of viscous friction (Km1) 4.14895 

Figure 2. The exoskeleton used for experiment.

In the second step, the experimental subject, an 88 kg/1.73 m healthy adult, is driven
by the exoskeleton without actively exerting force. The subject was standing during the
trial, enabling the entire leg to swing and the knee to be in a natural posture. This step
is used to determine the inertia parameters of the human body and exoskeleton. Ethical
statements: The subject gave informed consent for inclusion before their participation in
the study. The study was conducted in accordance with the Declaration of Helsinki, and
protocol was approved by the Ethics Committee of the University of Electronic Science and
Technology of China (106142023021725090). The parameters obtained from the human–
machine identification experiment are shown in Table 3.

Table 3. Identification parameters of human body and exoskeleton system.

Parameter Value Parameter Value

X1 10.3016 Hip joint’s coefficient of static friction (Ks1) 2.6596
X2 3.0157 Hip joint’s coefficient of viscous friction (Km1) 4.14895
X3 2.2664 Knee joint’s coefficient of static friction (Ks2) 4.7197
X4 5.5354 Knee joint’s coefficient of viscous friction (Km2) 7.3602

The root mean square error between the actual sampled torque of the hip joint and the
estimated torque obtained by substituting the identified parameters into Equation (2) is
6.9395. Similarly, the root mean square for the knee joint is 10.2776.

3.2. Simulation Experiment of RBF Control

The simulation of RBF control was conducted using Simulink. The required parameters
for the neural network were obtained from reference [28]. The desired trajectory settings
were obtained from reference [29]. Furthermore, considering that commercially available
motors generally provide a maximum torque of exceeding 200 (N·m), the maximum torque
output of the controller was set to 200 (N·m).

In the control of the RBF neural network, the parameter Kv amplifies the error function,
and the selection of an appropriate Kv directly affects the control effect. The influence of Kv
on the maximum absolute error of the system after stabilization is shown in Figure 3.
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In Figure 3, it can be observed that increasing Kv initially leads to a rapid decrease
in the maximum absolute error of the hip and knee joints. It can be observed that the
error decreases rapidly when Kv is between 100 and 200. However, once Kv increases to
300, the rate of error reduction becomes very slow. Increasing Kv further from 300 to 500
does not result in an error reduction of less than 0.01 (rad). However, once Kv exceeds
300, the error reduction becomes very slow. Additionally, in the simulation experiment it
was discovered that when Kv is too large the system’s noise is amplified, resulting in poor
system performance. When selecting Kv, it is important to ensure that the system’s error
does not decrease sharply with increasing Kv and that the system is not affected by noise.
Therefore, Kv = 300 was chosen.

Suitable gains were selected for RBF control and simulation verification was con-
cluded in MATLAB. The comparison between the desired trajectory and the actual tracking
trajectory of the system under the RBF neural network control is shown in Figure 4.

In Figure 4, it can be observed that the RBF neural network control can track the
desired trajectory of the system. From the graph, it is evident that the RBF control can
quickly track the desired trajectory in less than 1 s at the initial stage. The errors between
the actual trajectory and the desired trajectory under the RBF neural network control are
shown in Figure 5.

In Figure 5, it can be observed that the control performance of the hip joint is superior to
that of the knee joint. In the control of the hip joint, the RBF neural network control shows al-
most no error after reaching a steady state, with the error approaching zero. This is because
in the RBF neural network control, the network adaptive law is updated at each sampling
instance, enabling dynamic adjustment of the system and effectively compensating for
uncertainties in the exoskeleton model. The unknown uncertainties—including noise—that
can be approximated by the RBF network come from the actual environment [28]. Therefore,
the RBF neural network control demonstrates superior performance in tracking the desired
trajectory.
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The torque required for tracking the desired trajectory in the RBF neural network
control is shown in Figure 6. At the beginning stage, in order to track the desired trajectory
quickly, the controller requires a large amount of torque. From the graph, it can be observed
that the maximum torque in the RBF control reaches the set upper limit of 200 (N·m). If no
limiting control is applied at this point, the excessively large pulses may pose certain risks
to the human body and the exoskeleton.
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4. Discussion and Conclusions

