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Abstract: As regards the impact and chattering of 4-DOF redundant parallel robots that occur under
high-speed variable load operating conditions, this study proposed a novel control algorithm based
on torque feedforward and fuzzy computational torque feedback hybrid control, which considered
both the joint friction torque and the disturbance torque caused by the variable load. First of all, a
modified dynamic model under variable load was established as follows: converting terminal load
change to terminal centroid coordinate change, then mapping to the calculation of terminal energy,
and lastly, establishing a dynamic model for each branch chain under variable load based on the
Lagrange equation. Subsequently, torque feedforward was used to compensate for the friction torque
and the disturbance torque caused by the variable load. Feedforward torques include friction torque
and nonlinear disturbance torque under variable load. The friction torque is obtained by parameter
identification based on the Stribeck friction model, while the nonlinear disturbance torque is obtained
by real-time calculation based on the modified dynamic model under variable load. Finally, dynamic
control of the robot under variable load was realized in combination with the fuzzy computational
torque feedback control. The experimental and simulation results show that the motion accuracy of
the fuzzy calculation torque feedback and torque feedforward control of the three drive joints of the
robot under variable loads is 49.87%, 70.48%, and 50.37% lower than that of the fuzzy calculation
torque feedback. Compared with pure torque feedback control, the speed stability of the three driving
joints under fuzzy calculation torque feedback and torque feedforward control is 23.35%, 17.66%, and
25.04% higher, respectively.

Keywords: redundant parallel robot; joint space; variable load; torque feedback; torque feedforward

1. Instruction

Parallel robots are widely used in industrial production lines due to their high stiffness,
speed, motion accuracy, and compact structure, making them particularly suitable for
handling, sorting, and packing light objects at high speeds. However, when the parallel
robot grasps and carries objects of different shapes and masses, the load mass becomes
unknown and time-varying. This not only causes significant variation in the force and
inertia matrix of each component of the robot arm but also results in chattering and impact
when the robot runs at high speeds. These issues can trigger dynamic coupling between
the robot mechanisms and affect the motion control accuracy of the robot.

As parallel robots are often used to handle objects of varying shapes and masses,
researchers have conducted a series of studies on the motion control of robots under
variable loads. For instance, Ref. [1] proposed an improved PSO algorithm for the parameter
identification of SCARA robots, taking into account the influence of loads below 1.2 kg
on the inertial matrix, while ignoring friction. The approach effectively improves the
identification accuracy. Ref. [2] proposed a control scheme for a 3-DOF parallel robot to
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deal with uncertain disturbances while ignoring friction torque. For real-time control of
redundant parallel robots facing unknown loads, Ref. [3] adopted a control algorithm
with a high gain observer to automatically adjust the robot’s load parameters and achieve
motion control under variable load conditions. Ref. [4] proposed an improved scheme
combining a variable structure compensator and calculated torque control for Delta robots
with an uncertain load. Although the independent control scheme based on the joint
friction torque and the variable load can reduce the harm to control stability, it is difficult
to identify dynamic load parameters in practical applications, and the change of load will
lead to the synchronous change of friction torque of each joint, making it difficult to meet
high precision control requirements using independent control methods that rely solely on
individual parameters.

Therefore, some research focuses on the design of force control algorithms, such as
adaptive control, model reference adaptive control, fuzzy control, etc., to achieve the stable
movement of robot end-effectors under external load changes. Ref. [5] presents our research
on the adaptive finite-time neural network control scheme for redundant parallel manip-
ulators. The proposed controller is based on a fully-tuned radial basis function neural
network (RBFN), non-singular fast terminal sliding mode control (NFTSMC), and nonlin-
earity in the output feedback. The RBFN, with fully online updating of output weights
and Gaussian function center and variance, is used to estimate system uncertainties and
disturbances. The proposed method has several advantages over other existing methods,
such as robustness, fast response, no singularity, higher accuracy, finite-time convergence,
and better tracking control performance. Finally, the stability of the parallel manipulator is
guaranteed by the Lyapunov theory. Ref. [6] proposes a controller design method based
on fuzzy sliding mode control. The controller uses adaptive algorithms to estimate the
uncertainty of the mechanism’s parameters and uses fuzzy logic to control the motion
trajectory of the mechanism. At the same time, sliding mode control is used to suppress
external disturbances and uncertainties in the system. It is important to find suitable sliding
surfaces and sliding modes, as the sliding mode controller is prone to chattering and its
parameter tuning can be complex. The control effect is also affected by parameter changes.

