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Abstract: In this paper, a control strategy based on the inverse system decoupling method and μ-

synthesis is proposed to control vibration in a rigid rotor system with active magnetic bearings that 

are built into high-speed motors. First, the decoupling method is used to decouple the four-degrees-

of-freedom state equation of the electromagnetic bearing rigid rotor system; the strongly coupled 

and nonlinear rotor system is thus decoupled into four independent subsystems, and the eigenval-

ues of the subsystems are then configured. The uncertain parametric perturbation method is used 

to model the subsystem, and the multi-objective ant colony algorithm is then used to optimize the 

sensitivity function and the pole positions to obtain the optimal μ-controller. The closed-loop system 

thus has the fastest possible response, the strongest internal stability, and the best disturbance re-

jection capability. Then, the unbalanced force compensation algorithm is used to compensate for the 

high-frequency eccentric vibration; this algorithm can attenuate the unbalanced eccentric vibration 

of the rotor to the greatest extent and improve the robust stability of the rotor system. Finally, sim-

ulations and experiments show that the proposed control strategy can allow the rotor to be sus-

pended stably and suppress its low-frequency and high-frequency vibrations effectively, providing 

excellent internal and external stability. 

Keywords: active magnetic bearing (AMB); gyroscopic effect; μ-synthesis and D-K iterations;  

multi-objective optimization; unbalance compensation 

 

1. Introduction 

High-speed motors have advantages that include high efficiency, low volume, and 

high power density, and they can be connected directly to high-speed mechanical equip-

ment without an additional gearbox, which improves efficiency and reduces the overall 

size of the machine. These motors are thus widely used in turbo boosters, air compressors, 

grinders, and flywheel energy storage devices [1]. 

An active magnetic bearing (AMB) has notable features such as an absence of me-

chanical friction, zero lubrication, a long service life, and controllable dynamic behavior, 

compared with traditional mechanical bearings. Therefore, an AMB has an irreplaceable 

position in the application of high-speed rotor systems and has become the most im-

portant rotor support unit for high-speed rotating machinery [2]. 

Because the air gap between the AMB stator and the rotor is very small, the controller 

of the AMB rotor system must be stable enough to withstand vibrations and maintain 

system operation. Therefore, when designing this controller, it is necessary not only to 

meet the basic requirement of providing a stable rotor system, but also to optimize the 

controller as much as possible to achieve high dynamic performance for the rotor system. 

The design of this controller thus becomes a key step in AMB engineering design practice.  

However, the high-speed motor rotor system is still a strongly coupled system. As 

the system’s rotational speed increases, the gyroscopic torque that is coupled between the 

system’s four degrees of freedom (4-DOF) will not only destroy the applied control action, 
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but may even affect the overall stability of the AMB rotor system [3]. Gong [4] used a 

polarity switch tracking filter and a disturbance observer to achieve the active control of 

a magnetically levitated rotor system over its full rotational speed range; however, the 

core of this method was still based on use of a proportional–integral–derivative (PID) con-

troller, which has low robustness and stability, and coupling still occurred between the 

degrees of freedom of the rotor system, meaning that the closed-loop system could not 

achieve accurate decoupling control in the higher speed range. Therefore, to realize high-

precision control at higher speeds, more sophisticated control strategies must be devel-

oped. Zhao [5] used the feedforward decoupling method and a time-optimal tracking dif-

ferentiator to realize decoupling of the rotor system at the cost of a minimum calculation 

amount, but this method will cause the decoupling subsystem to be not entirely symmet-

rical, and this is not conducive to controller design for high-precision control. Chen [6] 

used a combined strategy involving the feedback decoupling method and a 2-DOF PID 

controller to realize radial displacement control in the higher speed range. This method 

can also realize complete decoupling of the rotor system, but the 2-DOF PID controller 

shows a weakly robust performance, and it cannot overcome relatively strong external 

disturbance forces.  

At present, PID controllers are widely used in AMB rotor systems to provide a ma-

ture control algorithm. Usually, a PID controller can allow the rotor to run stably at certain 

speeds, but when the plant parameters change or when the disturbance factors are uncer-

tain, it is difficult to obtain good control performance, and the system may even become 

unstable. To solve the problems described above, Zhang [7] designed an H∞ robust con-

troller that showed a strong ability to suppress external disturbances and effectively at-

tenuated a fluid surge disturbance force acting on the impeller of a centrifugal compres-

sor. However, this method cannot measure and stabilize uncertain parametric perturba-

tions of the control system itself. Kuseyri [8] modeled the rotor’s eccentric unbalanced 

disturbance force and the uncertain parametric perturbation structure of the AMB system 

and then synthesized an H∞ controller using a linear matrix inequality (LMI) method, 

which achieved exciting experimental results. This method suppressed more than 95% of 

the unbalanced disturbance vibrations, but it is essentially an empirical selection method 

without the multi-objective optimization process. As a rising star of the robust control 

family, the μ-controller provides an effective way to solve these problems. The μ-control-

ler can model an uncertain parametric perturbation structure when it is synthesized, and 

the μ-analysis can even measure the stability margin for the uncertain parametric pertur-

bation system to ensure that the entire closed-loop system remains stable with respect to 

