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Abstract: Pump-controlled hydraulic actuators (PHAs) contain slow mechanical and fast hydraulic
dynamics, and thus singular perturbation theory can be adopted in the control strategies of PHAs.
In this article, we develop a singular perturbation theory-based composite control approach for a
PHA with position tracking error constraint. Disturbance observers (DOBs) are used to estimate the
matched and mismatched uncertainties for online compensation. A sliding surface-like error variable
is proposed to transform the second-order mechanical subsystem into a first-order error subsystem.
Consequently, the position tracking error constraint of the PHA is decomposed into the output
constraint of the first-order error subsystem and the stabilizing of the first-order hydraulic subsystem.
Slow and fast control laws can be easily designed without using the backstepping technique, thus
simplifying the control design and reducing the computational burden to a large extent. Theoretical
analysis verifies that desired stability properties can be achieved by an appropriate selection of
the control parameters. Simulations and experiments are performed to confirm the efficacy and
practicability of the proposed control strategy.

Keywords: barrier Lyapunov function; composite control design; pump-controlled hydraulic
actuator; singular perturbation theory

1. Introduction

Pump-controlled hydraulic actuators (PHAs) have been widely used in indus-
trial applications [1–3] due to their high power-to-weight ratio, energetic efficiency,
simple structure, compactness, and ease of maintenance [4–6]. However, ensuring high-
performance output tracking control is a primary demand for PHAs. Unfortunately,
parametric uncertainties, sophisticated friction force, and other disturbances can degrade
control performance. Load disturbances, for example, not only affect velocity dynamics
but can also cause piston vibrations and pressure fluctuations. To mitigate these effects,
many advanced control strategies have been successfully applied in hydraulic systems,
such as sliding mode control [7], robust adaptive control [8], and robust integral of the
sign of the error (RISE) [9]. While these methods are effective, they rely on high gains to
achieve uncertainty attenuation, which may result in large design conservativeness and
amplify the noise effect.

As an alternative, observer-based methods, such as disturbance observer (DOB) [10]
and extended state observer (ESO) [11], provide estimates of uncertainties for online com-
pensation in controller synthesis, thus avoiding high robust feedback gains and reducing
design conservativeness. Observer-based methods have drawn increasing attention in
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recent years. In [12], a disturbance observer-based state estimator (DOBSE) was designed
to asymptotically estimate the disturbance without specifying the boundedness of the
disturbance. In [13], a fixed-time disturbance observer was developed to asymptotically
estimate the disturbance within a given period. In [14], two ESOs were coordinated to con-
currently estimate the unavailable states and matched and mismatched uncertainties with
only output information. In [15], a finite-time extended state observer (FTESO) was pro-
posed to achieve the asymptotic estimation of disturbances and unavailable states in finite
time. In [16], extended sliding mode observers (ESMOs) were proposed to achieve faster
convergence, higher accuracy, and better robustness against uncertainties by comparison
with traditional ESOs.

Aside from uncertainty attenuation, the outputs of PHAs are often required to track
their desired trajectories within an acceptable range in the whole operation process. To
achieve the output tracking error constraint, a barrier Lyapunov function (BLF) [17] was
proposed in the backstepping framework for strict feedback nonlinear systems. The BLF
contains a natural logarithm function of the output tracking error such that the BLF will be
unbounded if the output tracking error violates the prescribed bound. Thus, the output
tracking error constraint is achieved by designing a proper controller to guarantee the
boundedness of the BLF. BLF-based control approaches have been widely applied in
hydraulic systems, and some examples can be found in [18–20].

Based on the above discussion, we can design a BLF-based backstepping controller
with observers to guarantee the output tracking error constraint of a PHA subject to
matched and mismatched uncertainties. However, the drawback of this method is that the
backstepping technique needs the calculation of the time derivatives of intermediate virtual
control laws, which becomes extremely complicated in high-order systems. Moreover, the
incorporated BLF exaggerates the design complexity and computational burden. Although
dynamic surface control (DSC) [21] can avoid the problem of “explosion of complexity”, the
introduced filters also complicate the control structure and cause phase lag [22]. Therefore,
it is of practical importance to develop a BLF-based output tracking error constraint control
method for PHAs without using the backstepping technique.

In this paper, we present a simple control design scheme for a PHA to achieve position
tracking error constraint and uncertainty compensation without the backstepping technique.
It starts with decomposing the PHA into slow mechanical and fast hydraulic subsystems
from the viewpoint of time scale separation [23]. Owing to this, singular perturbation
theory [24] can be utilized in the control synthesis of the PHA. We decompose the actual
control law into slow and fast components and then stipulate a restrictive condition to
make them decoupled to control the corresponding subsystems. Consequently, the control
task is reduced to investigating the two reduced-order subsystems.

The mechanical subsystem of the PHA is in a second-order integral chain form to
describe the position and velocity dynamics. To achieve position tracking error constraint,
the backstepping technique is still required in the synthesis of the slow control law. To
circumvent this, we propose a sliding surface-like error variable to transform the second-
order mechanical subsystem into a first-order error subsystem. Via this transformation, the
position tracking error constraint of the PHA is equivalent to the output constraint of the
transformed first-order error subsystem. Therefore, a BLF-based slow control law can be
easily designed without any intermediate virtual control law. Two DOBs are combined
to estimate the uncertainties for online compensation. The fast control law is required
to ensure the uniform stability of the first-order hydraulic subsystem. Compared with
backstepping-based methods, the proposed composite control method is low-complexity
and straightforward. Stability analysis via singular perturbation theory reveals that the
position tracking error constraint and desired stability properties can be obtained by a
proper selection of the control parameters.

The main contributions of this article are generalized below:
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(1) Position tracking error constraint is investigated for a PHA subject to uncertainties.
Two DOBs are incorporated to provide estimates of the matched and
mismatched uncertainties.

(2) Unlike the existing works [14,25,26], the PHA is decomposed into slow mechanical
and fast hydraulic subsystems from a two-time scale perspective. Therefore, the
control task is reduced to investigating the two reduced-order subsystems.

(3) Compared with the BLF-based control [27–29], the proposed sliding surface-like error
variable transforms the position tracking error constraint of the third-order PHA
into the output constraint of a first-order error subsystem and the stabilizing of the
first-order hydraulic subsystem. Consequently, a composite controller can be easily
designed without the use of the backstepping technique.

(4) The proposed control approach has a simple control structure, low computational
burden, and satisfactory control accuracy, which makes it promising in industrial
applications.

The remainder of this article is organized as follows. The system is modeled in
Section 2. In Section 3, the singular perturbation theory-based composite control design
is proposed in detail. The closed-loop system stability analysis is conducted in Section 4.
Simulation and experimental validation are displayed in Section 5. Section 6 concludes
this paper.

2. System Modeling

The schematic diagram of a PHA is depicted in Figure 1. As seen, the control voltage
acts on the motor driver, and the servo motor drives the bidirectional pump to rotate.
The pump outputs pressure oil to force the movement of the piston rod of the cylinder.
Relief valves are installed to restrict the maximum working pressure. A charging circuit
is constructed to compensate for the external leakage. A load is connected to the piston
rod. Pressure sensors and a rotary encoder are installed to record the pressures inside the
chambers of the cylinder and the position of the piston rod, respectively.