Some researchers have focused on neural network control for robot motion control
under unknown and varying loads. In [7], an adaptive control method based on neural
dynamic surface control was proposed to address this problem. This method learns the
unknown load dynamics model using a neural network to achieve the adaptive adjustment
of robot motion. The method has the advantages of being real-time and having strong
adaptability, making it suitable for various robot systems. Another approach proposed in [8]
is a robot motion control method based on robust adaptive neural network control, which
can handle unknown loads and disturbances at the end effector of the robot. This method
has good robustness and adaptivity and can improve the control accuracy of the robot
under varying loads. However, achieving effective robot motion control under varying
loads is a complex and important problem that requires comprehensive consideration
of the dynamic characteristics of the robot system, the design of control algorithms, and
real-time feedback control factors. Currently, research in related fields is still ongoing
and developing.

This paper proposes a hybrid torque control approach that combines feedforward
compensation and feedback control to achieve improved control accuracy. By using feedfor-
ward compensation, dynamic response time is reduced, while fuzzy control helps handle
uncertainty. Additionally, the approach incorporates calculating torque based on the dy-
namic model to better describe the motion characteristics of the robot. It takes 4-DOF
redundant parallel robots as the research object, takes 0–5 kg varying load as the excitation,
and proposes a novel hybrid control algorithm that considers both the joint friction torque
and the disturbance force feedforward and fuzzy computational torque feedback under the
action of the variable load. Firstly, the improved dynamic model was constructed under
variable loads. Then, according to the pose and velocity of the system, the joint torques,
friction torques, and disturbance torques were obtained by using the Lagrange equation



Actuators 2023, 12, 232 3 of 25

and the Stribeck model. Finally, the fuzzy calculated torque was used to adjust the torque
feedback, and the time-varying characteristics of friction torque and disturbance torque
of each joint were converted into the current change control of each joint drive motor by
the torque feedforward control algorithm, to realize the stability control of the drive motor
control system.

2. Construction of Time-Varying Dynamics Model of 4-DOF Redundant Parallel
Robots under Variable Load

Figure 1 shows the structural model of the 4-DOF redundant parallel robot and the
coordinate relationship of each joint at any time.
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(5) End effector. (b) Construction of coordinate system for 4-DOF redundant Parallel Robot.

To facilitate the analysis of the forces on each joint, any branched chain in Figure 1a
was separated from the redundant mechanism that generated over-constraint, and the
separated structure was shown in Figure 2.

As shown in Figure 2, in the process of the robot extracting goods, the change of
load will be reflected in its mass and volume, thus leading to the change of the position
of the system’s centroid. When applying the Lagrange equation to calculate the torque
of each joint, the position and posture of each joint and the coordinate position of the
system’s centroid should be determined first. Suppose the three branch chains of the 4-DOF
redundant parallel robot subscripts i are 1, 2, and 3, respectively. For a single chain, its
base center at point A

(
xai , yai

, h
)

, driving shaft AB and driven shaft BC joint points for

B
(

xbi , ybi
, h
)

, driven shaft, BC, and end-effector HE joint points for C
(

xci , yci
, h
)

. The

AB rod length, centroid, centroid distance AQ, and mass are l1, Q
(

xqi, yqi, zqi

)
, Pi1, and

mi1, respectively. The BC rod length, centroid, centroid distance BG, and mass are l2,
G
(

xgi, ygi, zgi

)
, and mi2, respectively. The AB axis and BC axis are in the same plane of

xoy. End-effector HE is a member of the yoz plane with rod length l3, centroid F(xfi, yfi, zfi),
centroid distance HF PF, and mass 1

3 mF, which can move up and down in the yoz plane.
D (xdi, ydi, zdi) is the load loaded by end-effector HE. Its distance between the load and
base plane is ZC, and the mass is 1

3 mD. hx is from the base plane to D. The relevant model
parameter information can be found in reference Ref. [9].
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According to the above assumptions, the Lagrange multiplier is applied to obtain the
joint torque of the driving joints, as shown in Equation (1) [10].

