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Abstract: This paper proposes an incremental nonlinear control method for an aeroelastic system’s
gust load alleviation and active flutter suppression. These two control objectives can be achieved
without modifying the control architecture or the control parameters. The proposed method has
guaranteed stability in the Lyapunov sense and also has robustness against external disturbances
and model mismatches. The effectiveness of this control method is validated by wind tunnel tests of
an active aeroelastic parametric wing apparatus, which is a typical wing section containing heave,
pitch, flap, and spoiler degrees of freedom. Wind tunnel experiment results show that the proposed
nonlinear incremental control can reduce the maximum gust loads by up to 46.7% and the root mean
square of gust loads by up to 72.9%, while expanding the flutter margin by up to 15.9%.

Keywords: aeroservoelasticity; wind tunnel experiment; gust load alleviation; flutter suppression;
nonlinear incremental control

1. Introduction

Modern transport aircraft commonly feature high-aspect-ratio wings to increase aero-
dynamic efficiency. A disadvantage of increasing the wing aspect ratio is the increased
susceptibility to gust and manoeuvre loads in addition to the onset of aeroelastic phenom-
ena such as flutter and divergence. In the literature, there are typically two approaches to
alleviate gust loads and suppress flutter: passive aeroelastic tailoring and active control [1].
The passive approach has a long history and is achieved by exploiting the anisotropic prop-
erties of composite material to steer dynamic and static aeroelastic behaviour. By contrast,
the active approach designs feedforward and/or feedback controllers to actuate the leading-
edge and/or trailing-edge control surfaces for load redistribution and closed-loop dynamic
modification. This paper focuses on the active approach because typically, it has a better
adaptability to variations in flight and load conditions than its passive counterpart [1].

The majority of active gust load alleviation (GLA) and flutter suppression control
algorithms are designed based on a reduced-order, linear, time-invariant state-space
aero(servo)elastic model. These algorithms include proportional–integral–derivative con-
trol [2], pole placement [3], linear quadratic regulator/Gaussian [4], eigensystem synthesis,
µ analysis [5], and linear robust control (H2 and H∞ [6]). Although these linear control
approaches have shown their effectiveness in practice, the resulting controllers only have a
guaranteed stability and performance around the linearization point; thus, the additional
and tedious gain-scheduling method [7] is required to expand these linear controllers to
a wider flight envelope. Furthermore, it is challenging for linear controllers to passively
tolerate some specific nonlinearities (i.e., free-play, backlash hysteresis [8], bifurcation [9]),
sudden faults in actuators and/or sensors, and structure damage.

On the contrary, nonlinear control methods, especially those that have guaranteed
stability in the Lyapunov sense, have shown great potential in solving nonlinear aeroser-
voelastic system control problems without requiring the gain-scheduling technique. An im-
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mersion and invariance controller was proposed in [10] for nonlinear flutter suppression
and free-play compensation. Platanitis et al. [11] used the nonlinear dynamic inversion
approach together with the model reference adaptive control technique for the limit cycle
oscillation suppression of a typical aeroelastic wing section. Recurrent neural networks
have been used for nonlinear model identification and active flutter suppression in [12].
However, these nonlinear control approaches have a relatively high model dependency,
while offline and/or online model identification of a nonlinear aeroservoelastic system is
a nontrivial task. When sudden faults occur during flight, the convergence rate of online
model identification can be insufficient to guarantee stability.

Different from model-based nonlinear control methods in the literature, the incremen-
tal nonlinear dynamic inversion (INDI) control is a sensor-based approach [13]. It is derived
from nonlinear dynamic inversion (NDI) or feedback linearization, which linearizes the
input–output mapping of a nonlinear system via feedback, resulting in a chain of integra-
tors that can be easily stabilized by a linear virtual control [13]. The INDI method inherits
the merits of NDI. More importantly, it greatly reduces the model dependency of NDI via
exploiting sensor measurement [13]. In conventional NDI, since a perfect model is never
known and external disturbances always exist in reality, the ideal linearization never exists,
leading to robustness issues. By contrast, INDI makes full use of sensing information and
simultaneously reduces the model dependency and improves control robustness. In the
literature, INDI has been applied to a free-flying flexible aircraft tracking problem [14] and
a morphing-wing gust load alleviation problem [15]. However, the effectiveness of INDI
on flutter suppression, especially in a real-world environment, remains to be proven.