the bounded parametric perturbation. At the same time, because of the fast response time 

of the μ-controller, the adjustment time required after multi-objective optimization can be 

less than 10 ms, and the controller also has a strong ability to suppress disturbances. When 

the rotor is disturbed by an external force, the controller will then generate a compensa-

tion force to offset the disturbance, and the bounded disturbance will be attenuated com-

pletely to zero within 10 ms. Therefore, the μ-controller performs particularly rigidly dur-

ing the experiments, and regardless of the disturbance or even after a collision with the 

rotor from the exterior, the rotor remains perfectly centered. In contrast, the suspension 

force of the PID-controlled AMB has a “soft” characteristic, and the anti-interference per-

formance of the rotor system is weak. Because the “P” parameter that represents rigidity 

in PID control cannot be increased without limit, too large a value of “P” will lead to sys-

tem instability.  

In this paper, the major contributions are as follows:  

1. An inverse system decoupling method is used to decompose the radial 4-DOF state 

equation of the nonlinear AMB-rigid rotor system into four double-integrator sub-

systems to eliminate the gyroscopic effects that are coupled at high speeds. Pole re-

configuration of the subsystem is performed to overcome the limitations of the μ-

synthesis DK iteration method. The subsystem is modeled using an uncertain para-

metric perturbation method, and the μ-controller is synthesized via a 6-DK iterative 
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method. Then, a closed-loop robust system is designed that is not overly conservative 

at the expense of its performance.  

2. To avoid the frequent use of trial-and-error to find a suitable weighting function, this 

paper introduces a multi-objective ant colony algorithm to search automatically for 

the optimal sensitivity function and pole position. The controller obtained using this 

method thus has the fastest response speed possible, the highest stability margin, and 

the strongest external disturbance attenuation.  

3. To eliminate the unbalanced eccentric disturbance force that occurs during high-

speed operation, this paper also proposes an unbalanced compensation module that 

is added to the current channels of the AMBs. This module searches for the eccentric 

position in four directions with high efficiency and can completely compensate for 

the unbalanced eccentric vibration. 

2. Dynamic Model of Rotor System 

As shown in Figure 1, the magnetically levitated high-speed motor studied in this 

paper is a horizontal structure. The rotor is supported by two AMBs (AMB-A and AMB-

B). The rotor’s radial positions are measured using a total of four eddy current displace-

ment sensors on the left and right.  

 

Figure 1. Sketch of the magnetically levitated high-speed motor. 

The dynamic model of the high-speed motor rotor system is depicted in Figure 2. In 

order to analyze it rigorously, some assumptions are set: due to the rotor’s first-order 

bending speed being much higher than its rated speed, the AMB rotor can be regarded as 

a rigid rotor; the left and right AMBs are installed at the same axial positions as the corre-

sponding sensors; the magnetic coupling interaction between the radial and axial coordi-

nates is ignored. The origin O is the geometric center of the rotor, and the right-handed 

spiral stator coordinate system O-XYZ is established. The Z axis is on the line connecting 

the two radial AMB geometric centers OA and OB. In addition, the radial plane AMB stator 

coordinate systems OAXAYA and OBXBYB are established to describe the operating state of 

the rotor at the positions where AMBs are located. The distances from the left and right 

radial AMB planes to the origin point are lA and lB, respectively.  
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Figure 2. Model of the AMB-rigid rotor system. 

During operation, the rotor’s spatial position is described using the translational dis-

placements x and y of the mass center O along the X- and Y-axes and the rotation angles 

θx and θy around the X- and Y-axes. The positive directions for θx and θy are shown in 

Figure 2.  

Based on the rotor dynamics, the equation for the radial 4-DOF horizontal AMB-rigid 

rotor system can be given as: 

u
MZ GZ LF f     (1)

where Z = [θy x θx y]T, and M and G are the mass matrix and the gyroscopic effect matrix 

of the rotor, respectively. L and F are the arm coefficient matrix of the rotor and the elec-

tromagnetic force vector, respectively, and fu is the unbalanced eccentric force vector; these 

parameters are:  
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where m is the rotor mass; J is the transverse inertia moment of the rotor; Jz is the polar 

inertia moment of the rotor; fxA, fxB, fyA, and fyB are the electromagnetic forces generated by 

the radial AMB-A and AMB-B in the x and y directions, respectively; θ is the rotation 

angle; θ = ωt + φ, where ω is the angular velocity; φ is the initial angle; g is the acceleration 

due to gravity; ε is the projection of the distance between the mass center and the geomet-

ric center on the OXY surface; and uz is the projection of the distance between the mass 

center and the geometric center on the OZ axis.  

As shown in Figure 3, the AMB stator uses a novel 12-pole coil structure. When com-

pared with the traditional eight-pole coil structure, its magnetic force distribution is more 

uniform, thus producing less electromagnetic noise and vibration, and the maximum 

magnetic levitation capacity is improved significantly.  
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Figure 3. Sketch of the AMB stator coils. 