τ =
d
dt

∂L
∂

.
q
− ∂L

∂q
+ ΦT

q λ (1)

L is the sum of the system’s kinetic energy and potential energy in Equation (1),
where q(6×1) = [θ1, θ2, α1, α2, β1, β2]

T is the vector of the system coordinates, τ(6×1)
is the vector of the corresponding external force/torque, and λ(6×1) is the vector of the
Lagrangian multipliers associated with the constraint Torques ΦT

q λ.
The complete constraint equations [10] are derived by expression (with i = 1, 2, 3)

as follows: {
f (q) =

[
f T
1 , f T

2 , f T
3
]T

Φq
.
q = 0 with Φq

.
q = ∂f(q)

∂q
(2)

where:
ΦT

q =
[
ΦT

q1, ΦT
q2, ΦT

q3

]T
(3)

Assume that the centroid of end-effector HE in Figure 2 is point F and the load centroid
is point D. Then the end-effector HE and the load are regarded as a whole and expressed
as FD, and the equivalent centroid point of the two is E(xei, yei, zei). When the load is a
variable, the coordinates of the centroid E (xei, yei, zei) of the end-effector FD are as follows:

xei = xai + l1cos(qi1) + l2cos(qi2)
yei = yai + l1sin(qi1) + l2sin(qi2)

zei = hx + LCD2

(4)

In this equation, qi1 is the driving angular displacement. qi2 is the driven angular
displacement. The driven angle is not a variable here, but is only for the convenience of
representing and calculating the energy and force/moment of each branch chain. The
calculation formula of the driven angle is as follows:

XC = xa1 + l1cos(q11) + lcos(q12) = xa2 + l1cos(q21) + l2cos(q22)
= xa3 + l1cos(q31) + l2cos(q32)

YC = ya1 + l1sin(q11) + l2sin(q12) = ya2 + l1sin(q21) + l2sin(q22)
= ya3 + l1sin(q31) + l2sin(q32)

(5)
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The driven angle qi2 is expressed as:

qi2 = arccos(
XC−xai−l1cosqi1

l2
) (6)

At the end effector, LCD2 is satisfied with the following equation:{
mFLCD1 = mDLCD2

LCD1 + LCD2 = L3 − PC
(7)

In this equation, LCD1 and LCD2 are the lengths of EF and DE respectively, and both
are variables.

Because the end effector and the load are jointly supported by three branches, the
weight of the end effector and the end load is distributed to the three branches. Thus, it
can be concluded that the equivalent mass mFD of the single-chain end-effector HE and the
load equivalent volume FD is:

mFD=
1
3
(mD + mF) (8)

In this equation, mF and mD are the mass of the end-effector and load, respectively.
In combination with Equation (1), the Lagrange multiplier of equivalent volume FD is

assumed to be L3, and its calculation equation is as follows:

L3 = EK3 − EP3 (9)

In this equation, the potential energy of equivalent volume FD is EP3 = mFDghx; I
kinetic energy EK3 is:

EK3 =
1
2

mFD

( .
xei

2 +
.
yei

2 +
.
zei

2
)

(10)

Similarly, the Lagrange multiplier L1 of the AB manipulator is:

L1 = EK1 − EP1 (11)

EK1 =
1
2

mi1

( .
xQ

2 +
.
yQ

2 +
.
zQ

2
)

(12)

In this equation,
.

xQ,
.

yQ, and
.

zQ can be obtained according to the centroid coordinates
of the AB axis, namely: 

xQ = xai + Pi1cosqi1
yQ = yai + Pi1sinqi1

zQ = h
(13)

Similarly, the Lagrange multiplier L2 of the BC manipulator is:

L2 = EK2 − EP2 (14)

EK2 =
1
2

mi2

( .
xG

2 +
.
yG

2 +
.
zG

2
)

(15)

The centroid coordinate equation of the BC axis is:
xG = xai + l1cosqi1 + Pi2cosqi2
yG = yai + l1sinqi1 + Pi2sinqi2

zG = h
(16)