The dynamics of the piston rod can be determined by Newton’s law:

m
..
y = A(p1 − p2)− Ff − Fl + Fd (1)

where m is the total mass of the piston rod and the connected load; y is the position of the
piston rod; A is the ram area of the cylinder; p1 and p2 are the pressures inside the two
chambers of the cylinder; Ff represents the sophisticated nonlinear friction, which comprises
linear viscous friction and other nonlinear elements; Fl is the load force; and Fd denotes the
lumped uncertainties due to parametric uncertainties, unmodeled nonlinearities, and load
disturbances.

Neglecting the external leakage, the pressure dynamics in both chambers of the
cylinder are given by [30]:

.
p1 =

βe

V01 + Ay
[
−A

.
y− Ctlc(p1 − p2) + q1 + qn1

]
(2)

.
p2 =

βe

V02 − Ay
[
A

.
y + Ctlc(p1 − p2) + q2 + qn2

]
(3)

where V01 and V02 represent the initial control volumes of each chamber and the volumes
of the connecting pipelines; βe is the effective bulk modulus; Ctlc denotes the total leakage
coefficient of the cylinder; q1 and q2 denote the flow rates into the two chambers of the
cylinder; and qn1 and qn2 represent parametric uncertainties and modeling errors.
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Figure 1. Schematic diagram of a PHA. 1. Cylinder. 2. Load. 3. Relief valve. 4. Check valve. 5. Bidi-
rectional pump. 6. Servo motor. 7. Motor driver. 8. Charge pump. 9. Oil source. 10. Pressure sensors. 
11. Rotary encoder. 
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Figure 1. Schematic diagram of a PHA. 1. Cylinder. 2. Load. 3. Relief valve. 4. Check valve.
5. Bidirectional pump. 6. Servo motor. 7. Motor driver. 8. Charge pump. 9. Oil source. 10. Pressure
sensors. 11. Rotary encoder.

It is inferred from Figure 1 that the flow rates q1 and q2 are determined by:

q1 = qp1 + qc1 − qv1 (4)

q2 = qp2 + qc2 − qv2 (5)

where qp1 and qp2 are pump flow rates; qc1 and qc2 are charging flow rates; and qv1 and qv2
are the flow rates through the relief valves.

We should note that in normal operation, the system pressure does not violate the
safety limit value of the relief valves. Therefore, there is no flow rate through the relief
valves, which means that:

qv1 = qv2 = 0 (6)

Referring to [31], the pump flow rate can be expressed by:

qp1 = −qp2 = Dω− Ctlp(p1 − p2) + qn3 (7)

where D is the pump volumetric displacement; ω is the rotary speed; Ctlp represents the
total leakage coefficient of the pump; and qn3 denotes the parametric uncertainties and
modeling error.
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Since the motor is directly connected to the pump, the pump rotational dynamics can
be determined by the following equilibrium equation of moments [32]:

J
.

ω = Tm − Bω− Td − D(p1 − p2) (8)

where Tm is the torque generated by the servo motor; J represents the inertia of the mo-
tor/pump; B is the coefficient of friction and viscosity; and Td represents the static friction
at the pump/motor interface.

In this study, the servo motor has an inner velocity closed-loop and fast control
response; therefore, the rotational dynamics can be simplified to a static equation [31,33,34]:

ω = Kmu (9)

where Km is the scale input coefficient of the servo motor and u is the voltage input.
Defining the state variables as X = [x1, x2, x3]

T = [y,
.
y, p1 − p2]

T and combining
(1)–(9), the mathematical model of the studied PHA is given by:

.
x1 = x2.

x2 = a1x3 + d1
ε

.
x3 = b1u− b2x2 − b3x3 + d2

y = x1

(10)

where a1 = A/m, ε = 1/βe, b1 = DKm [1/(V01 + Ax1) + 1/(V02 − Ax1)], b2 = A [1/(V01
+ Ax1) + 1/(V02 − Ax1)], b3 = Ct [1/(V01 + Ax1) + 1/(V02 − Ax1)], Ct = Ctlc + Ctlp;
the mismatched uncertainties d1 = (−Ff − Fl + Fd)/m; and the matched uncertainties
d2 = (qn1 + qn3 + qc1)/(V01 + Ax1) − (qc2 + qn2 − qn3)/(V02 − Ax1). Note that since V01 and
V02 contain the volumes of the pipelines, no matter where the piston rod is, b1, b2, and b3
are always positive.

Generally speaking, βe reaches an order of magnitude of 109 or higher; thus, ε is a
positive constant much smaller than 1. It implies that the system (10) is in a singularly
perturbed form, and thus singular perturbation theory can be utilized in control design.

The objective of this article is to develop a continuous control law u such that:

(1) The position of the piston rod tracks a given reference trajectory within an expected
range, i.e.,:

|y(t)− yd(t)| < kb, ∀t ≥ 0 (11)

where yd is a given reference trajectory and kb is a prescribed bound.
(2) A satisfactory final position tracking error can be obtained.

Assumption 1: The desired trajectory yd(t) and its derivatives up to the third order are bounded
and continuous.

Assumption 2: The uncertainties d1 and d2 are bounded and there are positive constants ∆1 and
∆2 such that:

∣∣∣ .
d1

∣∣∣ ≤ ∆1,
∣∣∣ .
d2

∣∣∣ ≤ ∆2 (12)

Remark 1: Note that the lumped uncertainties d1 involve nonlinear friction Ff, which is normally
expressed by a discontinuous model to describe the friction effect that the friction cutovers around
zero velocity. For instance, the most widely used discontinuous friction model [35] is defined by:

Ff = ( fs − fc) exp
[
−(|x2|/vs)

m]sign(x2) + fcsign(x2) + fvx2 (13)

where vs is the Stribeck velocity; fs is the stiction force; m usually takes the value of 1 or 2; and fc
and fv are the Coulomb friction coefficient and viscous coefficient, respectively.
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However, the discontinuity leads to the friction force being non-differentiable on zero velocity,
which impedes the development of friction compensation approaches in hydraulic systems. To handle
this problem, a smooth nonlinear friction model is proposed in [36] and is defined by:

Ff = γ1[tanh(γ2v)− tanh(γ3v)] + γ4tanh(γ5v) + γ6v (14)

to represent various friction effects, in which γ1–γ6 are positive parameters, the term tanh(γ2v)-
tanh(γ3v) stands for the Stribeck effect, the term γ4tanh(γ5v) represents the Coulomb friction, the
term γ6v denotes the viscous friction, and γ1 + γ4 is the stiction force.

Theoretical analysis has been performed in [37] to prove that a proper selection of the parameters
γ1–γ6 such that:

γ1 = fs − fc, γ2 > γ3, γ2 � 0, γ3 = 1/vs, γ4 = fc, γ5 � 0, γ6 = fv (15)

then, the smooth friction model (14) behaves similarly to the discontinuous friction model (13).
In addition, verification experiments have been conducted in [38] to reveal that the smooth

friction model (14) can give an excellent description of the actual friction. Therefore, similar
to [37,39,40], it is acceptable and practicable to employ this smooth nonlinear friction model (14) to
describe the actual friction in the PHA system. Consequently, the boundedness of the first-order
derivative of the nonlinear friction is guaranteed.

Remark 2: Assumption 1 is frequently made in the tracking control of nonlinear systems [13,14,41].
This assumption ensures the smoothness of the reference trajectories, which prevents the abrupt
vibrations of system states [13]. Assumption 2 is generally required in observer-based control
approaches [14,29,42,43]. From a practical point of view, it takes into account that the energy
and the change rate of practical nonlinear dynamics are limited. Therefore, Assumptions 1–2
are reasonable.

