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Abstract: To solve the problem that it is difficult to accurately identify the rotor eccentric fault,
demagnetization fault and hybrid fault of a permanent magnet synchronous motor (PMSM) with a
slot pole ratio of 3/2 and several times of it, this paper proposes a method to identify the rotor fault
based on the combination of branch current analysis and a machine learning algorithm. First, the
analysis of the electrical signal of the PMSM after various types of rotor faults shows that there are
differences in the time domain of the electrical signal of the PMSM after three types of rotor faults.
Considering the symmetry of the structure of the PMSM with a slot-pole ratio of 3/2 and its integer
multiples, the changes in the time domain of the phase currents cancel each other after the fault, and
the time domain fluctuations of the stator branch currents that do not cancel each other are chosen as
the characteristics of the fault classification in this paper. Secondly, after signal preprocessing, feature
factors are extracted and several fault feature factors with large differences are selected to construct
feature vectors. Finally, a genetic algorithm is used to optimize the parameters of a support vector
machine (SVM), and the GA-SVM model is constructed as a classifier for multifault classification of
permanent magnet synchronous motors to classify these three types of faults. The fault classification
results show that the proposed method using branch current signals combined with GA-SVM can
effectively diagnose faulty PMSM.

Keywords: permanent magnet synchronous motor (PMSM); branch current analysis; machine learning;
support vector machine (SVM); GA-SVM

1. Introduction

A permanent magnet synchronous motor (PMSM), which is characterized by simple
excitation, compact structure and high-power density, is widely used in sustainable wind
power generation, new energy vehicles, rail transit and other fields [1,2]. However, as
an engine for driving various heavy-load equipment, this type of motor must run in a
harsh and even extreme environment for a long time and inevitably suffer from various
faults. Hence, it is of great significance to focus on the reliability of PMSM for driving
various high-end equipment to minimize faults and errors [3]. The rotor of the PMSM is
a key component, and its faults can severely undermine the working performance of the
PMSM. There are three typical rotor faults: eccentricity fault, demagnetization fault (local
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demagnetization of the permanent magnet) and hybrid fault (the coexistence of the first two
faults) [4]. These three faults have different causes, but the fault characteristics generated
by them in PMSM are similar, as specific harmonic components will be introduced into
various signals of the motor. These harmonic components can be expressed as [5]:

f f a = (1± k
p
) fs k = 1, 3, 5, . . . (1)

where fs is the power frequency, k is an integer constant and p is the number of pole pairs.
From Formula (1), the fault characteristics of different fault types share the same frequency,
so it is difficult to effectively distinguish these three types of faults by using these harmonic
components. However, it is noteworthy that when fixing these three rotor faults, different
methods are to be taken and different components are to be replaced, and any misdiagnosis
or misjudgment of faults can waste maintenance time and even lead to equipment damage.
Hence, it is of great importance to carry out a study on the diagnosis and identification of
these three faults for rapid and accurate diagnosis and repair of motor faults.

At present, the research on the diagnosis of PMSM faults mainly focuses on the analysis
of a single fault, eccentricity fault or demagnetization fault [6,7]. By analyzing items such
as the voltage [8], current [9], magnetic signal [10], vibration and torque signals, [11,12] of
the motor, these studies use different processing methods to extract the fault characteristics
of the signals, and the fault characteristics are adopted to recognize the corresponding
faults [13]. Among them, motor current signal analysis (MCSA) is the most commonly used
method in industrial scenarios because of its ease of acquisition and ability to realize online
detection without the need for additional sensors [9]. Additionally, due to the symmetry of
the topology and winding structure of the permanent magnet motor with a slot-pole ratio
of 3/2 and its integer times, many fault characteristics of the motor with faults are set off
against each other in each branch of the phase current; in this case, the fault characteristics
will disappear in the phase current signals of the fault motor but exist in a certain branch
current [14]. Therefore, the motor branch current signal (MBCS) analysis can be adopted to
identify the aforementioned faults.

Traditional time-domain or frequency-domain analysis methods cannot effectively
distinguish the three faults because they have similar fault characteristics in various signal
time domains and frequency domains. Against the backdrop of the rapid development of
big data and artificial intelligence, the machine learning method based on data analysis can
be used to realize online detection, identification and accurate diagnosis of multiple types of
faults in PMSM [15]. Linear discriminant analysis (LDA), a supervised learning algorithm,
is employed to identify multiple faults of the PMSM, in which frequency-domain harmonics
of the current serve as the classification characteristic to recognize the eccentricity fault,
demagnetization fault and interturn short circuit fault in the PMSM [16]. Although the
results show that LDA has a high accuracy in recognition, there is a lack of other available
methods to compare and verify the effectiveness of LDA. The changes of the d-q shaft
voltage of eccentricity fault, demagnetization fault and interturn short circuit fault of PMSM
can also be used as a fault classification characteristic and combined with machine learning
algorithms, such as k-nearest neighbor (KNN), LDA and quadrature discriminant analysis
(QDA), to classify the three types of faults [17,18]. However, classifiers such as LDA and
KNN suffer from problems of over-fitting and present low accuracy in processing categories
with a small amount of nonlinear samples. Furthermore, there are also other classifier
models available for fault classification, such as neural networks [19], supporting vector
machines (SVMs) [20] and deep learning [21].