To sum up, the Lagrange multiplier L of a single-chain system can be expressed
as follows:

L =
1
2

mi1

( .
xQ

2 +
.
yQ

2 +
.
zQ

2
)
+

1
2

mi2

( .
xG

2 +
.
yG

2 +
.
zG

2
)
+

1
2

mFD

( .
xei

2 +
.
yei

2 +
.
zei

2
)
+ mFDghx (17)
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Combining Equations (1) and (17), the solution of joint torques of every single chain is
as follows:

τdi =

(
τd1
τd2

)
=

(
D11 D12
D21 D22

)( ..
qi1..
qi2

)
+

(
E11 E12
E21 E22

)( .
q2

i1
.
q2

i2

)
+

(
F11 F12
F21 F22

)( .
qi1

.
qi2.

qi2
.
qi1

)
+ G(q)

(
qi1
qi2

)
+ ΦT

qiλ (18)

In the equation of (18):

D11 = mi1p2
i1 + mi2l2

1 + mi2p2
i2 + mi2l1pi2cos(qi1 − qi2) + mFDl2

1 + mFDl2
2 + mFDl1l2cos(qi1 − qi2)

D12 = mi2p2
i2 + mi2l1pi2cos(qi1 − qi2) + mFDl2

2 + mFDl1l2cos(qi1 − qi2)
D21 = mi2l1l2 + mi2l1p2icos(qi1 − qi2) + mFDl1l2 + mFDl1l2cos(qi1 − qi2)

D22 = mi2p2
i2

E11 = E22 = 0
E12 = E21 = mi2l1pi2sin(qi1 − qi2) + mFDl1l2sin(qi1 − qi2)

F12 = F22 = 0
F11 = F21 = −mi2l1pi2sin(qi1 − qi2)−mFDl1l2sin(qi1 − qi2)

Compared with the state without load, mFDl2
1 , mFDl2

2 , mFDl1l2 , mFDl1l2cos(qi1 − qi2),
and mFDl1l2sin(qi1 − qi2) all show nonlinear time-varying disturbance characteristics,
which can be further sorted out as:

τdi = D′iq
..
q + H′i

(
q,

.
q
)
+ G′i(q) + ΦT

qiλ (19)

In the equation of (19):

H′i
(
q,

.
q
)
=

(
E11 E12
E21 E22

)( .
q2

i1
.
q2

i2

)
+

(
F11 F12
F21 F22

)( .
qi1

.
qi2.

qi2
.
qi1

)
In this equation, D′i is the inertial matrix, H′i is the Coriolis and centrifugal matrix, and

G′i is the gravity matrix.(
E11 E12
E21 E22

)
and

(
F11 F12
F21 F22

)
are the Positive Definite Symmetric Matrix. The energy

corresponding to the inertia matrix under a single branch is discussed separately. For a
single branched chain, the second type of Lyapunov is used to determine its stability, E =
1
2

.
qT D

.
q; thus, the derivative of E is as follows:

.
E =

1
2

.
qT .

D
.
q +

.
qT D

..
q = −1

2
.
qT .

q(3mi2l1pi2 + 3mFDl1l2)sin(qi1 − qi2)(
.
qi1 − qi2 + qi1 −

.
qi2))

Thus, the result of
.
E < 0 shows this system is stable.

To sum it up, the entire parallel robot system’s dynamic model [11] is as follows:

τd = D′q
..
q + H′

(
q,

.
q
)
+ G′(q)+ΦT

q λ (20)

where D′ = dig
(
D′1, D′2, D′3

)
, H′ =

[
H′1

T, H′2
T, H′3

T]T, τ =
[
τT

1 , τT
2 , τT

3
]T ,

ΦT
q λ =

[
ΦT

q1λ, ΦT
q2λ, ΦT

q3λ
]T

.
To eliminate the assumed Lagrangian multipliers of ideal constraint torque from

Equation (1), a matrix R(6×3) is assumed, which determines the null space of the matrix
Φq(ΦqR = 0) refer to Refs. [12,13].