There are a total of four magnetic poles built into the 12-pole AMB stator, where each 

magnetic pole includes a main pole yoke and two secondary pole yokes, and the opposing 

pairs of magnetic poles constitute a radial channel. In theory, the four radial channels are 

independent of each other; the electromagnetic force for each channel is generated by a 

differential current, and the related differential equations are 
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where μ0 is the free-space permeability; A is the cross-sectional area of the secondary mag-

netic pole; N is the number of turns of the coil; I0 is the bias current; δ is the AMB air gap 

length; and ixA, ixB, iyA, and iyB are the control currents of AMB-A and AMB-B in the x and 

y channels, respectively.  

Let Y and U be the radial displacement vector and the control current vector of the 

AMBs, respectively: 

,
TT

a b a b xA xB yA yB
Y x x y y U i i i i        

 



Actuators 2023, 12, 206 6 of 23 
 

 

The relationship between Y and Z is 

TY L Z  (3)

The electromagnetic force is linearized around the operating point (I0, ix0, iy0, xa = xb = 

ya = yb = 0) to give 
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where kx and ky are the displacement stiffness coefficients of the x and y channels, respec-

tively; ix0 and iy0 are the compensation currents of the x and y channels to cancel the grav-

ity, respectively; and ki is the current stiffness coefficient of the x and y channels.  

The linearized electromagnetic force can then be expressed as 

s i
F K Y K U   (5)

where Ks and Ki are the force–displacement matrix and force–current matrix of the AMB, 

respectively, and are 
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where ksxA = ksxB = kx; ksyA = ksyB = ky; and kixA = kixB = kiyA = kiyB = ki.  

3. Inverse Decoupling Method and Eigenvalue Assignment 

By combining (1), (3) and (5), the following can be obtained: 

1 1( ) ( ) +T T

u
M L Y G L Y LF f     (6)

The following can be obtained by converting from (6):  

1 1 1+T T T

u
Y L M G Z L M L F L M f       (7)

When only considering the coupling relationship inside the system, the external dis-

turbance fu can be removed first; then, after the expansion of (7), it can be found that:  
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Because F is a function of U, Y can be written as a function of U. Then, the question 

is whether U can be written as a function of Y inversely, i.e., Y also exists if U exists. 

The reversibility of (8) is now derived as follows: 

Let 
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(9) 

It can be concluded from the above that 
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The relative order of the system is α = (α1, α2, α3, α4) = (2, 2, 2, 2), which satisfies α1 

+ α2 + α3 + α4 = 8 ≤ n, where n is the number of state variables. According to inverse system 

theory [9], the system is invertible.  

Introducing a new variable V = [V1 V2 V3 V4]T, the new variable and the second deriv-

ative of the output variable are made to satisfy the following relationship:  

1 1 2 2 3 3 4 4
, , ,V Y V Y V Y V Y           (11)

Then, the transfer function from V to Y is given by 
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1
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i

Y
i

V s
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Equation (12) shows that the nonlinear and strongly coupled AMB-rigid rotor system 

is decoupled via the inverse decoupling method, the radial 4-DOF rotor system is decom-

posed into four translational radial degrees of freedom, and on each degree of freedom is 

a pseudo-linear subsystem with a transfer function of 1/s2. 

When designing the controller for the subsystem, the D-K iterations method will in-

dicate that the μ-controller cannot be synthesized because the plant contains two zero ei-

genvalues located on the imaginary axis. To overcome this limitation, it is necessary to 

configure the subsystem poles. As shown in Figure 4, the closed-loop negative state feed-

back is adopted. Let the configured poles be s1 and s2, and the characteristic equation be 

D(s) = (s − s1)(s − s2); then, the coefficients of the state feedback are 

1 2 1 2
( ),c s s k s s       (13)
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Figure 4. Block diagram of second-order subsystem eigenstructure assignment. 
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4. Uncertainties Model and μ-Synthesis Method 

Because the motion equations of the four radial channels of the AMB-rigid rotor sys-

tem when decoupled using the inverse system method are symmetrical and are independ-

ent of each other, only the subsystem structure attributed to a single channel is studied 

here. The designed μ-controller can be distributed symmetrically for each channel. The 

motion equation for one single-channel subsystem after pole configuration can be given 

as  

Y c Y k Y I     (14)

During actual operation, and especially during high-speed operation, the AMB-rigid 

rotor system has a high-amplitude sinusoidal noise signal in the output from the displace-

ment sensors, which is attributed to the unbalanced eccentric vibration. This signal will 

affect the stability of the decoupled subsystem; equivalently, it can also be regarded as the 

main source of the uncertain parametric perturbation structure of the subsystem.  

Suppose that during high-speed operation, there is an unbalanced vibration in one 

radial channel given by ( ) s in ( )
k k

d t r t p Y   , where r  is the vibration amplitude, 

which is generally less than 0.05 mm over the full rotational speed range, and the radial 

displacement amplitude Y  is less than 0.5 mm of the bearing air gap; thus, we set pk = 

10% and −1 ≤ δk ≤ 1. By introducing the vibration displacement Y Y d  , we find that 

(1 ) (1 ) (1 )
m m c c k k

p Y c p Y k p Y I          (15)

where Y is the ideal displacement variable when the vibration signal d is not consid-

ered in the total radial displacement Y, pm = pc = pk = 10% and −1 ≤ δm, δc, δk ≤ 1.  