In this paper, we propose to use the sensor-based incremental nonlinear dynamic
inversion control to tackle the active gust load alleviation and flutter suppression problems
of an aeroservoelastic system. The goal is to use one single controller to simultaneously
achieve these two objectives without requiring a gain adjustment, control architecture
variations, or gain scheduling. The reduced model-dependency of INDI also reduces its
practical implementation effort. The performance, robustness, and implementation ease
of the proposed control method are validated by wind tunnel experiments on our newly
developed active, aeroelastic, parametric wing apparatus.

The rest of this paper is structured as follows. The main methods are detailed in
Section 2. Section 3 explains the experimental setup. The results are presented and dis-
cussed in Section 4, followed by the conclusion in Section 5. Finally, an outlook on future
research is given in Section 6.

2. Methods
2.1. Dynamic Model for a Typical Aeroelastic Wing Section

The equations of motion for a typical aeroelastic wing section can be written as [16]m S Sβ

S Iθ Iθβ

Sβ Iθβ Iβ

ḧ
θ̈
β̈

+

Kh 0 0
0 Kθ 0
0 0 Kβ

h
θ
β

 =

−Lh
Mθ

Mβ

 (1)

where h is the vertical displacement or plunge of the airfoil; θ is the pitch angle of the wing
section; β is the deflection angle of the control surface; m is the mass per unit length of the
wing section; S is the static mass moment of the wing around the pitch axis; Iθ is its mass
moment of inertial around the same axis; the static mass moment of the control surface
around the hinge axis is denoted by Sβ; Iβ is the moment of inertia of the control surface
around the hinge axis; Iθβ is the product of inertia; Kh, Kθ , Kβ denote the extension spring’s
stiffness, the torsional spring’s stiffness related to θ, and the torsional spring’s stiffness
related to β, respectively; Lh is the lift; Mθ is the pitching moment of the wing section
around the pitch axis; and Mβ is the pitching moment of the control surface around the
hinge axis. We assume structural damping is negligible, which is a common assumption in
the field. An illustration of a typical aeroelastic wing section is show in Figure 1.
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Figure 1. An illustration of a typical aeroelastic wing section.

Theodorsen’s unsteady aerodynamic theory was adopted [16]. We indicate the half-
chord length as b. Using the exponential approximation of Wagner’s function Φ(t) =

1− φ1e−ε1
Ut
b − φ2e−ε2

Ut
b with φ1 = 0.165, φ2 = 0.335, ε1 = 0.0455, and ε2 = 0.3 [16], we

obtain the complete equations of motion for a pitch–plunge airfoil with control surface as

(A + ρB)ÿ + (C + ρUD)ẏ + (E + ρU2F)y + ρU3Ww =
[
−Lh Mθ Mβ

]T
external

ẇ = W1y + UW2w
(2)

where y = [h, θ, β]T and w = [w1, w2, . . . , w6]
T represents the aerodynamic lag states,

ρ is the density of the flow, U is the speed of the flow. The detailed expressions of the
matrices can be derived from Equation (1) and can also be found in [16]. The external lift
Lh and moments Mθ , Mβ in Equation (2) are gusts- and control-surface-deflection-induced
components of the total lift and moments in Equation (1).

The loads due to a gust are represented as [Lg
h, Mg

θ , Mg
β]
T, in which the lift is a purely

circulatory event. The gust velocity ug is implemented in circulatory lift calculations
with the Küssner function. The Küssner function is approximated with exponential form

Ψ(t) = 1− ψ1e−εk1
Ut
b − ψ2e−εk2

Ut
b with ψ1 = 0.5, ψ2 = 0.5, εk1 = 0.13, and εk2 = 1. Denote

the gust input velocity as ug; denote wg1 and wg2 as the aerodynamic lag states due to gust;
then, we have

wg1 =
∫ t

0
e−εk1

(t−τ)U
b ug(τ)dτ, wg2 =

∫ t

0
e−εk2

(t−τ)U
b ug(τ)dτ (3)

After applying the Leibnitz integration rule and using the Küssner function, the com-
plete expressions for the aerodynamic loads due to a gust are defined as:

ẇg =

[
ẇg1
ẇg2

]
=

[
−Uεk1

b 0

0 −Uεk2
b

][
wg1
wg2

]
+

[
1
1

]
ug , Wg1ug + UWg2wg

yg =

−Lg
h

Mg
θ

Mθ
β

 = 2πρU2

 −φ1εk1 −φ2εk2
−(a + 0.5)bφ1εk1 −(a + 0.5)bφ2εk2

bT12
2π φ1εk1

bT12
2π φ2εk2

wg , Cgwg

(4)

where the parameter a and T12 are defined as in [16].
Assume that the inertial coupling force/moment for the control surface with regard to

the rest of the wing section are negligible; then, the independent servo actuator dynamics
is governed by

β̈ = −2ζsωs β̇−ω2
s β + ω2

s βc (5)
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where βc is the control command for the aileron, and the coefficients ζs, ωs are obtained
using the system identification of the servo.