RTτd = RT [D′q
..
q + H ′

(
q,

.
q
)
+ G ′(q)] (21)

Φqi and R are shown as follows:

Φqi =

[
−li1Sθi − li2Sγi − li2Sγi
−li1Cθi + li2Cγi − li2Cγi

]
(22)
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R =



Cγ1
l11

Sγ1
l11

−Cγ1
l11

−l11Cθ1−l12Cγ1
l11l12

−l11Sθ1−l12Sγ1
l11l12

−l11Cθ1+l12Cγ1
l11l12

Cγ2
l21

Sγ2
l21

0
−l21Cθ2−l22Cγ2

l21l22

−l21Sθ2−l22Sγ2
l21l22

0
Cγ3
l31

Sγ3
l31

0
−l31Cθ3−l32Cγ3

l31l32

−l31Sθ3−l32Sγ3
l31l32

0


(23)

where: {
γi = qi2
θi = qi1

3. Establishment of Hybrid Torque Control Model

Under the condition of variable load, the load has the characteristics of time-varying
and nonlinear strong coupling. In this case, the dual-torque feedforward decoupling con-
trol method is proposed for the measurable but uncontrollable friction torque and the
disturbance torque caused by the operation of the variable load. Meanwhile, as the feedfor-
ward control has difficulty resisting other unknown disturbances, the fuzzy computational
torque feedback control method is adopted to improve the stability and motion accuracy of
the system. The control block diagram of the system after the combination of the two is
shown in Figure 3.
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3.1. Feedforward Control of Variable Load Disturbance and Friction Torque

The control system based on error feedback has the characteristics of delay and slow re-
sponse. Therefore, it is particularly important to estimate the load and friction disturbances
in advance and decouple the robot joints with torque feedforward. In feedforward control,
the end-execution trajectory was mapped to the joint space using inverse kinematics, and
the velocity and acceleration expressions of the joint space at any time of the optimized
trajectory were obtained under variable load. Based on the dynamic theory of the robot
under variable load, the nonlinear time-varying disturbance τd of the robot joint under
variable load was predicted by the Lagrange operator. The predicted disturbance torque
τd1 decoupled the torque loop system by feedforward compensation. The Stribeck friction
model and parameter identification technology are used to predict the friction loss torque τf
of robot joints, and the predicted friction torque is decoupled by feedforward compensation.
The structure diagram of the torque feedforward compensation part is shown in Figure 4.
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The feedforward torque τFF is expressed as:

τFF= τd1 + τf (24)

In this equation, the friction torque τf is obtained by identification, and the pre-
dicted disturbance torque τd1 (for robot arm movement under variable load disturbance)
is obtained by Equation (19), which is calculated from the improved dynamics model in
Section 2.

3.2. Calculation and Fuzzy Torque Feedback Control

Feedforward control alone has difficulty resisting other unknown disturbances and the
system stability is poor. Therefore, a fuzzy calculation torque feedback control is proposed
to compensate for the motion error. The structure diagram of torque feedback control is
shown in Figure 5.
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τB= τt + u f (25)

The output of the calculated torque controller is τt, the output torque of the fuzzy
controller is u f , and the feedback control torque is τi.

3.2.1. Calculation Torque Controller Design

The torque control method of each branch chain is as follows:{
τt = M̂(q)

..
q∗ + Ĉ

.
q2

+ Ĝq̂ + τF..
q∗ =

..
qd + Kv

.
e + Kpe

(26)

In this equation, M̂, Ĉ, and Ĝ are the inertia matrix, centrifugal and Coriolis matrix,
and gravity matrix estimated by Lagrange equation, respectively;

..
q∗ is the control variable,

and the angular displacement error and angular velocity error are e and
.
e, respectively,

as follows: {
e = qd − q
.
e =

.
qd −

.
q

(27)
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3.2.2. Fuzzy Controller Design

Firstly, the language variables of the fuzzy [14] logic controller are determined. Both
the single joint angular displacement deviation e and angular displacement deviation
variation rate

.
e of the robot are selected as input variables, and the fuzzy logic compensation

moment u∗j is used as an output variable to design the fuzzy controller [14]. Firstly, the
input variable of the robot single joint is defined: angular displacement deviation e and
angular displacement deviation variation rate