Equation (15) can be represented by the upper linear fractional transform (LFT) with 

Mm, Mc, Mk, δm, δc, and δk, and its state equation is  

,

,

,

m m

m m m m
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c c c c
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y u
M u y

v Y






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     

     


  
     

    
             




 

(16)

where 1 0 0
, ,

1
m

m c k

m c k

p c k
M M M

p p c p k

     
         

     

 

The subsystem structure with uncertainties can be described as shown in Figure 5.  
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Figure 5. Block diagram of subsystem structure with uncertain parameters. 
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From Figure 5, the state equation for the subsystem with structured uncertainty can 

be derived, and by eliminating variables vc and vk, the system matrix S, which describes 

the dynamic characteristics of the subsystem, is 

0 1 0 0 0 0

1
0 0

1
, 0 0

0 0 0 0 0
0 0

0 0 0 0 0

1 0 0 0 0 0

m c k

m m m
m m c k m

c c c
c c

k k k
k k

y y

y k c p p p y
u y

y k c p p p u
u y

y c u
u y

y k u

y I







     
     

               
               
            
                     
     
          



 

 
(17)

The block diagram of the closed-loop system that shows the feedback structure and 

includes elements reflecting the model uncertainty and performance requirements ob-

tained at this stage is as shown in Figure 6, where P is the plant, K is the controller, and Δ 

is the uncertainty matrix. In addition, Wp is the performance weighting function, and Wu 

is the control weighting function.  

K

Δ 

Wp

-Wu

PAMB

+

S

_

++

d

r=0 u ep

eu

 

Figure 6. Block diagram of AMB closed-loop system. 

The μ-synthesis method was proposed to assort systems with structured uncertain-

ties. The uncertain behavior of the original system can be described by the LFT represen-

tation, and the controller synthesis is performed with an uncertain closed-loop system 

model using the structured singular value μ and the LFT framework. As a result, a μ-

control closed-loop system can be designed that is not excessively conservative at the ex-

pense of performance [10]. The diagram of the μ-control framework for the AMB-rotor 

system is shown in Figure 7. 

K

WI

Wp

Wu

P

Δ 

M
 

Figure 7. Block diagram of μ-synthesis method. 
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The structure of the matrix Δ is the result of the locations at which each parametric 

uncertainty occurs in the system model. The weighting functions Wp and Wu are selected 

to constrain the frequency-based performance requirements in closed-loop systems. The 

matrix M is the lower LFT of the plant P and the controller K. 

l
( , )F P KM  (18)

The μ-synthesis framework can be represented by the upper LFT of the weighted 

closed-loop system M and the uncertain perturbation matrix Δ, which maps disturbance 

input w to performance response z. 

 Δ
u

z F (Μ , )w  (19)

The defined structure Δ destabilized the system M, and the stability of the entire sys-

tem can be evaluated using the maximum singular value μ.  

ΔM I M 

 
   1( ) min{ ( ) : det( ) 0}  (20)

If the structured singular value is less than unity, this indicates that a greater pertur-

bation than the set uncertain perturbation is required to destabilize the system. Therefore, 

the closed-loop system with the synthesized controller is stable and robust with respect 

to the bounded uncertainties [11].  

Finding appropriate weighting functions is a critical step in robust controller design 

and usually requires many trials. For complex systems, significant effort is thus required. 

Therefore, a multi-objective ant colony algorithm is introduced to search automatically for 

the optimal sensitivity function. The μ-controller is synthesized using the dksyn tool inte-

grated in the MATLAB Robust Control Toolbox. In this tool, a 6-DK iterative algorithm 

[12] is used. The flow chart of the algorithm is shown in Figure 8.  

Output the controller K(s) corresponding to the D(s)

Y

N

Curve fit D(jw) to get a stable, minimum-phase D(s)

arg inf ( , )l
K

K F P K


 

1( ) arg inf [ ( , ) ( )]l
D

D j DF P K D j  


  

D

 Initialization Process

Fix D and solve the H∞ -optimisation for K

Fix K and solve the following convex optimisation 
problem for D over a selected frequency range 

A prespecified convergence 
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Start with an initial guess for D,usually set D=I

D
-K

 ite
ra
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o
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m
 flo

w
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Figure 8. Flow chart of D-K iterations method. 
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5. Multi-Objective Optimization of μ-Controller 

5.1. Multi-Objective Function 

When optimizing the μ-controller, it requires the explicit definition of some targets 

to optimize the general performance of the controller. The response time, the tracking er-

ror, and the disturbance attenuation of the controller can be used as one objective function. 

The multi-objective optimization process frequently calls several objective functions sim-

ultaneously. The results of using these single objective functions are usually contradictory, 

hence they cannot be simply compared as being superior or inferior. Generally, the better 

result for one target will be the worse result for the other target, and enhancement to any 

objective value will deteriorate at least another objective value. One such result is called 

the Pareto solution [13]. 

The multi-objective function for μ-controller optimization used in this paper is de-

fined as:  

max max min min max min max max min
( ) / ( ) ( ) / ( )+ ( ) / ( ), 1f a R R R R b S S S S c D D D D a b c                (21) 

where a, b, and c are weight factors that represent the importance of the relevant objec-

tives, and different ratios will have different effects on the controller performance. R, Rmin, 

and Rmax are the settling time of the closed-loop system to a step input and the minimum 

and maximum values of this settling time, respectively; S, Smin, and Smax are the stability 

margin of the closed-loop system and the minimum and maximum values of this stability 

margin, respectively. D, Dmin, and Dmax are the disturbance attenuation of the closed-loop 

system and the minimum and maximum values of this attenuation, respectively.  