An SVM enjoys good generalization possibilities, so it can better solve problems caused
by nonlinearity and a small number of samples than other classifiers. SVM was used for
stator winding fault detection and classification in PMSM, showing good classification
performance [22]. However, the performance of the SVM is largely dependent on parameter
selection, so SVM is often integrated with parameter optimization algorithms, such as
a genetic algorithm (GA) and particle swarm optimization. Advanced deep learning
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algorithms, such as convolutional neural networks (CNN), have also been adopted to
diagnose and classify faults in PMSM [23], but CNN requires a larger size of sample
data, higher-quality hardware and more calculation time compared with other traditional
machine learning algorithms, such as the SVM. To sum up, it is the current focus of research
to combine a generalized parameter optimization algorithm with SVM as the classifier for
multifault classification in PMSMs [24].

In the abovementioned machine learning algorithms, characteristics of frequency-
domain signals of fault in PMSM are extracted as the classification characteristic, while the
time-domain characteristics are usually ignored. Eccentricity fault and demagnetization
fault have very similar current frequencies, so it is difficult to distinguish them. In the
field of mechanical system fault diagnosis, there are well-established methods for signal
time-domain feature extraction, such as analyzing the characteristic factors of signals [25].
The extraction of time-domain fault characteristics is performed in a more direct way and
the fault characteristics involved can be well maintained during signal changes, so time-
domain fault characteristics have the potential to be taken as the classification indicator.
The commonly used methods for time-domain characteristic extraction include wavelet
transforms (WT) [26], Hilbert–Huang transforms (HHT) [27], etc., but these methods
are influenced by the window functions and have problems with mode mixing. Taking
extracted characteristic factors as the characteristic vector for fault classification is adopted
in this paper because this method has high sensitivity and is free from influences of
other factors.

Based on the work and results shown in the literature [14], this paper uses motor
MBCS as the fault signal for studying the diagnosis as well as the classification of the
three faults of PMSM: eccentricity fault, demagnetization fault and hybrid fault. First, the
MBCS is extracted from a healthy motor with various faults. The extracted MBCS was
subtracted from the MBCS during normal operation of the motor for residualization and
then normalized. Second, the MBCS characteristic factors were extracted after the residual
normalization process and were used as features for fault classification to construct the
characteristic vector. Third, the GA-SVM algorithm was used to establish classification
models for three rotor faults in PMSM. Fourth, the fault motor data are obtained by value
calculation and the classification results of the GA-SVM algorithm are compared with
those of other commonly used machine learning classification algorithms so as to prove the
feasibility of the method in this paper.

2. Theoretical Analysis on PMSM Rotor Faults

In this section, the fault characteristics of three faults (eccentricity fault, demagneti-
zation fault and hybrid fault) are analyzed and their similarities and differences are also
compared, thus providing a theoretical basis for the extraction of the fault characteristic
vectors required for the subsequent classification of the classifier in this paper.

2.1. Analysis of Induced Electromotive Force

The analysis of the healthy motor model is necessary before establishing models for
fault motors. This paper first focuses on the analysis of the induced electromotive force
generated by a rotor in the stator slot. According to the armature reaction of a permanent
magnetic motor, the permanent magnet in the rotor generates an induced electromotive
force E(t) in the stator winding when the motor is rotating. E(t) can be obtained by
calculating the derivative of flux linkage ψs, as shown in Formula (2).

E(t) = −dψs

dt
(2)

where flux linkage ψs is a function correlated to the location of the rotor angle θr and can
be expressed as:

ψs(θr) = πrl
∞

∑
n=1

NnBn cos(nθr) (3)
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where r is the air gap radius; l is the axial length of motor; Nn is the function amplitude of
the stator winding distribution with a reference angle θs; Bn is the density amplitude of the
flux covering the surface of a single slot winding. At a constant rotational speed, θr = ωr t,
in which ωr is the mechanical angular velocity, and the induced electromotive force E(t)
can be expressed as:

E(t) = πrlωr

∞

∑
n=1

nNnBn cos(ωrt) (4)

It can be seen from Formula (4) that the induced electromotive force is influenced by
the magnetic flux density function, or the flux density on the surface of the slot winding.
In a healthy motor, the induced electromotive force varies periodically and there are no
harmonic components. However, when the motor is faulty, whatever the type of fault, the
magnetic flux density function is influenced.