.
e is [−2, −1, 0, 1, 2]. Fuzzy subset definition:{

NB(Negative Big), NM(Negative Middle), ZO(Zero), PM(Positive Middle), PB(Positive Big)
}

Secondly, the membership function is determined as shown in Figure 6, and fuzzy
rules are established as shown in Table 1.
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Table 1. Fuzzy rules table.

e
u f

.
e

NB NM ZO PM PB
NB NB NB NB NM NM
NM NM NM NM NM PM
ZO NB NM PM PM PB
PM NM PM PM PM PB
PB PM PM PB PB PB

Finally, fuzzy logic reasoning and defuzzification are used. In MATLAB, the fuzzy
control toolbox is used to write input and output membership functions and fuzzy control
rule table. According to the regular control statement, the Mamdani method is used
to deduce the corresponding relationship between the angular displacement deviation,
angular displacement deviation variation rate, and the output u f . Finally, the center
of gravity method is used to denazify the output, so that the output u f can partially
compensate for the torque.

Using the second Lyapunov theory analysis, the stability of calculating torque control,
the analysis process is as follows:

τt = M(q)
..
q + C

(
q,

.
q
)
+ G(q) = Kpe− Kv

.
q+G(q)

M(q)
..
q + C

(
q,

.
q
)
+ Kv

.
q + Kpq = Kpqd (28)

Its energy equation: E = 1
2

.
qT M(q)

.
q + 1

2 eTKpe, where the M and Kp are greater than
zero.

Then, the derivative of the energy equation is:

.
E =

.
qT M(q)

..
q +

1
2

.
qT .

M(q)
.
q− eTKp

.
q =

1
2

.
qT .

M(q)
.
q− .

qTKv
.
q +

.
qC
(
q,

.
q
)
= − .

qTKv
.
q (29)

Because the Kv is always positive, and the
.
E is always non-positive, the system is stable.



Actuators 2023, 12, 232 10 of 25

4. Simulation and Experiment
4.1. Simulation Results
Parameter Identification Results of Stribeck Friction Model

The parameter identification process of the basic Stribeck friction model is based on
multiple off-line measurements of the robot’s single joint at different constant velocities
(when the robot moves at constant velocities, the inertia matrix, centrifugal, and Coriolis
moment are zero; because when the 4-DOF redundant robot moves in xoy plane, the heavy
torque is zero, namely: τ = τFtot), the relationship between friction torque and rotational
speed can be obtained referring to Refs. [15–21]. The Stribeck friction model function of the
joint is shown as:

τf = fFvω + [τFc + (τs − τFc)e
(− ω

ωs )δ]sgn(ω) (30)

The four parameters to be identified were calculated at four points. Finally, the
L-M (Levenberg-Marquardt) algorithm was used to fit the model. The final parameter
identification results are shown in Table 2:

Table 2. Parameter identification results of the Stribeck model.

τFc τFs ωs fFv

0.11 0.14 11.077 4.0216 × 10−4

Converting the joint friction torque to the torque-producing motor needs to be multi-
plied by the reduction ratio, so the comparison between the measured friction torque and
parameter identification results of the robot in normal operation is shown in Figure 7.
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Figure 7. Comparison of friction torque measurement and identification results.

It can be seen from Figure 8 that the parameter identification result of the friction
torque is close to the actual measured value, which is evaluated by the goodness of fit
R2 evaluation model in Ref. [15]. The goodness of fit is 0.9355, close to 1, which is good.
Therefore, the parameter identification result of this model is relatively reliable.
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According to the friction torque τf , and the calculation and identification of the
torque τd of the robot arm under the disturbance of the variable load in the dynamic
model calculation of the variable load in 2.1, the simulation results of the feedforward
compensation torque of the driving joint under different loads are shown in Figure 8.
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4.2. Experiment
4.2.1. Experimental Design

The GPM-II 4-DOF redundant parallel robot was connected to the control PC through a
serial port, the motion mode was changed to torque mode in the driver debugging software
“Servo Studio”, and the forward and inverse dynamics module under variable loads were
established under the Gtrbox toolbox developed in MATLAB.