This function includes the step input reference response performance, the robust sta-

bility, and the robust performance of the μ-controller multiplied by their respective 

weighting factors. The essential feature of the ant colony algorithm is that it maximizes 

the evaluation value of the objective function. Equation (21) thus shows that the optimi-

zation objectives are the shortest response time, the largest stability margin, and the 

strongest disturbance attenuation. In addition, according to ISO standard 14839-3, the 

penalty constraint set for the optimization algorithm is that the maximum magnitude of 

the sensitivity function for the closed-loop control system should be less than 9.5 dB [14].  

5.2. Variable Constraints 

It can easily be determined from Figure 6 that: 

1

1

( )

( )

p p

u u

e W I SK
d

e W K I SK





   
   

      

 
(22)

Therefore, the design criterion for robust performance is that all transfer functions 

from d to ep and eu should be small in the sense of H∞ for all possible uncertain transfer 

matrices Δ.  

1

1

( )

( )

p

u

W I SK

W K I SK








 
 

  

 (23)

The weighting functions Wp and Wu are used to reflect the relative significance of the 

performance requirements over the different frequency ranges. The performance 

weighting function Wp is selected to have a second-order form as follows:  

2

2 3
1 2

4 5

( )
p

s x s x
W s x

s x s x

 
 

 
 (24)

The value of x1 shows a strong relationship with the response speed and the quality 

of the waveform of the closed-loop system relative to the reference input. Both x2 and x4 

affect the turning frequency of the weighting function Wp and thus indirectly and slightly 

affect some of the closed-loop system performance characteristics. Equation (24) shows 
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that in the low frequency range, the reciprocal of Wp tends toward x5/x3, and the designed 

controller sensitivity function will be below the 1/Wp curve; this means that the value of 

x5/x3 is related to the disturbance attenuation and the steady-state tracking error. There-

fore, x5/x3 is usually set to be equal to 0.001 or less to meet the performance requirements.  

The control weighting function Wu is selected simply as the scalar form:  

6
( )

u
W s x  (25)

Equation (13) shows that the subsystem poles affect the damping c and the stiffness 

k of the controlled plant. A low level of system damping will accelerate the controller’s 

response. Greater system stiffness leads to a greater bearing control force and a better 

active control effect, but the required controller is not easy to synthesize. Therefore, it is 

necessary to use a multi-objective optimization algorithm to search for the best parametric 

combination. The multi-objective algorithm uses eight variables, as listed in Table 1, with 

upper and lower bounds that are selected carefully for the optimization process.  

Table 1. Ant variables and bounds. 

Variable Description Lower Bound Upper Bound 

x1 proportional term of Wp 0.01 1.0 

x2 first-order term of the Wp numerator 0.5 × 103 2 × 103 

x3 constant term of the Wp numerator 1.5 × 104 3 × 104 

x4 first-order term of the Wp denominator 10 20 

x5 constant term of the Wp denominator 0.1 0.5 

x6 proportional term of Wu 1 × 10−8 12 × 10−8 

x7 positive real pole 450 550 

x8 negative real pole −550 −450 

5.3. Ant Colony Algorithm and Optimization 

The artificial ant colony algorithm, which simulates an ant colony’s intelligence, has 

features that include distributed computation, positive feedback, and heuristic searching. 

The ant colony algorithm has shown many good performance aspects through use of its 

inherent pheromone search mechanism. Its positive feedback and synergy make it suita-

ble for use in distributed systems, and its implicit parallelism offers strong development 

potential. The problems that it can solve have gradually expanded to include some con-

strained problems and multi-objective problems [15–17]. When the ant colony algorithm 

was initially proposed, it was used for discrete domain optimization problems. Therefore, 

the μ-synthesis problem, which is a continuous domain optimization problem, requires 

the original ant colony algorithm to be modified.  

In this paper, a grid scaling method is used for the continuous domain ant colony 

algorithm. Each grid point corresponds to a variable space state, and each ant crawls be-

tween the grid points and leaves certain amounts of pheromone information to influence 

the action of future generations of ants. When all ants in one generation have finished 

crawling, for grid points that satisfy the constraints, the objective function values are com-

pared, the optimal individual is recorded, and the pheromone matrix is updated. Then, at 

the beginning of the next generation, the variable range near the grid point is scaled down 

by a ratio r (0.5–0.9), and the new generation of ants is placed to start crawling. By repeat-

ing the above process, until the grid spacing is below the given precision.  

When each variable range is divided into N parts, there are N + 1 nodes, and n varia-

bles have (N + 1)n grid points. The calculations of these grid points can become an n-level 

decision process. In the decision process, the calculation of ant transition probability can 

use the following formula: 
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( ) ( )
( ) ,

( ) ( )
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(26)

where pkij(t) is ant k’s transition probability from the ith to jth node, Ak is the node collec-

tion that ant k can reach, τij(t) is determined using the pheromone matrix, and ηij(t) is de-

termined using the heuristic matrix, i.e., ηij(t) is set as a constant (1.5).  