Then, the dynamics for state ȳ = [h, θ]T is governed by

(Ā + ρB̄) ¨̄y + (C̄ + ρUD̄) ˙̄y + (Ē + ρU2 F̄)ȳ + ρU3W̄w =
[
−Lh Mθ

]T
external

ẇ1−4 = W1,1−4ȳ + UW2,1−4w1−4

ẇ5−6 = W1,5−6β + UW2,5−6w5−6

(6)

where Ā, B̄, C̄, D̄, Ē, F̄ ∈ R2×2 and W̄ ∈ R2×6 are the corresponding matrices for h, θ
fragmented from Equation (2).

The resulting external force and moment due to the control surface deflection β are
modelled as [

Lβ
h

Mβ
θ

]
=

[
ρU2F1,3 ρUD1,3 ρB1,3
−ρU2F2,3 −ρUD2,3 −ρB2,3

]β
β̇
β̈

 (7)

where

F1,3 = 2bT10Φ(0) + Ξb2T11, F2,3 = b2(T4 + T10)− 2b2(a + 0.5)T10Φ(0)− Ξb3(a + 0.5)T11

D1,3 = −b2T4 + Φ(0)b2T11, D2,3 = b3(T1 − T8 − (ch − a)T4 + 0.5T11)−Φ(0)b3(a + 0.5)T11

B1,3 = −b3T1, B2,3 = −b4(T7 + (ch − a)T1), Φ(0) = 1− ψ1 − ψ2, Ξ =
ψ1ε1

b
+

ψ2ε2
b

and ch and T1 to T14 are defined as in [16].
Ignoring the inertia coupling between the aileron actuator and the rest of the wing

section and substituting Equation (5) into Equation (7), we have[
−Lβ

h
Mβ

θ

]
=

[
−ρU2F1,3 + ρB1,3ω2

s −ρUD1,3 + 2ρB1,3ζsωs
−ρU2F2,3 + ρB2,3ω2

s −ρUD2,3 + 2ρB2,3ζsωs

][
β
β̇

]
+

[
−ρB1,3ω2

s
−ρB2,3ω2

s

]
βc , Cβ

[
β
β̇

]
+ Dββc (8)

Now, choose state x = [h, θ, ḣ, θ̇, wT, β, β̇, wT
g ]

T, control output yc = h, and control
input u = βc. The following control-oriented state-space model is obtained:

ẋ(t) = Ac(t)x(t) +Bc(t)u(t) +Dcug(t) (9)

where

Ac =



0 I2 0 0 0 0
−M̄−1

ae K̄ae −M̄−1
ae C̄ae −M̄−1

ae ρU3W̄1−4 −M̄−1
ae ρU3W̄5−6 M̄−1

ae Cβ M̄−1
ae C̄g

I4 0 UW2,1−4 0 0 0
0 0 0 UW2,5−6 I2 0
0 0 0 0 Aβ 0
0 0 0 0 0 UWg2


Bc =

[
0 0 M̄−1

ae Dβ 0 0 0 ω2
s 0 0

]T
Dc =

[
01×10 1 1

]T

(10)

with

M̄ae = Ā + ρB̄, K̄ae = Ē + ρU2 F̄, C̄ae = C̄ + ρUD̄ (11)

Aβ =

[
0 1
−ω2

s −2ζsωs

]
, C̄g = 2πρU2

[
−φ1εk1 −φ2εk2

−(a + 0.5)bφ1εk1 −(a + 0.5)bφ2εk2

]
(12)
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2.2. Incremental Nonlinear Dynamic Inversion

The incremental nonlinear dynamic inversion (INDI) method can control the following
nonlinear system:

ẋ = f (x) + G(x)u + d(t), y = h(x) (13)

where f : Rn → Rn and h : Rn → Rp are smooth vector fields. G is a smooth function
mapping Rn → Rn×m, whose columns are smooth vector fields. The external disturbance
vector is d(t) ∈ Rn, which is assumed to satisfy ‖d(t)‖2 ≤ d̄. The external disturbances in
the real world can easily satisfy this boundedness assumption.