In “Torque Mode”, a Control strategy combining feedforward and feedback with
friction torque and variable load dynamics model is used to control the joint torque of a
4-DOF redundant parallel robot in “Control”.

In the feedforward experiment of a 4-DOF redundant parallel robot under variable
load, the loading weight is determined to be in the range of 0–5 kg, according to the rated
load capacity of the driving motor. Therefore, loads of 0 kg, 1 kg, 2 kg, 3 kg, 4 kg, and 5 kg
were applied to the end-effector, respectively. The field equipment and experimental figure
are shown in Figure 9.
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(b) Loading external load experiment diagram.

The single driving joint is operated according to the planned trajectory, and the
trajectory tracking experiment is performed in Torque Mode based on the calculated
torque and fuzzy control combined with feedback Refs. [11,22–27], supplemented by
variable load disturbance and friction torque feedforward. The encoder was used to
collect the angular displacement variation data under various load conditions, and the
angular velocity, angular acceleration, and angular acceleration change rate were obtained
through differential and filtering processing. According to the current data recorded by the
driving software, the real-time situation of the joint torques in motion under various loads
was calculated.

The trajectory in the operating space is the linear motion from A to B. In the joint space,
the 12-phase sinusoidal shock curve is used as the motion trajectory; refer to Ref. [9]. The
structure and dynamic parameters of the robot are shown in Table 3.

Table 3. The structure and dynamic parameters of the 4-DOF parallel robot.

Parameter Quality
(Kg)

Length
(m)

Distance from Center
of Mass to Joint (m)

Moment of Inertia
Kg ×m2

1 2.1 0.2440 0.1096 0.0252
2 8.5 0.2440 0.0957 0.0778
3 2.1 0.2440 0.1096 0.0252
4 0.4 0.2440 0.1260 0.0064
5 2.1 0.2440 0.1096 0.0252
6 0.4 0.2440 0.1260 0.0064
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4.2.2. Experimental Results and Analysis

For robot joints within 0–5 kg, the load and the stability of the angular displacement
and angular velocity remain the same, and the response speed of the torque control and
control stability are improved, respectively, through the simple torque feedback and torque
feedback and feedforward to control the robot joints, by comparison with the experimental
running characteristics of two kinds of control mode (trajectory tracking error, response
time, velocity stability, and control moment), showing the advantages of the combined
model of variable load disturbance and friction torque feedforward and fuzzy compu-
tational torque feedback control in the aspects of motion accuracy, operation stability,
response speed, and control stability.

(A) Trajectory tracking error comparison

The feedback control and feedback amp are obtained through experiments under
different external loads. Figure 10 shows the comparison of angular displacement under
feedforward compensation control.
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Figure 10. Comparison of angular displacements of joint 1 under different external loads with and
without torque feedforward compensation control.

By Figures 10–12, at different loads within 0–5 kg, three driving joints of 4-DOF parallel
robotic angular displacements of the experiment are close to the planned trajectory, both in
fuzzy computing torque feedback control, and fuzzy calculation and feedforward torque
hybrid control. Two kinds of control modes of the angular displacement track are bigger
than the planned value because of the influence of accumulated error, and the deviation
increases with the increase in movement time. Additionally, the overall motion deviation
of the robot under the hybrid torque control is less than that of the fuzzy computational
torque feedback control.
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Figure 13. The comparison of the root of tracking error of joint 1 under variable load between torque
feedback and torque feedforward and feedforward hybrid control.
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Figure 14. The comparison of the root of tracking error of joint 3 under variable load between torque
feedback and torque feedforward and feedforward hybrid control.
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Figure 15. The comparison of the root of tracking error of joint 5 under variable load between torque
feedback and torque feedforward and feedforward hybrid control.

(B) Comparison of velocity stability

By differentiating angular displacement and filtering, feedback control and feedback
and feedforward hybrid control are obtained under 0–5 kg load and different external
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loads. Figures 16–18 show the comparison of the angular velocity under feedforward
compensation control.
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According to Figures 16–18, the velocities of the robot joints under the two torque
control methods in different loads of 0–5 kg fluctuate around the planned velocities, and
both of them are close to the expected velocities. However, the velocity deviations un-
der the feedback and feedforward hybrid torque control are lower than those under the
single torque feedback control. The analysis of the velocity stability of the robot joint
analyzes the RMS error value between the motion speed and the expected speed. By
Figures 13–15, the internal angular velocity fluctuation of 0–5 kg load in the feedback
and feedforward hybrid toque compensation control is compared with torque feedback
control, and its velocity stability is obtained through analysis and calculation, as shown in
Figures 19–21, respectively.