This study focuses on the exoskeleton human–machine system. To enhance the control
effectiveness of the model-based control, an identification experiment is used to obtain the
inertial parameters of the human–machine system. Based on this, a simulation is made
on the control effects of the RBF adaptive control. In the identification stage, firstly, the
exoskeleton human–machine mathematical model is linearized and the excitation trajectory
is optimized to use the particle swarm optimization algorithm. Secondly, experimental
data is collected to obtained the identification parameters required for the mathematical
model. Then, the inertial parameters of the human–machine model are obtained through
the least square method, which helps determine the parameters for subsequent simulation
experiments. Subsequently, MATLAB is used to simulate and compare the exoskeleton
human–machine model. The relationship between the maximum error after stabilization
and the control parameters are analyzed to select to the control gain parameters for RBF
neural network control, optimizing the control for the control method. The simulation is
conducted using MATLAB’s S-function, and the comparative graphs of the desired and
actual trajectories of the exoskeleton’s hip and knee joints, error comparison, and torque
comparison are obtained. Based on the dynamic compensation ability of RBF in handing
system uncertainties, where control is based on the system error and its derivative, compre-
hensive analysis of the simulation results indicates that RBF provides desirable trajectory
tracking control for the exoskeleton when an appropriate parameter is selected. The error
decreases when increasing the RBF parameter Kv within a specified range. However, this
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reducing impact becomes smaller as the parameter values rise. From the results, we can
judge that RBF achieve controlling consequences with fast convergence as well as small
errors. In addition, the control performance of the hip joint is superior to that of the knee
joint.

Substantial progress has been made in the research of lower limb exoskeleton robot
control over the past few decades. However, whether the control strategies of lower limb
exoskeletons can more effectively stimulate the functional recovery of patients remains an
unresolved question. Future research should focus on structured and standardized studies
aimed at identifying the relationship between control strategies and a set of core clinical
outcome measures, taking into account the impact of participants’ initial impairment level
and training intensity [30]. In this study, we assumed that the patient does not exert
any force and is completely driven by the exoskeleton, without considering the patient’s
intentions. In future research, we will take the patient’s intentions into account and conduct
in-depth investigations into the influencing factors. We plan to carry out further research
on active control in the future.
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Appendix A

The expression for M(θ), C
(

θ,
.
θ
)

, G(θ) and τf ic in the dynamic model for human–
machine coupling are as follows:

M =

[
M11 M12
M21 M22

]
, C =

[
C11 C12
C21 C22

]
, G =

[
G1
G2

]
,

M =

[
X1 + 2X3L1 cos(θ2) X2 + X3L1 cos(θ2)
X2 + X3L1 cos(θ2) X2

]
C =

[
−2X3L1

.
θ2 sin(θ2) −X3L1

.
θ2 sin(θ2)

X3L1
.
θ1 sin(θ2) 0

]
G =

[
X3g sin(θ1 + θ2) + X4g sin(θ2)
X3g sin(θ1 + θ2)

]
τf ic =

[
KS1sgn(

.
θ1) + Km1

.
θ1

KS2sgn(
.
θ2) + Km2

.
θ2

]
X1 = m1c2

1 + I1 + m2L2
1 + m1c2

2 + I2
X2 = m2c2

2 + I2
X3 = m2c2
X4 = m1c1 + m2L1

In the above equation, subscript 1 represents the parameters of the thigh and subscript
2 represents the parameters of the shank. By measuring the length of the exoskeleton’s
thigh, L1 = 0.38952. In this context, g represents the gravitational constant.
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For the linear form of the dynamic model, the specific expression of the regression
matrix A can be represented as:

A =

[
A11 A12 A13 A14 A15 A16 A17 A18
A21 A21 A22 A23 A24 A25 A26 A27

]
A11 =

..
θ1

A12 =
..
θ2

A13 = L1(2
..
θ1 cos(θ2) +

..
θ2 cos(θ2)− 2

.
θ1

.
θ2 sin(θ2)−

.
θ

2
2 sin(θ2))

+ g sin(θ1 + θ2)
A14 = g sin θ1

A15 = sgn(
.
θ1)

A16 =
.
θ1

A17 = A18 = A21 = A24 = A25 = A26 = 0
A22 =

..
θ1 +

..
θ2

A23 = L1(
..
θ1 cos(θ2) +

.
θ

2
1 sin(θ2)) + g sin(θ1 + θ2)

A27 = sgn(
.
θ2)

A28 =
.
θ2

Similarly, the specific form of the parameter vector to be identified can be expressed
as:

X =
[
X1 X2 X3 X4 KS1 Km1 KS2 Km2

]T
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