The equation to update the pheromone matrix component is:  

( 1) (1 ) ( ) ( )i j i j i jt t t            (27)

where ρ is the evaporation rate, and Δτij(t) is determined by the pheromone increment 

matrix.  

The equation to update the pheromone increments is:  

1

( ) ( )
m

k

i j i j
k

t t Q f 
 



      (28)

where Q is set as a constant (0.05), and f is the multiple objective function as in (21).  

5.4. Optimization Solution 

Figure 9 shows that the multi-objective ant colony algorithm converges fully after 16 

iterations, which confirms the high efficiency of the algorithm sufficiently.  

 

Figure 9. Evolution of the multi-objective value. 

After the closed-loop system is modeled and the optimization objectives are defined, 

it is interesting to observe the results of optimization algorithm execution. Figure 10 de-

picts the individual sampling process and the iterative evolution of the three targets. It is 

known that the optimization objectives are the settling time of the step response of the 

closed-loop system, the stability margin of the uncertain perturbation structure, and the 

controller design index γ. The settling time can be measured directly using the stepinfo 

function. The stability margin is obtained via the frequency sweep method, where the 

starp function is used first to connect the controller to form a closed-loop system; then, the 

frequency sweep function, frsp, is used to obtain the frequency response of the closed-

loop system; finally, the pkvnorm function is used to obtain the upper bound of the μ 

function of the perturbation structure, and the reciprocal of this bound is the lower bound 
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of the stability margin. This means that at least the stability margin times of the perturba-

tion can be tolerated to ensure that the closed-loop system is robust and stable. The fre-

quency sweep method is conservative to an extent but can be regarded as a fast and stable 

evaluation method.  

 

Figure 10. Optimal designs with color plot for the object values. 

Smaller settling times give faster control system responses, and a larger stability mar-

gin indicates stronger system robustness to the structured uncertainty. The γ value is an 

important index for controller design. A larger γ value means that the controller is more 

difficult to synthesize. When the γ value exceeds 1, it means that a stable closed-loop con-

troller cannot be synthesized. As the value of γ decreases, it becomes easier to design the 

controller, and a smaller sensitivity function amplitude for the closed-loop system indi-

cates stronger system attenuation of external disturbances. The optimization results show 

clear consistency between the response speed and the stability margin, and there is also a 

clear contradiction between the response speed and γ or between the stability margin and 

γ. It is easy to understand that when the controller is faster, it is then more stable, but it is 

also more difficult to synthesize.  

Finally, the compromise solution that was calculated after the comparison of the ob-

ject values is shown in the lower left corner of Figure 10. This solution should provide a 

comprehensive optimal performance, and its variables and performance parameters are 

listed in Table 2.  

Table 2. Optimized ant solutions. 

x1 x2 x3 x4 x5 x6 x7 x8 Settling Time Stability Margin γ 
Object 

Value 

0.5791 1923.5 2.607 × 104 14.076 0.3603 1.3977 × 10−8 452.151 −471.994 8.45 ms 5.1108 0.8821 0.8887 

6. Unbalanced Eccentric Vibration Compensation Method 

Because of machining technology limitations and assembly tolerances, the mass cen-

ter of a rigid rotor is not consistent with its geometric center. During high-speed operation, 

unbalanced vibration will be generated by the centrifugal force. The frequency of this un-

balanced vibration is the same as the rotational speed, and the excitation force is 
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proportional to the square of the rotational speed. When the rotational speed increases, 

the frequency of this excitation force also increases. Figure 14 (see Section 7.1) shows that 

when the frequency exceeds 100 Hz (6000 rpm), the disturbance suppression force of the 

robust controller gradually decreases. This results in saturation of the controller’s control 

force, causing the rotor vibration force to increase sharply, and this seriously affects the 

operational stability of the high-speed motor rotor system. Therefore, it is necessary to 

compensate for this unbalanced force.  

6.1. Principle of Unbalanced Vibration Compensation Method 

The basic principle of the compensation method proposed in this paper is to extract 

the same frequency vibration signal from the rotor, from which a compensation signal can 

be generated and injected into the output channel of the controller; then, a compensation 

force that is equal and opposite to the rotor’s centrifugal force is generated by the AMB to 

compensate for the centrifugal force, and the rotor is forced to rotate around its geometric 

axis. The aim of this method is to minimize the rotor vibration amplitude, and it begins 

by identifying the position of the rotor mass center. Here, a correlation method in the sig-

nal processing technique is applied that can extract the amplitude of the fundamental fre-

quency of the vibration signal accurately from the radial channels of the AMBs. 

The displacement vibration signal of the radial AMB channel can be given as 

1 1 2 2
( ) c o s s i n c o s 2 s i n 2f t a t b t a t b t          (29)

when only the fundamental frequency vibration is considered, and the following can 

be obtained by performing a Fourier series expansion: 
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(30)

Then, according to digital signal processing theory, the sampling period is set as Ts, 

and the Fourier coefficient of the same frequency vibration signal at this time is: 
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(31)

The vibration signal amplitude at the rotor A end can be defined as 2 2

a x x
E a b  , 

which represents the intensity of the vibration at the rotor A end at the current sampling 

time.  