3. Singular Perturbation Theory-Based Composite Control Design
3.1. Design of the DOBs

In this paper, two DOBs are designed, as follows, to estimate the matched and mis-
matched uncertainties:

d̂1 = l1(x2 − x̂2),
.
x̂2 = a1x3 + d̂1

d̂2 = l2(εx3 − εx̂3), ε
.
x̂3 = b1u− b2x2 − b3x3 + d̂2

(16)

where l1 and l2 > 0 are the observer gains.
Define the estimation errors as:

d̃1 = d1 − d̂1, d̃2 = d2 − d̂2 (17)

It is obtained from (16) that:

.

d̃1 = −l1d̃1 +
.
d1.

d̃2 = −l2d̃2 +
.
d2

(18)

Since the observer gains l1 and l2 in (16), and the perturbation parameters ε are positive
constants, there are always positive constants h1 and h2 such that:

εh1l1 = εh2l2 = 1 (19)

Then, the estimation error dynamics is rewritten as:

ε
.

d̃1 = − 1
h1

d̃1 + ε
.
d1

ε
.

d̃2 = − 1
h2

d̃2 + ε
.
d2

(20)
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3.2. Singular Perturbation Theory-Based Composite Controller Design

The mathematical model of the PHA (10) and the estimation error dynamics (20) can
be represented in the following singularly perturbed form:

.
ξ = φ(t, ξ, λ) (21)

ε
.
λ = ψ(t, ξ, λ, u, ε) (22)

where:

ξ =

[
x1
x2

]
, λ =

x3

d̃1

d̃2

, φ(t, ξ, λ) =

[
x2

a1x3 + d1

]
, ψ(t, ξ, λ, u, ε) =

b1u− b2x2 − b3x3 + d̂2 + d̃2

−h−1
1 d̃1 + ε

.
d1

−h−1
2 d̃2 + ε

.
d2

 (23)

Introduce a new time scale τ = t/ε and the system dynamics (21)–(22) can be repre-
sented in τ time scale as:

dξ

dτ
= εφ(t, ξ, λ),

dλ

dτ
= ψ(t, ξ, λ, u, ε) (24)

As seen, the dynamics of ξ in the τ time scale are scaled down by the small parameter
ε. Therefore, ξ dynamics can be regarded as a slow subsystem and λ dynamics as a
fast subsystem.

Owing to this, singular perturbation theory can be adopted to obtain a reduced-
order model, which is in an integral chain form to facilitate control design and uncer-
tainty compensation. It starts with the assumption that ε = 0, and then (22) becomes an
algorithm equation:

ψ(t, ξ, λ, u, 0) = 0 (25)

The solution λ is called the “quasi-steady-state” of the fast variable λ, which can be
calculated as:

λ =
[
λ1, λ2, λ3

]T
=
[

1
b3
(b1u− b2x2 + d̂2) 0 0

]T
(26)

Introduce an error:
η = λ− λ (27)

to represent the discrepancy between the actual states and their quasi-steady-states. It is
known from (26)–(27) that:

x3 = λ1 + η1, d̃1 = η2, d̃2 = η3 (28)

Then, the PHA system (10) is transformed into the following singular perturbed system in
the (ξ, η1) coordinates:

.
ξ =

[
x2

a1λ1 + a1η1 + d1

]
=

[
x2

a1b1
b3

u− a1b2
b3

x2 + a1η1 + d1 +
a1
b3

d̂2

]
ε

.
η1 = −b3η1 + η3 − ε

.
λ1

(29)

Therefore, the singular perturbation theory reduces the control problem of the third-
order PHA to that of a second-order integral chain system. However, since u is excluded
from the η1 dynamics, the convergence performance of η1 cannot be arbitrarily adjusted.

Motivated by [24], we develop a singular perturbation theory-based composite control
design method with:

u = us + u f (30)
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where us and uf represent its slow and fast control laws, respectively. We intend to decouple
the control laws and let them act on the corresponding subsystems. It is feasible by
stipulating a restrictive condition that:

u f = 0 for η= 0 (31)

By repeating the procedure in (25), we can obtain that the quasi-steady-state λ that
becomes the solution of ψ(t, ξ, λ, us, 0) = 0. It is easy to obtain that:

λ =
[

1
b3

(
b1us − b2x2 + d̂2

)
0 0
]T

(32)

Recall that x3 = λ1 + η1. This modification (32) makes the PHA system (10) transform
into the following singularly perturbed system:

.
ξ =

[
x2

a1λ1 + a1η1 + d1

]
=

[
x2

a1b1
b3

us − a1b2
b3

x2 + a1η1 + d1 +
a1
b3

d̂2

]
(33)

ε
.
η1 = ε

.
x3 − ε

.
λ1 = b1u f + (b1us − b2x2 − b3λ1 + d̂2) + d̃2 − b3η1 − ε

.
λ1

= b1u f − b3η1 + η3 − ε
.
λ1

(34)

As seen, the slow control law us is moved to the slow ξ subsystem by λ1, while the
fast control law uf is retained in the fast η1 subsystem. Therefore, they can be separately
designed for different control objectives.

The slow control law us is designed to achieve the position tracking error constraint
of the reduced-order integral chain system (33). We first define a tracking error vector
e = [e1, e2]

T , in which:
e1 = y− yd, e2 = x2 −

.
yd (35)

Its dynamics are given by:

.
e =

[
e2

a1b1
b3

us − a1b2
b3

x2 + a1η1 + d1 +
a1
b3

d̂2 −
..
yd

]
(36)

To constrain the position tracking error e1 within the prescribed bound kb, where
kb > |e1(0)|, we first propose a sliding surface-like error variable:

s = re1 + e2 (37)

where r > 0 is a design parameter.

Lemma 1: For any kb > |e1(0)|, if s(t) satisfies |s(t)| < ρ, ∀t ≥ 0, where ρ is an arbitrarily
constant satisfying:

0 < ρ < r(kb − |e1(0)|) (38)

Then:
|e1(t)| < kb, |e2(t)| < r(2kb − |e1(0)|) (39)

∀t ≥ 0.

Proof. From (36) and (37), we have:

.
e1 = −re1 + s (40)
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The solution of (40) is:

e1(t) = e−rte1(0) +
∫ t

0
e−r(t−γ)s(γ)dγ (41)

Assume that |s(t)| < ρ, ∀t ≥ 0, (41) can be augmented to:

|e1(t)| ≤ |e1(0)|+
∫ t

0
e−r(t−γ)|s(γ)|dγ ≤ |e1(0)|+

ρ

r
− ρ

r
e−rt (42)

Applying the inequality (38) to (42), we can obtain: |e1(t)| < kb, ∀t ≥ 0.
In addition, since e2 = s− re1, we have:

|e2(t)| ≤ |s(t)|+ r|e1(t)| < ρ + rkb < r(2kb − |e1(0)|) (43)

∀t ≥ 0. �

Remark 3: It can be seen that the bounds kb and ρ depend on the initial condition e1(0), which
means that they may be chosen with different values when tracking different reference trajectories. It
is the limitation of the proposed sliding surface-like error variable.

It can be inferred from Lemma 1 that the position tracking error constraint of (33)–(34)
is equivalent to the construction of us to guarantee that |s(t)| < ρ.