In Equation (13), y ∈ Rp denotes the controlled output vector. This paper considers
the case where p ≤ m, which means the system is either fully actuated or overactuated.
The vector relative degree [17] of the system is defined as ρ = [ρ1, ρ2, ..., ρp]T, which satisfies
ρ = ‖ρ‖1 = ∑

p
i=1 ρi ≤ n. From Equation (13), the input–output mapping of the nonlinear

system is
y(ρ) = α(x) +B(x)u + dy (14)

In Equation (14), α(x) = [Lρ1
f h1,Lρ2

f h2, ...,Lρp
f hp]T, B(x) ∈ Rp×m, andBij = LgjL

ρi−1
f hi,

where Lρi
f hi, LgjL

ρi−1
f hi are the corresponding Lie derivatives [18]. When ρi = 1 for all

i = 1, ..., p, dy = [Ldh1,Ldh2, ...,Ldhp]T. When ρ = n, the system given by Equation (13) is
full-state feedback linearizable. Otherwise, n− ρ internal dynamics exist.

INDI considers system variations in one sampling interval ∆t. The incremental dy-
namic equation is derived by taking the first-order Taylor series expansion of Equation (14)
around the condition at t− ∆t (denoted by the subscript 0) as:

y(ρ) = y(ρ)
0 +

∂[α(x) +B(x)u]
∂x

∣∣∣∣
0
∆x +B(x0)∆u + ∆dy + R1 (15)

in which ∆x, ∆u, and ∆dy represent the state, control, and disturbance increments in
one sampling time step ∆t, respectively. R1 is the expansion remainder. Define the
internal state vector as η = φ(x) and the external state vector as ξ = [ξT1 , ..., ξTp ]

T,

ξ i = [hi(x), ...,Lρi−1
f hi(x)]T, i = 1, ..., p. In a stabilization problem, the reference for the

controlled output equals zero and the control increment is designed to satisfy

B̄(x0)∆uindi = νc − y(ρ)
0 , νc = −Kξ (16)

where B̄ is an estimation of B. The gain matrix K = diag{Ki}, i = 1, 2, ..., p, and
Ki = [Ki,0, ..., Ki,ρi−1]. y(ρ)

0 can be directly measured or estimated. The total control
command for the actuator is uindi = uindi,0 + ∆uindi, in which uindi,0 can be measured
or estimated using an actuator model. Considering the internal dynamics, the resulting
closed-loop dynamics are:

η̇ = fη(η, ξ, d) =
∂φ

∂x
( f (x) + d(t))

∣∣∣∣
x=T−1(z)

ξ̇ = (Ac − BcK)ξ + Bc[δ(x, ∆t) + (B(x0)− B̄(x0))∆uindi + ∆dy]

, (Ac − BcK)ξ + Bcεindi (17)

where z = T(x) = [ηT, ξT]T is a diffeomorphism. The term δ(x, ∆t) is the closed-loop
value of the variations and expansion reminder:

δ(x, ∆t) =
[

∂[α(x) +B(x)u]
∂x

∣∣∣∣
0
∆x + R1

]∣∣∣∣
u=uindi

(18)
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Ac = diag{Ai
0}, Bc = diag{Bi

0}, Cc = diag{Ci
0}, i = 1, 2, ..., p, and (Ai

0, Bi
0, Ci

0) is the
canonical form representation of a chain of ρi integrators. The gain matrix K is designed to
guarantee that Ac − BcK is Hurwitz [13].

Theorem 1. If ‖εindi‖2 ≤ ε̄ is satisfied for all ξ ∈ Rρ, fη(η, ξ, d) is continuously differentiable and
globally Lipschitz in (η, ξ, d), and the origin of η̇ = fη(η, 0, 0) is globally exponentially stable, then
the external state ξ in Equation (17) is globally ultimately bounded by a class K function of ε̄, while the
internal state η in Equation (17) is globally ultimately bounded by a class K function of ε̄ and d̄.

Proof. This can be proved by applying Theorem 1 in Ref. [15] and setting the reference
vector to zero.