It can be seen from Figures 19–21 that when there is no load, the RMS values of the
velocity error of joints 1, 3, and 5 in the torque hybrid control are slightly lower than those of
the torque feedback. With the increase in load, the RMS value of velocity error increases in
fluctuation, and the overall trend is upward. Through calculation, the average RMS values
of the three driving joints’ speed error under torque feedback control are 4.3879, 1.3709,
and 1.2684, respectively; the average RMS values of speed error under torque feedback and
feedforward control are 3.3632, 1.1288, and 0.9508, respectively; and the speed stabilities of
torque hybrid control are relatively higher by 23.35%, 17.66%, and 25.04%, respectively.
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Figure 19. Speed stability analysis of torque feedforward and feedback and feedback under the
variable load of joint 1.

Actuators 2023, 12, x FOR PEER REVIEW 24 of 26 
 

 

velocity stability is obtained through analysis and calculation, as shown in Figures 19–21, 
respectively. 

 
Figure 19. Speed stability analysis of torque feedforward and feedback and feedback under the var-
iable load of joint 1. 

 
Figure 20. Speed stability analysis of torque feedforward and feedback and feedback under the var-
iable load of joint 3. 

 
Figure 21. Speed stability analysis of torque feedforward and feedback and feedback under the var-
iable load of joint 5. 

4.
65

32

4.
85

07

3.
95

34

4.
40

93

4.
34

22

4.
11

87

2.
77

62 3.
72

4

3.
52

25

3.
20

4

2.
72

17

3.
23

07

0 1 2 3 4 5

EXTERNAL LOAD（𝐤𝐠）

THE RMS VALUE OF THE 
VELOCITY ERROR IN JOINT 1

Torque feedback Torque feedback & feedforward

0.
99

94

1.
19

65 1.
52

37

1.
39

13

1.
41

04

1.
40

39

0.
56

19

1.
40

53

1.
48

56

0.
73

11 1.
29

15

1.
29

74

0 1 2 3 4 5

EXTERNAL LOAD（𝐤𝐠）

THE RMS VALUE OF THE 
VELOCITY ERROR IN JOINT 3

Torque feedback Torque feedback & feedforward

1.
15

78 1.
61

44

1.
22

19

1.
11

73

1.
24

6

1.
25

31

1.
14

93

0.
50

94 0.
96

61

1.
02

64

0.
95

24

1.
10

14

0 1 2 3 4 5
EXTERNAL LOAD（𝐤𝐠）

THE RMS VALUE OF THE 
VELOCITY ERROR IN JOINT 5

Torque feedback Torque feedback & feedforward

Figure 20. Speed stability analysis of torque feedforward and feedback and feedback under the
variable load of joint 3.
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Figure 21. Speed stability analysis of torque feedforward and feedback and feedback under the
variable load of joint 5.
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5. Conclusions

Based on the modified dynamic model and the Stribeck friction model of joints for a 4-
DOF redundant parallel robot under variable loads, this study used the torque feedforward
for compensation control and combined the fuzzy computational torque feedback for hybrid
control. Through relevant simulation and experiment, a comparison of the key characteristic
parameters between fuzzy computational torque feedback and fuzzy computational torque
feedback & torque feedforward hybrid control was performed. The conclusions of this
study are as follows:

1. When the robot’s joints move under variable load, compared with the fuzzy com-
putational torque feedback, the fuzzy computational torque feedback and torque
feedforward hybrid control decreased the RMS values of tracking errors by 49.87%,
70.48%, and 50.37%, respectively, and increased the kinematic precision at the same
time.

2. Compared with simple torque feedback control, the hybrid torque control increased
the velocity stability by 23.35%, 17.66%, and 25.04%, respectively; that is, the velocity
stability of the hybrid torque control method was better than only the feedback torque
control method.
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