Differentiating s with respect to t, we obtain the following first-order error subsystem:

.
s = re2 +

a1b1

b3
us −

a1b2

b3
x2 + a1η1 + d1 +

a1

b3
d̂2 −

..
yd (44)

To achieve the output constraint of (44), we design a BLF-based slow control law:

us =
b3

a1b1

[
−k1s +

a1b2

b3
x2 +

..
yd − d̂1 −

a1

b3
d̂2 − re2 −

s
4(ρ2 − s2)

(
a2

1 + 1
)]

(45)

where k1 > 0 is a feedback gain and − s
4(ρ2−s2)

(
a2

1 + 1
)

is a robust term to suppress the
effects of a1η1 and η2.

uf is designed to make the η1 subsystem converge fast and finally converge to a small
region around zero. As a result, the effect of the term a1η1 on the ξ subsystem can be made
small. In the meantime, uf must satisfy the restrictive condition (31). To this end, uf can be
designed as:

u f = −
k2

b1
η1 (46)

where k2 > 0 is the feedback gain.
The control framework of the closed-loop system is presented in Figure 2.

Remark 4: The singular perturbation theory introduces a two-time scale perspective to decompose
the original third-order PHA into a second-order integral chain slow subsystem and a first-order
fast subsystem. A singular perturbation theory-based composite control method is developed to
separate the control law into fast and slow components, which function as the control inputs of the
corresponding subsystems by stipulating a restrictive condition. A sliding surface-like error variable
is proposed to further simplify the control task to the output constraint control of a transformed first-
order error subsystem and stabilize the first-order fast subsystem. Consequently, the control laws
can be easily designed without any intermediate virtual control law. On the contrary, BLF-based
backstepping controllers require a calculation of the time derivatives of virtual control laws, which
becomes extremely complicated in high-order systems. Therefore, the proposed control approach
greatly simplifies the controller design and reduces the computational burden.
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Figure 2. Control framework of the closed-loop system.

4. Closed-Loop System Stability Analysis via Singular Perturbation Theory

Combing (20), (28), (34), and (44)–(46), the closed-loop system can be represented as
the following singularly perturbed form:

.
s = f (t, s, η, ε)

ε
.
η = g(t, s, η, ε)

(47)

where: f (t, s, η, ε) = −k1s + a1η1 + η2 − s
4(ρ2−s2)

(
a2

1 + 1
)
,

g(t, s, η, ε) =

−(k2 + b3)η1 + η3 − ε
.
λ1

− 1
h1

η2 + ε
.
d1

− 1
h2

η3 + ε
.
d2

 (48)

The stability analysis for the singularly perturbed system (47) is conducted in two steps:
(1) Find two Lyapunov functions to investigate the stability properties of the boundary

layer system and the reduced system;
(2) Use the sum of the aforementioned Lyapunov functions as a composite Lyapunov

function candidate to analyze the closed-loop system stability.
Step 1: The boundary layer system is obtained by setting ε = 0 in the τ time scale

so that:
dη

dτ
= g(t, s, η, 0) = Aηη + Bηη (49)

where: Aη =

−(k2 + b3) 0 0
0 −h−1

1 0
0 0 −h−1

2

, Bη =

0 0 1
0 0 0
0 0 0

.

Theorem 1: The boundary layer system (49) is asymptotically stable if the control parameters k2,
h1, and h2 are chosen such that 1−

∥∥Pη

∥∥
2 > 0, where Pη is a symmetric positive definite matrix

satisfying Pη Aη + AT
η Pη = −2I.

Proof. Select a Lyapunov function candidate:
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W(η) =
1
2

ηT Pηη (50)

Differentiating W(η) along the solution of (49), we have:

.
W =

1
ε

∂W
∂η

g(t, s, η, 0) =
1
ε

ηT Pη

(
Aηη + Bηη

)
= −1

ε

(
1−

∥∥Pη

∥∥
2

)
‖η‖2

2 (51)

By selecting k2, h1, and h2 such that 1−
∥∥Pη

∥∥
2 > 0,

.
W is negative definite. Therefore,

the boundary layer system (49) is asymptotically stable. �

Substituting η = [0 0 0]T in f (t, s, η, ε) and setting ε = 0, the reduced system is:

.
s = f (t, s, 0, 0) = −k1s− s

4(ρ2 − s2)

(
a2

1 + 1
)

(52)

Theorem 2: The reduced system (52) is asymptotically stable if the initial condition satisfies
|s(0)| < ρ and the control parameter k1 is positive. Additionally, |s(t)| < ρ, ∀t ≥ 0.

Proof. Select a barrier Lyapunov function candidate V(s) = 1
2 log ρ2

ρ2−s2 . The initial condi-
tion guarantees s(0) is in the domain (−ρ, ρ) of V(s).

Differentiating V(s) along the solution of (52), we have:

.
V =

∂V
∂s

f (t, s, 0, 0) = −k1
s2

ρ2 − s2 −
s2

4(ρ2 − s2)
2

(
a2

1 + 1
)
< 0 (53)

∀s ∈ (−ρ, ρ) − {0}. Therefore, the reduced system (52) is asymptotically stable. Since
V(t) ≤ V(0), the boundedness of V(t) guarantees that s(t) evolves within (−ρ, ρ) and never
reaches the boundary, i.e., |s(t)| < ρ, ∀t ≥ 0; otherwise, V(t) will become unbounded. �

Step 2: Select a composite Lyapunov function candidate for the closed-loop system (47):

v(s, η) = V(s) + W(η) (54)

Theorem 3: Consider the closed-loop system (47). If Assumptions 1–2 hold, for any given positive
constant c such that the initial condition is (s(0), η(0)) ∈ Ωs × Ωη , where
Ωs := {s ∈ R|V(s) ≤ c} and Ωη :=

{
η ∈ R2

∣∣W(η) ≤ c
}

, there are positive control param-
eters k1, k2, h1, and h2 such that:

(1) All closed-loop system signals are bounded, and the prescribed boundary of the
position tracking error is never violated;

(2) The position tracking error finally converges to a region around zero, which can be
arbitrarily small by an appropriate selection of the control parameters.

Proof. There is a compact set Ωv :=
{
(s, η) ∈ (−ρ, ρ)×R2

∣∣v(s, η) ≤ 2c
}

such that:

Ωs ×Ωη ⊆ Ωv (55)

The closed-loop system (47) can be regarded as a perturbed system of its reduced
system and boundary layer system. The reduced and boundary layer systems have been
proven to be asymptotically stable. However, the perturbation terms f (t, s, η, ε)− f (t, s, 0, 0)
and g(t, s, η, ε)− g(t, s, η, 0) may cause the closed-loop system to become unstable.
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To investigate the closed-loop system’s stability, we start with verifying the bounded-

ness of
.
λ1 on Ωv. It can be obtained from (32) and (45) that:

λ1 = − k1

a1
s− d̂1

a1
+

..
yd
a1
− r

a1
e2 −

s
4a1(ρ2 − s2)

(
a2

1 + 1
)

(56)

Then, the time derivative of λ1 is given by:

.
λ1 =

∂x3

∂s
.
s +

∂x3

∂e2

.
e2 +

∂x3

∂d̂1

.
d̂1 +

∂x3

∂
..
yd

...
y d (57)

where:

∂x3

∂s
= − k1

a1
− 1

4a1

ρ2 + s2

(ρ2 − s2)2

(
a2

1 + 1
)

,
∂x3

∂e2
= − r

a1
,

∂x3

∂d̂1
= − 1

a1
,

∂x3

∂
..
yd

=
1
a1

(58)

From (17)–(18), we obtain:
.
d̂1 = l1η2 (59)

Combing (47) and (59), and
.
e2 =

.
s− re2, it can be inferred that there is a continuous

function M such that: ∣∣∣∣ .
λ1

∣∣∣∣ ≤ M(s, e2, η,
...
y d) (60)