Theorem 2. If ‖εindi‖2 ≤ ε̄ is satisfied for all ξ ∈ Rρ, fη(η, ξ, d) is continuously differentiable,
and the origin of η̇ = fη(η, 0, 0) is exponentially stable, then there exists a neighborhood Dz of
z = 0T and ε∗ > 0, such that for every initial state z(0) ∈ Dz and ε̄ < ε∗, the external state
ξ in Equation (17) is ultimately bounded by a class K function of ε̄, while the internal state η in
Equation (17) is ultimately bounded by a class K function of ε̄ and d̄.

Proof. This can be proved by applying Theorem 2 in Ref. [15] and setting the reference
vector to zero.

Theorems 1 and 2 prove that under the perturbation of bounded uncertainties and
disturbances and with stable internal dynamics, the closed-loop system under INDI control
is stable in the Lyapunov sense.

2.3. INDI Design for an Aeroelastic Wing

In this research, we focused on stabilizing the heave degree of freedom of an aeroelastic
wing using the trailing-edge flap. Consequently, in Equation (9), the controlled output is
h, while the input u = βc. This leads to an input–output mapping with a relative degree
equal to two. Applying Equation (16), the aileron’s input for stabilization is designed as:

∆uindi = (νc − ḧ0)/B̄(x0), νc = −Kd ḣ− Kph (19)

where Kd > 0 and Kp > 0 are differential and proportional gains. The aileron’s control
input command equals βc = uindi = uindi,0 + ∆uindi, in which uindi,0 is the control input at
the previous time point.

In Section 3, we validate the performance of the INDI method for gust load alleviation
and active flutter suppression challenges. It is noteworthy that this single controller can
solve both issues without changing the control architecture or the control gains. A control
and block diagram is presented in Figure 2.

Figure 2. Control and implementation block diagram.
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3. Experiment Setup

The proposed controller for active gust load alleviation and flutter suppression was
validated using an aeroelastic wing apparatus by wind-tunnel testing. The self-designed
active wing section [19] itself was mounted in an aeroelastic apparatus (AA) developed
by Gjerek et al. [20]. The AA consisted of a rectangular, acrylic section mounted on the
gust generator and providing heave and pitch degrees of freedom, with adjustable stiffness.
In addition to the adjustable stiffness, weights can be added forward or rearward of the
pitch axis, allowing both the mass distribution of the wing to be easily changed. The wing
section was equipped with a movable full-span trailing-edge control surface (aileron) and
a spoiler, which were actuated by high-bandwidth, electric servo actuators. The main
focus of this experiment was to use the aileron for controlling the heave degree of freedom.
The wing was also equipped with an MPU-9250 inertial measurement unit (IMU), as well
as linear and rotation variable differential transformers (LVDT-Sentech 75DC-500/RVDT-
Midori QP-2HC) for the measurements of acceleration, angular rates, heave, and pitch.
All combined, this AA provided a setup that closely resembled the typical section, a two-
dimensional wing section with an aileron and heave and pitch degrees of freedom (DOFs),
in combination with the aerodynamic model developed by Theodorsen [21], which was
presented in Section 2.1.

Wind tunnel testing was performed at the low-speed W-tunnel at Delft University of
Technology, which is an open-circuit blow-down tunnel with a 0.4 m × 0.4 m test section,
with low turbulence levels and a maximum attainable speed of 35 m/s. Attached to
the wind tunnel is a gust generator capable of generating sinusoidal and 1− cosine gust
excitations with gust frequencies ranging from 0.5 Hz to 12 Hz in 0.5 Hz increments [22].
The aeroelastic apparatus in the wind tunnel is shown in Figure 3.

Aeroelastic apparatus

Wind tunnel

Wing section

Gust generator

Figure 3. Wind tunnel with the gust generator and aeroelastic apparatus.

The heave DOF was provided by two pairs of cantilever leaf springs, with one end of
the springs clamped to the AA and the other end connected to a pitch assembly. The axles
protruding from both sides of the wing were connected to bearings in the pitch assembly.
The length of the leaf springs could be changed, providing a variable spring stiffness in the
heave. Torsional stiffness was provided by a pair of axial springs connected to one of the
axles by a pulley. The torsional stiffness could be varied by changing the diameter of the
pulley or exchanging the axial springs. A top view of the AA is seen in Figure 4, showing
the top half of the heave and pitch mechanism.