As illustrated in Figure 11a, the detailed steps for the quadrangle search method for 

the unbalanced mass center position are as follows:  

1. Randomly define a search starting point, usually by selecting the origin point (α,β)0 = 

(0,0), r0 = R∠0, where α = εcosφ and β = εsinφ; 

2. The kth step, rk−1 = R∠ψk−1, (α,β)k = (α,β)k−1 + rk−1; 

3. 
1

1

, ( ) ( 1))

, ( ) ( 1))
2

k k k k a a

k k k k a a

r R if E k E k

r R if E k E k
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
  





        



        


; 

4. Output the search result ( , ) ( ) )

Return to step 2  continue search ( ) )
k a t

a t
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k k if E k E

     
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     

 , ,
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(a) (b) 

Figure 11. Diagrams of fixed and variable step size search processes. (a) Fixed step size search. (b) 

Variable step size search. 

Iterative searching with a fixed step size can be used to identify unbalanced param-

eters, but the identification precision of the algorithm is only R (i.e., one step size). To 

improve the algorithm’s convergence precision, the size of R must be reduced, but a re-

duction in R will increase the search time. Therefore, the precision and speed of the con-

vergence of the unbalanced search method with the fixed step size are contradictory. To 

solve this problem, a variable step size algorithm is used in this work. In the initial stage 

of the search, a large step size is used, and the step size is then reduced gradually. Finally, 

the target position is approached with an infinitely small error to ensure high convergence 

precision. 

The core variable step size algorithm Is 

( ) ( 0 ) ( )
a

R k R E k  (32)

The actual effect of this algorithm is illustrated in Figure 11b. The simulation shows 

that the search path of the quadrangle method is more direct and more efficient than those 

of other search methods such as the triangle and pentagon methods. If the starting thresh-

old is set to zero, it converges fully to obtain the exact unbalanced parameters.  

6.2. Realization of Unbalanced Vibration Compensation 

From (7) and the inverse system decoupling method, it can be found that 

1 1

i u
Y cY kY I K L f       (33)

It is only necessary to inject the compensation current Iu = −Ki−1L−1fu into the current 

channels, and then, precise compensation of the unbalanced vibration can be achieved.  

7. Simulation and Experiments 

7.1. Simulation with Simulink 

7.1.1. Response Performance Testing of Closed-Loop System 

When the AMB-rigid rotor system uses closed-loop control, each radial independent 

channel adopts a μ-controller that is tuned using the multi-objective optimal method. 

When simulating a rotor that is statically suspended (i.e., n = 0 rpm) at the working point, 

square wave signals with amplitudes of 0.1 mm are added to the input of each channel, 

and the transient time response at the output of each channel is shown in Figure 12. The 

simulation results show that the transient time response to the reference input is relatively 

fast: the rise time is less than 1 ms, the settling time is less than 10 ms, and the tracking 

error is almost zero. Hence, the target of high-precision control is realized. 
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Figure 12. Static rotor simulation. 

7.1.2. Robust Performance Testing of Closed-Loop System 

When the rotor is suspended stably in the center position and rotates at its rated 

speed (n = 3000 rpm), a sinusoidal signal with a frequency of 50 Hz and eccentricity ε of 1 

× 10−4 m is injected into the control system at t = 0.1 s to test the anti-disturbance perfor-

mance of the rotor system. The corresponding output signal waveform is shown in Figure 

13. The green line represents the equivalent vibration caused by the eccentric force at the 

system’s output end, which has an amplitude of 0.1 mm; the red line is the output wave-

form of the decentralized PID controller. The design and adjustment of this controller 

were achieved by defining the equivalent stiffness and equivalent damping of the AMB 

and by analyzing the influences of bias currents on them and on the critical speed of the 

rotor system. Then, numerical simulations and experiments were carefully carried out to 

tune the PID parameters for this test rig (P = 6500, I = 1000, D = 4.5) [18,19]; the blue line is 

the output waveform from the μ-controller. These results show that the μ-controller has a 

strong disturbance suppression capability, with a disturbance attenuation rate of 0.21, and 

its displacement vibration peak value is 65.8% smaller than that of the PID controller.  

 

Figure 13. Anti-disturbance simulation of the μ-controller. 
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In Figure 14, the singular value curve of the optimal μ-controller shows that the μ-

controller has a strong suppression force relative to the external disturbance below a fre-

quency of 50 Hz, and stronger suppression occurs as the frequency decreases.  

 

Figure 14. Sensitivity function of the closed loop system. 

7.2. Experimental Results 

The magnetically levitated high-speed motor rig is shown in Figure 15. The motor is 

a 75 kW permanent magnet synchronous motor, where the rotor is supported by two 

AMBs in the radial direction and by a pair of permanent magnet bearings in the axial 

direction. The rig control system consists of a dSPACE controller, a two-level switching 

power amplifier, four non-contact eddy current sensors, and a host computer. The param-

eters used in the experiments are given in Table 3. 

 

Figure 15. AMB-rigid rotor platform. 



Actuators 2023, 12, 206 19 of 23 
 

 

Table 3. Parameters of the experimental platform. 