It is known from Lemma 1 that for all s ∈ Ωs ⊆ (−ρ, ρ), e2 is bounded. It follows from
Assumption 1 that

...
y d is bounded. Therefore, the continuous function M has a maximum

value on Ωv. Then, it can be easily deduced that there is a positive constant ϕ such that the
perturbation term satisfies:

‖g(t, s, η, ε)− g(t, s, η, 0)‖2 ≤ εϕ (61)

Now, differentiating (54) along the solution of (47), we have:

.
v = ∂V

∂s f (t, s, 0, 0) + ∂V
∂s [ f (t, s, η, ε)− f (t, s, 0, 0)] + 1

ε
∂W
∂η g(t, s, η, 0)

+ 1
ε

∂W
∂η [g(t, s, η, ε)− g(t, s, η, 0)]

≤ −k1
s2

ρ2−s2 − s2

4(ρ2−s2)
2

(
a2

1 + 1
)
+ a1sη1

ρ2−s2 +
sη2

ρ2−s2

− 1
ε

(
1−

∥∥Pη

∥∥
2

)
‖η‖2

2 + ϕ
∥∥Pη

∥∥
2‖η‖2

(62)

Applying Young’s inequality to a1sη1
ρ2−s2 , sη2

ρ2−s2 and ϕ
∥∥Pη

∥∥
2‖η‖2, we have:

a1sη1
ρ2−s2 ≤

a2
1

4
s2

(ρ2−s2)
2 + η2

1
sη2

ρ2−s2 ≤ 1
4

s2

(ρ2−s2)
2 + η2

2

ϕ
∥∥Pη

∥∥
2‖η‖2 ≤ 1

4

∥∥Pη

∥∥2
2‖η‖

2
2 + ϕ2

(63)

Therefore, (62) becomes:

.
v ≤ −k1

s2

ρ2 − s2 −
1
ε

(
1−

∥∥Pη

∥∥
2 −

ε

4

∥∥Pη

∥∥2
2 − ε

)
‖η‖2

2 + ϕ2 (64)

To proceed with the analysis, we introduce the following lemma:

Lemma 2 [44]: For any given positive constant ρ, the following inequality holds for all
|s| < ρ:

log
ρ2

ρ2 − s2 <
s2

ρ2 − s2 (65)
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Applying Lemma 2 to (64) and combining the inequality W(η) ≤ 1
2

∥∥Pη

∥∥
2‖η‖

2
2,

we have:

.
v < −2k1V − 2

ε
∥∥Pη

∥∥
2

(
1−

∥∥Pη

∥∥
2 −

ε

4

∥∥Pη

∥∥2
2 − ε

)
W + ϕ2 ≤ −σv + Q (66)

where:

σ = 2min

{
k1,

1
ε
∥∥Pη

∥∥
2

(
1−

∥∥Pη

∥∥
2 −

ε

4

∥∥Pη

∥∥2
2 − ε

)}
, Q = ϕ2 (67)

(1) Choose k1, k2, h1, and h2 such that Q/σ ≤ 2c, and then we have
.
v < 0 on

v(t) = 2c,∀t ≥ 0, which means that Ωv is a positive invariant set. Therefore, any
trajectories starting from Ωs ×Ωη will remain within Ωv. Since v(s, η) is bounded,
its components V(s) and W(η) are also bounded, and it can be concluded that η is
bounded and |s(t)| < ρ, ∀t ≥ 0. It follows from Lemma 1 that e1 and e2 are bounded
by kb and r(2kb − |e1(0)|), which means that the position tracking error constraint
is satisfied. According to Assumptions 1–2, it can be easily inferred from (17) and
(35) that x1, x2, d̂1, and d̂2 are bounded. Thus, it can be concluded from (45) that us
is also bounded. Consequently, the boundedness of λ1 is guaranteed from (32), and
x3 = λ1 + η1 is also bounded. Additionally, it is known from (46) that uf is bounded.
Finally, the boundedness of u = us + uf is verified. Therefore, all closed-loop system
signals are bounded, and the prescribed boundary of the position tracking error is
never violated.

(2) It follows from (66) that:

.
v < −(1− θ)σv (68)

∀v(t) ≥ Q/θσ, where θ ∈ (0, 1). It follows from Theorem 4.18 in [45] that there is a time

constant T such that v(t) ≤ Q/θσ, ∀t ≥ T. Due to the fact that 1
2 log ρ2

ρ2−s2 ≤ v, we have:

|s(t)| ≤ ρ
√

1− e−2Q/θσ (69)

∀t ≥ T. The solution
.
e1 = −re1 + s over the time interval [T, t] is:

e1(t) = e−r(t−T)e1(T) +
∫ t

T
e−r(t−γ)s(γ)dγ (70)

Therefore:
|e1(t)| ≤ |e1(T)|e−r(t−T) +

∫ t
T e−r(t−γ)|s(γ)|dγ

≤ kbe−r(t−T) + ρ
r

√
1− e−2Q/θσ

(71)

It means that e1(t) finally converges to a compact set:

Ωe :=
{

e1 ∈ R
∣∣∣|e1(t)| ≤

ρ

r

√
1− e−2Q/θσ

}
(72)

which can be arbitrarily small by an appropriate selection of the control parameters k1, k2,
h1, and h2 such that σ is sufficiently large. �

Remark 5: It is inferred from the stability analysis that the slow control law us and the fast control
law uf are designed to ensure the asymptotic stability of the reduced system and the boundary layer
system, respectively. Considering that the perturbation terms may cause the closed-loop system to be
unstable, some restrictive conditions are imposed on the control parameters to ensure the uniformly
ultimate boundedness of the closed-loop system. Meanwhile, the position tracking error constraint
of the original PHA is reserved, and a satisfactory final tracking accuracy can be achieved.
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Remark 6: It can be inferred from (42) and (72) that the transient performance and the final
tracking accuracy of the position tracking error can be improved by either increasing r or decreasing
ρ. Increasing σ is an alternative approach to improve the final tracking accuracy. According to (67),
σ can be tuned to be large by increasing ki (i = 1,2) or decreasing hi (i = 1,2).

5. Simulation and Experimental Validation
5.1. Numerical Simulation

A simulation was performed in MATLAB/Simulink to confirm the efficacy of the
proposed control scheme. Referring to [46], the nominal hydraulic system parameters
were selected as m = 8 kg, A = 6.4 × 10−4 m2, D = 6 × 10−6 m3/rev, Km = 4.17 rev/(sV),
V01 = 4.7 × 10−4 m3, V02 = 5.1 × 10−4 m3, βe = 109 Pa, and Ct = 5 × 10−13 m3/(sPa). The
parameters b1, b2, and b3 used in the controller design were assumed to be 85%, 80%, and
70% of their nominal values, respectively. The parameters of the smooth nonlinear friction
Ff in (14) were selected as γ1 = 50, γ2 = 150, γ3 = 30, γ4 = 200, γ5 = 100, and γ6 = 300. The
external disturbance Fd was given by:

Fd = 50tanh(500x2) sin(2πt) (73)

The reference was given as yd(t) = 30 arctan(sin(πt/2))(1 − e-t)/0.7854 mm. It is a
sinusoidal-like trajectory with the amplitude of the actuator moving forward and backward
at 30 mm, thus it can be used to test the control performance of the two directions of
movement of the actuator and the pump. The prescribed bound kb = 1.2 mm.