The specifications of the aeroelastic wing apparatus for GLA and flutter suppres-
sion are shown in Table 1. When the blades of gust generator deflected at a certain
frequency, gusts were generated in the wing section test field with a gust-induced angle of
attack αg = 1

2 Ag0am(1− cos(2π fg(t− t0))), where t0 is the initial time, am is the amplitude
of the blades’ deflection angle, and Ag0 is the gust coefficient relevant to the velocity U
and the gust generator frequency fg. A second-order model for the aileron’s actuation
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mechanism was given by Gact(s) = 2.6s+347.8
s2+34.7s+358.3 . The minimal and maximal deflections

were limited to −20◦ and 20◦, and the maximum deflection rate was estimated to be 750◦/s.
The IMU used on the apparatus had a bandwidth of 200 Hz. The LVDT had a cut-off
frequency of 200 Hz and was read by a 12-bit analogue-to-digital converter, resulting in
a resolution of approximately 6 × 10−3 mm. The sampling interval was set as 0.002 s
for capturing the high-frequency aeroelastic modes. The measured outputs used by the
controller were the heave acceleration ḧ from the IMU, the heave displacement h from the
LVDT, and the control surface deflection β0.

Leaf spring clamps

Pitch assembly

LVDT
Leaf springs

Pulley

Figure 4. Top view of the aeroelastic apparatus. Note, the RVDT is placed on the bottom side.

Table 1. Configuration parameters of the aeroelastic apparatus.

Parameter Value Unit

Heave stiffness Kh 710 N/m
Pitch stiffness Kθ 3.14 Nm/rad
Elastic Axis EA 0.4c -

4. Results and Discussion

In this section, the experimental results are discussed. First, the GLA results are pre-
sented in Section 4.1. Then, this is followed by the flutter suppression results in Section 4.2.

4.1. Gust Load Alleviation Results

The GLA results are presented in this subsection. In the wind tunnel test, Kp = 0.12
and Kd = 0.009 were chosen for the controller gains based on the desired eigenvalues of
the closed-loop system. The nominal control effectiveness for 12 m/s was identified from
a wind tunnel test as ˆ̄B = 4.0. The open- and closed-loop experiments were performed
for gust frequencies fg of 3, 3.5, 4, 4.5, and 5 Hz, and a gust amplitude of am = 15 deg.
In addition to the directly measured outputs ḧ and h from the IMU and LVDT, a Luenberger
observer with eigenvalues [−150,−30] was applied to provide an estimation of ˆ̇h by using
the measurements of the heave displacement and acceleration. ˆ̇h was required for the
implementation of the control law as shown in Equation (19). An overview of the measured
and estimated signals is shown in Figure 5.

For the GLA experiments, the wing was subjected to a series of 1− cosine gusts. First,
the open-loop gust response was determined, after which the experiment was repeated
with the controller enabled. Figures 6–8 show the recorded GLA data for gust frequencies
of 3, 4, and 5 Hz. The results show significant improvements in reducing the amplitude
of h. The top plot of each subfigures shows the theoretical gust input in terms of the
gust-induced angle of attack αg. At each frequency, the experiments were repeated four
times to evaluate the coherence of the results.
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Figure 5. Overview of the measured and estimated signals.
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Figure 6. The heave displacement comparisons between open- and closed-loop gust responses
when the gust frequency fg = 3 Hz. αg is the gust’s input angle while β is the control surface’s
reflection angle.

The middle subplots show comparisons of the mean values of the open-loop (dashed
line) and closed-loop responses (solid line). Also included in each middle subplot is the
standard deviation of the heave response as a shaded region, which nearly coincides
with the mean data, proving the coherence and repeatability of the experimental results.
The transient, open-loop heave response in the middle plots can be subdivided into two
parts. During the first half-period of the oscillation, the response is dominated by the gust
input. For the remainder of the transient response, the wing oscillates with a frequency
of approximately 4 Hz, close to the frequency of the first heave mode of the wing section.
Whereas the open-loop results are highly underdamped, the closed-loop responses are
mostly damped out after one full period.
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Figure 7. The heave displacement comparisons between open- and closed-loop gust responses
when the gust frequency fg = 4 Hz. αg is the gust’s input angle while β is the control surface’s
reflection angle.
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Figure 8. The heave displacement comparisons between open- and closed-loop gust responses
when the gust frequency fg = 5 Hz. αg is the gust’s input angle while β is the control surface’s
reflection angle.