Symbol Description Value 

VDC DC-link voltage 100 V 

I0 maximum bias current 2.5 A 

Pt total available power 500 VA 

m mass of rotor 18.09 kg 

δ nominal air gap length 0.5 mm 

J transverse moment of inertia 0.2 kg·m2 

Jz polar moment of inertia 0.0223 kg·m2 

lA distance between the AMB-A and geometric center 140 mm 

lB distance between the AMB-B and geometric center 120 mm 

kx, ky displacement stiffness 542,464 N/m 

ki current stiffness 256.872 N/A 

7.2.1. Static Suspension Test 

When the rotor is actually suspended in the central position on the rig (n = 0 rpm), 

the transient response of xa is as shown in Figure 16. In the figure, the red line represents 

the response waveform of the decentralized PID controller, and the blue line represents 

the response waveform of the optimal μ-controller. The figure shows that the overshoot 

of the μ-controller is smaller, its settling time is shorter, there is no floating transition time, 

and its overall performance is thus better.  

 

Figure 16. Transient response of the static rotor. 

7.2.2. Decoupling Performance Test 

At 6000 rpm, the reference input of xa stepped up from 0 to 0.1 mm. The radial dis-

placements of the AMB-rigid rotor system in this case are as shown in Figure 17. These 

results demonstrate that the step change in the radial displacement xa does not lead to 

variations in the other three radial displacements, i.e., the four radial displacements of the 

control system are decoupled completely. These experimental results are consistent with 

the theoretical analysis, and thus, the expected goal of the control system design has been 

realized.  
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Figure 17. Radial displacements at a speed of 6000 rpm. 

7.2.3. Active Vibration Control of the AMB-Rigid Rotor System 

After decoupling via the inverse system method, the gyro coupling effect in the radial 

channels of the closed-loop rotor system is eliminated completely, and there is only the 

eccentric disturbance vibration with the same frequency as the speed. As Figures 18 and 

19 show, the rotor vibration amplitudes before compensation were slightly less than 0.05 

mm and slightly greater than 0.05 mm at 6000 rpm and 10,000 rpm, respectively.  

 

Figure 18. Rotor trajectories without/with unbalanced vibration compensation at 6000 rpm. 

Figure 18 shows that as a result of the anti-disturbance effect of the μ-controller and 

the effect of the compensation algorithm, the unbalanced vibration is effectively 
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suppressed at 6000 rpm, and thus, the rotor motion trajectory after compensation is very 

small. Figure 19 also shows that even at a higher rotational speed, the unbalanced vibra-

tion can largely be controlled, and active displacement vibration control is achieved. 

 

Figure 19. Rotor trajectories without/with unbalanced vibration compensation at 10,000 rpm. 

To test the effectiveness of the proposed compensation algorithm over the full rota-

tional speed range, uniform acceleration running testing of the AMB-rigid rotor system 

was performed. During the test, the motor accelerated from 0 rpm to 12,000 rpm with a 

constant acceleration of 2π rad/s2, and the results are shown in Figure 20.  

 

Figure 20. Unbalanced response curve of the rotor system over the full rotational speed range. 

As Figure 20 shows, μ-control does not have a first-order vibration peak like that of 

PID control, and the acceleration curve is both continuous and smooth. With the applica-

tion of the compensation algorithm, the rotor vibration is greatly suppressed to within 
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0.02 mm and is later close to zero. As the speed continues to increase beyond 12,000 rpm, 

the vibration displacement of the rotor tends to show a constant amplitude; this is called 

the “self-centering” effect. The rotor rotates around its inertial axis and operates in a true 

force-free state. The high-speed motor rotor system has thus achieved active vibration 

control over its full rotational speed range.  

8. Conclusions 

In this paper, a μ-synthesis strategy for AMBs in a high-speed motor is proposed. 

The determination of the appropriate weight functions Wp and Wu represents a key step 

in the μ-control scheme. By defining a second-order weighting function Wp with higher 

degrees of freedom, a multi-objective ant colony algorithm based on this function can be 

used to search for the optimal sensitivity function to achieve the fastest possible response 

speed, the highest stability margin, and the strongest external disturbance attenuation for 

the closed-loop system under study. By using the perturbation method for uncertain pa-

rameters, it is theoretically guaranteed that the control system will be robust and stable 

up to its rated speed (n = 12,000 rpm), and the stability margin is 5.11 times (i.e., it is stable 

within a vibration amplitude of 0.25 mm). The simulation results also show that the opti-

mal μ-controller has an excellent disturbance suppression ability, which weakens the un-

balanced disturbance vibration of the rotor system at low speeds by as much as 65.8% 

when compared with the classical PID controller. At higher rotational speeds, a compen-

sation algorithm based on real-time variable step size iterative searching for eccentric po-

sitions is applied to enhance the disturbance rejection of the controller. Further experi-

ments show that the algorithm can realize unbalanced displacement vibration compensa-

tion over the full rotational speed range. The entire control strategy can not only ensure 

stable rotor suspension but also can suppress the disturbance vibration strongly. The μ-

controller’s response performance is also greatly improved when compared with the PID. 

The μ-control strategy performs excellently in both static and dynamic conditions and is 

the preferred choice to replace PID. The realization of an optimal μ-controller also pro-

vides effective information and a reference for AMB engineering design practice.  
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