To demonstrate the efficacy of the proposed approach, three comparable controllers
are constructed as follows:

(1) SPC: This is the proposed singular perturbation theory-based composite controller
with the sliding surface-like error variable. The controller parameters of SPC are
chosen as k1 = 105, k2 = 5 × 10−10, h1 = 5 × 105, h2 = 106, ρ = 0.06, and r = 50.

(2) RNC: This is a reduce-order model-based nonlinear controller proposed in [23]. It is
constructed as:

u =
b3

a1b1

(
−L1e1 − L2e2 +

a1b2

b3
x2 +

..
yd − d̂1 −

a1

b3
d̂2

)
(74)

The feedback gains are selected as L1 = 2 × 106 and L2 = 1.5 × 105. The uncertainty
estimates d̂1 and d̂2 are obtained from (16). All other parameters are chosen the same as
SPC to form a fair comparison.

(3) BDC: This is a backstepping controller with dynamic surface control. The structure
and control parameters of BDC were shown as follows:

α1 = −γ1z1 +
.
yd (75)

α2 =
1
a1

(
−γ2z2 − z1 − d̂1 +

.
α1d

)
(76)

u =
1

βeb1

(
−γ3z3 − a1z2 + b2βex2 + b3βex3 − βed̂2 +

.
α2d

)
(77)

τ1
.
α1d + α1d = α1, α1d(0) = α1(0) (78)

τ2
.
α2d + α2d = α2, α2d(0) = α2(0) (79)

where z1 = y − yd, z2 = x2 − α1d, z3 = x3 − α2d and d̂1 and d̂2 were obtained
from (16). The control parameters were selected as γ1 = 50, γ2 = 1000, γ3 = 30, and
τ1 = τ2 = 0.015. All other parameters are chosen the same as the proposed approach
to form a fair comparison.
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The simulation results displayed in Figures 3 and 4 illustrate that all controllers
retained their position tracking errors within the prescribed bound, and SPC performed
better than RNC and BDC, which illustrates the effectiveness of the proposed sliding
surface-like error variable s in output tracking error constraint. The boundedness of s, e1,
and e2 is exhibited in Figure 5. Consistent with Lemma 1, it was constrained by ρ, kb, and
r(2kb − |e1(0)|), respectively. Therefore, the position tracking error constraint was achieved.
Moreover, it is inferred from (35) that x1 and x2 are bounded. The boundedness of x3 is also
shown in Figure 5. Additionally, the profiles of the uncertainty estimation are displayed in
Figure 6. As seen, the estimates obtained by the DOBs in (16) tracked their actual values
well. The control signal is shown in Figure 7, which was continuous and bounded.
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Remark 7: A stringent guideline of control parameter selection has been given in Theorem 3. It
implies that for any given initial condition, there always are sufficiently large control parameters k1,
k2, l1, and l2 such that the desired control performance can be achieved. However, the guideline is
too complex to follow in practical applications. More seriously, as commented in [47], the parameter
values calculated from stability analysis may be unrealistic in practice since they normally take
into account the bounding information of uncertainties and system parameters. In this paper,
similar to the approach in [48], we start with small feedback gains and gradually increase them until
satisfactory control performance is achieved. The observer gains are then tuned up to estimate the
uncertainties, which also helps to improve the control accuracy. However, we should note that overly
large control parameters can cause oscillations, and thus the tuning process should be careful.

5.2. Experimental Setup

An actual PHA, shown in Figure 8, is set up to test the practicality of the proposed
control scheme. The PHA includes a Parker double-rod cylinder, a fixed displacement
pump (Rexroth A10FZG006/10W), and a servo motor (Yaskawa SGM7G-30AFC61). A
rotary encoder (Kübler 8.5000.8132.5000) and two pressure sensors (HYDAC EDS 3448-5-
0100-Y00) are installed to measure the required position and pressure signals. The velocity
signal is obtained by applying a backward difference algorithm to the position signal. Two
second-order Butterworth filters with a cutoff frequency of 20 Hz are adopted to avoid
measurement noise in the velocity and pressure signals [49]. The measured signals are
then sampled with a sampling period Ts = 1 ms and transmitted to a host PC via a data
acquisition module, Quanser Q8-usb. Control algorithms are constructed and executed
in MATLAB/Simulink, which communicates with Quanser Q8-usb via the embedded
QUARC to transmit the control data to the DC motor driver.
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5.3. Experimental Results

To investigate the superiority of the proposed scheme, RNC and BDC were employed
for comparison. To quantitatively evaluate their performances, we introduce three perfor-
mance indices as follows:

(1) The maximum absolute error:

MAX = maxi=1, ..., N{|e1(i)|} (80)
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(2) The integral of the squared errors:

ISE =
N

∑
i=1

[e1(i)]
2 · Ts (81)

(3) The integral of time multiplied by the absolute errors:

ITAE =
N

∑
i=1
|e1(i)| · iTs (82)

where N represents the number of the sampled data.

Case 1: A low-frequency smooth reference trajectory yd(t) = 30 arctan(sin(πt/2))
(1 − e−t)/0.7854 mm was used for the controllers, and the prescribed bound kb = 1.2 mm.
The experimental results are depicted in Figures 9 and 10 and Table 1. It is obvious that
all the controllers constrained their position tracking errors within the prescribed bound.
Nevertheless, SPC performed better than RNC and BDC with its position tracking error
shown in Figure 10, which was farther away from the prescribed bound. The reason is
because the term s

(
1 + a2

1
)
/4
(
ρ2 − s2) in (45) will grow rapidly to provide a strong enough

control action to prevent the position tracking error from approaching its bound. The
profiles of s, e1, and e2 of SPC are plotted in Figure 11. They were, respectively, bounded
by ρ, kb, and r(2kb-|e1(0)|), which verifies the efficacy of the designed sliding surface-
like error variable s in ensuring that e1 and e2 are constrained by the known bounds. In
addition, the boundedness of the uncertainty estimation and the control signal are verified
in Figures 12 and 13.
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Case 2: To test the robustness of the compared controllers, a spring, shown in Figure 14,
was installed to strengthen the mismatched uncertainties. The reference was chosen as
yd(t) = 15 arctan(sin(πt/2))(1 − e−t)/0.7854 mm, and the spring was pre-compressed by
18 mm. This setting makes the spring compression vary from 3 mm to 33 mm when
the actuator moves forward and backward. It means that the additive spring force was
nonvanishing during the operation process. The tracking performances are displayed
in Figure 15 and Table 2. As seen, all controllers constrained their position tracking
errors within the prescribed bound under the strengthened mismatched uncertainties.
Nevertheless, SPC performed better than RNC and BDC in both the transient and steady-
state periods, which demonstrated the superiority of the proposed control strategy. s, e1,
and e2 of SPC were plotted in Figure 16 to confirm the robustness of the proposed control
approach in state constraint under external disturbance. In addition, it can be inferred
from force analysis that the friction and spring force have the same sign when the actuator
moves forward, while the spring force counteracts partial friction when the actuator moves
backward. It renders the lumped mismatched uncertainty asymmetrical. The estimate of
d1, shown in Figure 17, illustrates that the incorporated DOB reproduced the asymmetry of
the uncertainties.
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Table 2. Performance indices of the compared controllers during 16–20 s.