The commanded and actual aileron deflections are detailed in the bottom subplots
of Figures 6–8. It can be observed that the aileron is settled on a steady-state deflection
after the convergence of the heave response. Results from Schildkamp et al. [19] show the
magnitude and phase responses of the servo actuator degrades for frequencies higher than
2 Hz. Since the servo actuator is now connected to the aileron, adding inertia and friction to
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the system, the frequency response is expected to be worse than what was presented in [19].
The commanded aileron deflection has a frequency similar to that of the heave response,
explaining the differences in magnitude and phase between the commanded and actual
aileron deflection. The larger variability seen in both aileron deflection signals is attributed
to noise in the signals driving the controller. The excitation frequency of 5 Hz is close to the
pitch mode natural frequency of 6.39 Hz. Since this study focused on the heave motion, the
uncontrolled pitch motion inertially coupled with the control surface’s movement, leading
to the high frequency and low magnitude oscillations in control deflections in Figure 8,
although the steady-state oscillations in heave were damped out.

A summary of the GLA results in terms of the reduction of the absolute peak value and
RMS heave values for all previously mentioned gust frequencies is shown in Table 2, where
the absolute peak heave value relates to the peak load endured by the wing, and the RMS
value gives a measure of the vibrational loads the wing endures, related to the fatigue life of
a structure. The mean, minimum, and maximum reduction rates for both the absolute peak
and RMS values are given. Overall, the proposed INDI control method, without adjusting
control gains, provides an attenuation higher than 27% for the vibration amplitude due
to a gust disturbance, and an attenuation higher than 44% for the RMS(h). The greatest
reduction in absolute peak and RMS mean values are achieved for a gust frequency of
5 Hz, with values of 71.4 and 44.2%, respectively. Previous results show the overall lowest
damping coefficient for the open-loop gust response at 5 Hz, giving the highest RMS value.
The controller quickly damps out the gust-induced oscillations, leading to the second-
lowest closed-loop RMS value, hence the greatest reduction in RMS. Similarly, this is also
the case for the absolute peak value, with the highest open-loop peak value and the second
lowest peak value.

Table 2. GLA controller reduction rate of the heave displacement h.

fg (Hz)
Reduction Rate of max(|h|) (%) Reduction Rate of RMS (h) (%)

Mean Min Max Mean Min Max

3 38.3 33.8 44.6 51.1 46.0 54.5
3.5 29.3 27.0 30.8 58.7 58.7 59.7
4 32.4 31.5 34.4 63.5 61.2 64.1
4.5 33.2 29.8 35.8 61.7 44.0 67.4
5 44.2 40.6 46.7 71.4 63.0 72.9

In addition to the open- and closed-loop heave responses plotted in the time domain,
Figure 9 shows the power spectral density (PSD) of these heave responses in the frequency
domain for gust frequencies of 3, 4, and 5 Hz. Also indicated in this figure are the (1) first
heave mode, (2) first pitch mode, and (3) first rocking mode at 3.55, 6.39, and 11.10 Hz,
respectively, as identified using a ground vibration test (GVT) described in [19]. The open-
loop response results in two distinct peaks, around 4 and 12 Hz, at frequencies slightly
higher than the first heave and rocking modes. Changes to the hardware and wiring of the
wing section were made after the GVT, likely affecting the identified frequencies. This will
be verified during a future GVT.

Three observations can be made from the closed-loop PSDs. First, as expected, the en-
ergy near the heave and rocking modes is reduced as the heave motion is primarily influ-
enced by the use of the controller. Secondly, an increase in energy can be seen near the first
pitch mode. This result is also expected, as the implemented controller does not directly
damp out the pitch mode, and it is well-known that if a trailing-edge control device is used
for GLA, then the root bending moment is alleviated at the expense of the amplification
in the root torsional moment [23]. Furthermore, deflecting the aileron not only induces a
heave motion but also a pitching motion around the elastic axis. Finally, no differences can
be observed for frequencies greater than 15 Hz owing to the finite actuator bandwidth.
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Figure 9. A comparison between the open- and closed-loop gust responses’ power spectral density
when the gust frequencies are 3, 4, and 5 Hz.

4.2. Flutter Suppression Results

In this subsection, we evaluated the flutter suppression ability of the INDI controller
designed in Equation (19). Both the control architecture and control gains (Kp, Kd) were kept
the same as in the GLA experiment. It is noteworthy that the control effectiveness B̄(x0)
is a function of dynamic pressure. Therefore, it was scaled by U2 during the experiment.
The static flow velocity U was known and was converted from the tunnel’s RPM value.
The open-loop flutter speed was determined to be U f = 14.5 m/s using the parametric
flutter margin method [19]. Moreover, the control reversal speed was also determined for
this configuration as UR = 14.4 m/s, which was slightly below the flutter speed.

To test the performance of the controller for flutter suppression, the flow velocity was
gradually increased in steps past the flutter speed up to a velocity of 18.5 m/s. At each
velocity step, the wing section was excited from its equilibrium position to trigger flutter.
For consistent excitations of the wing section, it was subjected to a predefined 1− cosine
gust. First, open-loop flutter was recorded. To prevent any damage to the wing section or
test setup, the wing section was manually stopped and returned to its equilibrium position
after flutter occurred. The manual stopping of the wing was visible in the plotted gust
responses by clipping and sharp peaks in the heave responses seen in Figures 10 and 11.
After recording the open-loop flutter, the controller was activated, and the wing section
was excited again to record the closed-loop flutter response.

Figures 10–13 show a comparison of the open- and closed-loop heave response and
the commanded and actual aileron deflection for the closed-loop response for increasing
flow velocities past the open-loop flutter velocity. All open-loop responses to the excitation
start with a 5 mm amplitude and expectedly oscillate with a frequency around 4 Hz, again
close to the first heave mode. Figures 10 and 11 show a clear diverging open-loop response.
The closed-loop responses show the reduction of the heave response to the initial excitation
compared to the open-loop response, after which the disturbance is damped out within
approximately one period.

Similar to the GLA results, the actual aileron deflection shows a slight lag in time
of 0.02 s. For the higher velocities, Figures 10 and 11, a nonzero aileron deflection can
be observed after the initial disturbance has been damped out. Since the test conditions
are beyond the control reversal speed, the heave response, however, remains constant,
indicating that the controller has found a new equilibrium position where the increase in
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lift due to the aileron deflection is offset by the decrease in lift due to the change in pitch of
the wing section.
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Figure 10. Flutter suppression and gust response alleviation effectiveness when the flow velocity
U = 15.4 m/s.
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Figure 11. Flutter suppression and gust response alleviation effectiveness when the flow velocity
U = 16.1 m/s.
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Figure 12. Flutter suppression and gust response alleviation effectiveness when the flow velocity
U = 13.1 m/s.
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Figure 13. Flutter suppression and gust response alleviation effectiveness when the flow velocity
U = 14.6 m/s.

Overall, the flutter suppression tests have shown the implemented INDI controller is
able to increase the closed-loop flutter speed to 16.8 m/s, an increase of 15.9%.

5. Conclusions

In this paper, we designed a single nonlinear controller for the gust load alleviation
and active flutter suppression problems of a typical wing section. The effectiveness of the
proposed incremental nonlinear dynamic inversion (INDI) controller was validated by
wind tunnel tests.
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The GLA performance of the INDI controller was tested by subjecting the wing section
to gust frequencies of 3, 3.5, 4, 4.5, and 5 Hz. Time-domain analyses of the results showed
a reduction in peak heave displacement of up to 46.7% and a reduction in heave RMS of
up to 72.9%. Frequency-domain results showed a decrease in energy near the first heave
and rocking modes compared to the open-loop response, while an increase in energy was
observed near the first pitch mode. This was expected as the controller focused on damping
out the heave motion and it is well-known that the use of a trailing-edge control device
typically amplifies pitch motions.

The effectiveness of the proposed INDI controller on flutter suppression was also
validated by wind tunnel experiments. Neither the control architecture nor the control
parameters need to be changed. The open-loop flutter speed was found at U f = 13.5 m/s.
Using the INDI controller, the flutter speed was increased to 16.8 m/s, achieving an increase
of 15.9%.

6. Outlook

In this research, we focused on alleviating gust responses and suppressing flutter in
the heave degrees of freedom. We have planned future wind tunnel tests for including the
pitch degree of freedom in the feedback signal, and we will explore the harmonious usage
of both aileron and spoiler. Furthermore, we plan to include an automatic adaptation to the
INDI controller, which will enable it to self-adapt to variations in free-streaming velocities.
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