Indices MAX (mm·s) ISE (mm2·s) ITAE (m·s)

SPC 0.344 0.027 0.460
RNC 0.470 0.075 0.862
BDC 0.612 0.140 0.859
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Case 3: To test the robustness of the controllers against the matched uncertainties,
similar to [48], a disturbance was selected as ud = 10

.
ydV and exerted on the control input

during 4 s and 8 s. In this period, u* = u − ud was actually applied to control the PHA.
The reference was chosen as yd(t) = 15 arctan(sin(πt))(1 − e−t)/0.7854 mm. The position
tracking errors of the compared controllers are plotted in Figure 18, and their performance
indices during 4 s and 8 s are collected in Table 3. In this case, SPC successfully retained
its position tracking error within the prescribed bound while RNC and BDC failed, which
illustrates the efficacy of the proposed sliding surface-like error variable in state constraint.
s, e1, and e2 of SPC were drawn in Figure 19 to confirm that they were constrained by the
bounds given in Lemma 1. In addition, it can be seen in Figure 20 that the DOB captured
the dramatic changes in the estimate of d2 when the input disturbance was exerted.
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Table 3. Performance indices of the compared controllers during 4 s and 8 s.

Indices MAX (mm·s) ISE (mm2·s) ITAE (m·s)

SPC
RNC

0.772
1.331

0.537
2.428

2.646
5.613

BDC 1.571 3.354 6.961
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6. Conclusions

In this article, we present a singular perturbation theory-based composite control
approach for a PHA with position tracking error constraint. The PHA can be separated
into the second-order slow mechanical and first-order fast hydraulic subsystems from the
two-time scale perspective. Slow and fast control laws are decoupled to work as the inputs
of the corresponding subsystems. To facilitate position tracking error constraint control
without the backstepping technique, a sliding surface-like error variable is proposed to
transform the second-order mechanical subsystem into a first-order error subsystem, where
a BLF-based slow control law can be easily designed without any intermediate virtual
control law. Two DOBs are incorporated in the controller design to provide estimates of the
uncertainties. The remaining fast control law is designed to make the first-order hydraulic
subsystem asymptotically converge to its equilibrium point related to the slow control
law. The theoretical analysis gives rigorous proof of the closed-loop system’s stability.
Simulations and experiments are conducted to test the efficacy and practicability of the
developed control approach.

Author Contributions: Conceptualization, B.-L.W. and Y.C.; methodology, B.-L.W. and Y.C.; soft-
ware, B.-L.W.; validation, B.-L.W. and Q.-K.L.; formal analysis, B.-L.W.; investigation, B.-L.W. and
Q.-K.L.; resources, Y.C. and J.-C.S.; writing—original draft preparation, B.-L.W.; writing—review and
editing, Y.C.; visualization, B.-L.W.; supervision, Y.C.; project administration, Y.C. and J.-C.S.; funding
acquisition, Y.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Fundamental Research Funds from the Educational
Department of Liaoning Province, grant number LJKMZ20220344, and the Fundamental Research
Funds from the Central Universities in China, grant number N170303010.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shang, Y.; Li, X.; Qian, H.; Wu, S.; Pan, Q.; Huang, L.; Jiao, Z. A Novel Electro Hydrostatic Actuator System with Energy Recovery

Module for More Electric Aircraft. IEEE Trans. Ind. Electron. 2020, 67, 2991–2999. [CrossRef]
2. Chen, S.-H.; Fu, L.-C. Observer-Based Backstepping Control of a 6-Dof Parallel Hydraulic Manipulator. Control Eng. Pract. 2015,

36, 100–112. [CrossRef]
3. Yu, T.; Plummer, A.R.; Iravani, P.; Bhatti, J.; Zahedi, S.; Moser, D. The Design, Control, and Testing of an Integrated Electrohydro-

static Powered Ankle Prosthesis. IEEE/ASME Trans. Mechatron. 2019, 24, 1011–1022. [CrossRef]
4. Imam, A.; Tolba, M.; Sepehri, N. A Comparative Study of Two Common Pump-Controlled Hydraulic Circuits for Single-Rod

Actuators. Actuators 2023, 12, 193. [CrossRef]

https://doi.org/10.1109/TIE.2019.2905834
https://doi.org/10.1016/j.conengprac.2014.11.011
https://doi.org/10.1109/TMECH.2019.2911685
https://doi.org/10.3390/act12050193


Actuators 2023, 12, 265 25 of 26

5. Alle, N.; Hiremath, S.S.; Makaram, S.; Subramaniam, K.; Talukdar, A. Review on Electro Hydrostatic Actuator for Flight Control.
Int. J. Fluid Power 2016, 17, 125–145. [CrossRef]

6. Ho, T.H.; Le, T.D. Development and Evaluation of Energy-Saving Electro-Hydraulic Actuator. Actuators 2021, 10, 302. [CrossRef]
7. Bakhshande, F.; Bach, R.; Söffker, D. Robust Control of a Hydraulic Cylinder Using an Observer-Based Sliding Mode Control:

Theoretical Development and Experimental Validation. Control Eng. Pract. 2020, 95, 104272. [CrossRef]
8. Barchi, D.; Macchelli, A.; Bosi, G.; Marconi, L.; Foschi, D.; Mezzetti, M. Design of a Robust Adaptive Controller for a Hydraulic

Press and Experimental Validation. IEEE Trans. Control Syst. Technol. 2021, 29, 2049–2064. [CrossRef]
9. Yao, Z.; Yao, J.; Sun, W. Adaptive RISE Control of Hydraulic Systems with Multilayer Neural-Networks. IEEE Trans. Ind. Electron.

2019, 66, 8638–8647. [CrossRef]
10. Chen, W.-H.; Ballance, D.J.; Gawthrop, P.J.; O’Reilly, J. A Nonlinear Disturbance Observer for Robotic Manipulators. IEEE Trans.

Ind. Electron. 2000, 47, 932–938. [CrossRef]
11. Han, J. From PID to Active Disturbance Rejection Control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [CrossRef]
12. Liu, K.; Wang, R. Antisaturation Command Filtered Backstepping Control-Based Disturbance Rejection for a Quadarotor UAV.

IEEE Trans. Circuits Syst. II 2021, 68, 3577–3581. [CrossRef]
13. Liu, K.; Wang, R.; Zheng, S.; Dong, S.; Sun, G. Fixed-Time Disturbance Observer-Based Robust Fault-Tolerant Tracking Control

for Uncertain Quadrotor UAV Subject to Input Delay. Nonlinear Dyn. 2022, 107, 2363–2390. [CrossRef]
14. Nguyen, M.H.; Ahn, K.K. Output Feedback Robust Tracking Control for a Variable-Speed Pump-Controlled Hydraulic System

Subject to Mismatched Uncertainties. Mathematics 2023, 11, 1783. [CrossRef]
15. Liu, K.; Wang, X.; Wang, R.; Sun, G.; Wang, X. Antisaturation Finite-Time Attitude Tracking Control Based Observer for a

Quadrotor. IEEE Trans. Circuits Syst. II 2021, 68, 2047–2051. [CrossRef]
16. Nguyen, M.H.; Dao, H.V.; Ahn, K.K. Extended Sliding Mode Observer-based High-accuracy Motion Control for Uncertain

Electro-hydraulic Systems. Int. J. Robust Nonlinear 2023, 33, 1351–1370. [CrossRef]
17. Tee, K.P.; Ge, S.S.; Tay, E.H. Barrier Lyapunov Functions for the Control of Output-Constrained Nonlinear Systems. Automatica

2009, 45, 918–927. [CrossRef]
18. Guo, Q.; Zhang, Y.; Celler, B.G.; Su, S.W. State-Constrained Control of Single-Rod Electrohydraulic Actuator with Parametric

Uncertainty and Load Disturbance. IEEE Trans. Control Syst. Technol. 2018, 26, 2242–2249. [CrossRef]
19. Xu, Z.; Qi, G.; Liu, Q.; Yao, J. ESO-Based Adaptive Full State Constraint Control of Uncertain Systems and Its Application to

Hydraulic Servo Systems. Mech. Syst. Signal Process. 2022, 167, 108560. [CrossRef]
20. Xu, Z.; Qi, G.; Liu, Q.; Yao, J. Output Feedback Disturbance Rejection Control for Full-State Constrained Hydraulic Systems with

Guaranteed Tracking Performance. Appl. Math. Model. 2022, 111, 332–348. [CrossRef]
21. Swaroop, D.; Hedrick, J.K.; Yip, P.P.; Gerdes, J.C. Dynamic Surface Control for a Class of Nonlinear Systems. IEEE Trans.

Automat. Control 2000, 45, 1893–1899. [CrossRef]
22. Yao, J.; Deng, W.; Sun, W. Precision Motion Control for Electro-Hydraulic Servo Systems with Noise Alleviation: A Desired

Compensation Adaptive Approach. IEEE/ASME Trans. Mechatron. 2017, 22, 1859–1868. [CrossRef]
23. Wang, C.; Quan, L.; Zhang, S.; Meng, H.; Lan, Y. Reduced-Order Model Based Active Disturbance Rejection Control of Hydraulic

Servo System with Singular Value Perturbation Theory. ISA Trans. 2017, 67, 455–465. [CrossRef]
24. Kokotovic, P.V.; Khalil, H.K.; O’Reilly, J. Singular Perturbation Methods in Control: Analysis and Design; Academic Press: New York,

NY, USA, 1986.
25. Huang, Z.; Xu, Y.; Ren, W.; Fu, C.; Cao, R.; Kong, X.; Li, W. Design of Position Control Method for Pump-Controlled Hydraulic

Presses via Adaptive Integral Robust Control. Processes 2021, 10, 14. [CrossRef]
26. Ahn, K.K.; Nam, D.N.C.; Jin, M. Adaptive Backstepping Control of an Electrohydraulic Actuator. IEEE/ASME Trans. Mechatron.

2014, 19, 987–995. [CrossRef]
27. Rath, J.J.; Defoort, M.; Sentouh, C.; Karimi, H.R.; Veluvolu, K.C. Output-Constrained Robust Sliding Mode Based Nonlinear

Active Suspension Control. IEEE Trans. Ind. Electron. 2020, 67, 10652–10662. [CrossRef]
28. Wang, Y.; Zhao, J.; Zhang, H.; Wang, H. Robust Output Feedback Control for Electro-Hydraulic Servo System with Error

Constraint Based on High-Order Sliding Mode Observer. Trans. Inst. Meas. Control 2023, 45, 1703–1712. [CrossRef]
29. Won, D.; Kim, W.; Shin, D.; Chung, C.C. High-Gain Disturbance Observer-Based Backstepping Control with Output Tracking

Error Constraint for Electro-Hydraulic Systems. IEEE Trans. Control Syst. Technol. 2015, 23, 787–795. [CrossRef]
30. Jelali, M.; Kroll, A. Hydraulic Servo-Systems; Springer: London, UK, 2003.
31. Helian, B.; Chen, Z.; Yao, B.; Lyu, L.; Li, C. Accurate Motion Control of a Direct-Drive Hydraulic System with an Adaptive

Nonlinear Pump Flow Compensation. IEEE/ASME Trans. Mechatron. 2021, 26, 2593–2603. [CrossRef]
32. Habibi, S.; Goldenberg, A. Design of a New High-Performance Electrohydraulic Actuator. IEEE/ASME Trans. Mechatron. 2000, 5,

158–164. [CrossRef]
33. Chen, Z.; Helian, B.; Zhou, Y.; Geimer, M. An Integrated Trajectory Planning and Motion Control Strategy of a Variable Rotational

Speed Pump-Controlled Electro-Hydraulic Actuator. IEEE/ASME Trans. Mechatron. 2023, 28, 588–597. [CrossRef]
34. Chen, G.; Liu, H.; Jia, P.; Qiu, G.; Yu, H.; Yan, G.; Ai, C.; Zhang, J. Position Output Adaptive Backstepping Control of Electro-

Hydraulic Servo Closed-Pump Control System. Processes 2021, 9, 2209. [CrossRef]
35. Armstrong-Hélouvry, B.; Dupont, P.; De Wit, C.C. A Survey of Models, Analysis Tools and Compensation Methods for the Control

of Machines with Friction. Automatica 1994, 30, 1083–1138. [CrossRef]

https://doi.org/10.1080/14399776.2016.1169743
https://doi.org/10.3390/act10110302
https://doi.org/10.1016/j.conengprac.2019.104272
https://doi.org/10.1109/TCST.2020.3029359
https://doi.org/10.1109/TIE.2018.2886773
https://doi.org/10.1109/41.857974
https://doi.org/10.1109/TIE.2008.2011621
https://doi.org/10.1109/TCSII.2021.3069967
https://doi.org/10.1007/s11071-021-07080-0
https://doi.org/10.3390/math11081783
https://doi.org/10.1109/TCSII.2020.3045769
https://doi.org/10.1002/rnc.6421
https://doi.org/10.1016/j.automatica.2008.11.017
https://doi.org/10.1109/TCST.2017.2753167
https://doi.org/10.1016/j.ymssp.2021.108560
https://doi.org/10.1016/j.apm.2022.06.043
https://doi.org/10.1109/TAC.2000.880994
https://doi.org/10.1109/TMECH.2017.2688353
https://doi.org/10.1016/j.isatra.2017.01.009
https://doi.org/10.3390/pr10010014
https://doi.org/10.1109/TMECH.2013.2265312
https://doi.org/10.1109/TIE.2020.2978693
https://doi.org/10.1177/01423312221146225
https://doi.org/10.1109/TCST.2014.2325895
https://doi.org/10.1109/TMECH.2020.3043576
https://doi.org/10.1109/3516.847089
https://doi.org/10.1109/TMECH.2022.3209873
https://doi.org/10.3390/pr9122209
https://doi.org/10.1016/0005-1098(94)90209-7


Actuators 2023, 12, 265 26 of 26

36. Makkar, C.; Dixon, W.E.; Sawyer, W.G.; Hu, G. A New Continuously Differentiable Friction Model for Control Systems Design. In
Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, CA, USA, 24–28
July 2005; pp. 600–605.

37. Thenozhi, S.; Sanchez, A.C.; Rodriguez-Resendiz, J. A Contraction Theory-Based Tracking Control Design with Friction Identifica-
tion and Compensation. IEEE Trans. Ind. Electron. 2022, 69, 6111–6120. [CrossRef]

38. Yao, J.; Deng, W.; Jiao, Z. Adaptive Control of Hydraulic Actuators with LuGre Model-Based Friction Compensation. IEEE Trans.
Ind. Electron. 2015, 62, 6469–6477. [CrossRef]

39. Deng, W.; Zhou, H.; Zhou, J.; Yao, J. Neural Network-Based Adaptive Asymptotic Prescribed Performance Tracking Control of
Hydraulic Manipulators. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 285–295. [CrossRef]

40. Wang, S.; Yu, H.; Yu, J. Robust Adaptive Tracking Control for Servo Mechanisms with Continuous Friction Compensation. Control
Eng. Pract. 2019, 87, 76–82. [CrossRef]
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