2.2. Influence of Eccentricity Fault on Induced Electromotive Force

Rotor eccentricity refers to the uneven distribution of the air gap length between
the rotor and stator of a motor within the circumference. In a healthy machine, the air
gap length between the rotor and stator is evenly distributed, but in a machine with an
eccentricity fault, the distribution is uneven. A rotor eccentricity ratio is divided into three
categories: static eccentricity (SE), dynamic eccentricity (DE) and hybrid eccentricity (HE).

Taking dynamic eccentricity as an example, this paper analyzes the influence of rotor
eccentricity on the induced electromotive force. As shown in Figure 1, when the rotor
rotation center axis coincides with the stator center axis but not with the center axis when
the rotor is stationary, the air gap length changes with rotor rotation. The change in air gap
length can lead to a change in the air gap permeability of the motor, thus causing a change
in the air gap flux magnetic density of the motor. The detailed process is shown as follows:
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Figure 1. Diagram of the dynamic eccentric motion of the rotor.

When DE occurs in PMSM, the air gap length at any mechanical angle changes with
the motion of the rotor, as shown in Figure 2. δ, the air gap length of eccentricity fault, is
expressed as:

δ(ϕ, t) = δh

(
1− e

δh
cos(wrt− ϕ)

)
(5)

where δh is the length of the radial air gap when the motor is healthy and e is the eccen-
tric distance.
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Figure 2. Rotor dynamic eccentricity.

The air gap permeability can be expressed as:

Λ(ϕ, t) =
1

δ(ϕr, t)
=

1
δh(1− ε cos(wrt− ϕ))

=
1
δh


1 + ε cos(wrt− ϕ)

− (ε cos(wrt−ϕ))2

2

+ (ε cos(wrt−ϕ))3

6
+ · · ·

 (6)

where ε denotes the eccentricity degree, and ε = e/δh. Since ε and the cosine function are
both smaller than one, contents below the third item in Formula (6) can be ignored. The air
gap permeability can also be expressed as:

Λ(ϕ, t) =
1
δh

(
1 + ε cos(

ws

p
t− ϕ)

)
(7)

where ws = pwr, ws is the electromechanical angular velocity and p denotes the number of
pole pairs in a permanent magnetic motor. According to Ampere’s Law, Bs, the air gap flux
density of the motor stator, can be defined as:

Bs(ϕ, t) = Λ(ϕ, t)
∫

µ0 js(ϕ, t)dϕ (8)

js(ϕ, t) = j0 sin(wst− pϕ) (9)

where µ0 is the vacuum magnetic permeability; js is the current density of the inner surface
of the stator; j0 is the peak value of the current density. Formulas (7) and (9) are substituted
in Formula (8) to get Formula (10).

Bs(ϕ, t) =
µ0 j0
δh p

cos(wst− ϕ) +
µ0 j0ε

2δh p
cos

((
1± 1

p

)
wst− (p± 1)ϕ

)
︸ ︷︷ ︸

harmonic components

(10)
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When the ignored part of Formula (6), the effect of the winding structure and loading
conditions of the motor, are all considered, Bs, the air gap flux density of the motor’s stator,
can be expressed as:

Bs(ϕ, t) =
µ0 j0
δh p

cos(wst− ϕ) +
µ0 j0ε

2δh p
cos

((
1± 2n− 1

p

)
wst− (p± 1)ϕ

)
︸ ︷︷ ︸

harmonic components

(11)

Formula (11) represents the change in Bs when the motor suffers dynamic eccentricity,
where n is a positive integer. On the main magnetic circuit of the motor, the air gap flux
relates to the stator surface flux. The existence of stator reluctance can lead to a magnetic
potential drop, so Bn can be estimated as:

Bn(ϕ, t) = ηBs(ϕ, t) (12)

where η is used to mathematically express the change in Bn corresponding to Bs. It is
usually in the range of [0, 1]. When Formula (12) is substituted in Formula (11), the stator
surface flux density Bn of the motor with DE fault can be expressed as:

Bn(ϕ, t) = η
µ0 j0
δh p

cos(wst− ϕ) +
ηµ0 j0ε

2δh p
cos

((
1± 2n− 1

p

)
wst− (p± 1)ϕ

)
︸ ︷︷ ︸

harmonic components

(13)

Formula (13) represents that when DE occurs in the motor, there will be (1 ± n/p) fs
harmonic components in Bn. Due to the change in Bn, such harmonic components will
also appear in the induced electromotive force of the motor, which can be evidenced
by Formula (4). Therefore, we consider the higher power part neglected in Formula (6).
When the motor suffers DE, it is for sure that various electrical signals will appear at the
specific frequency of the fault harmonics. The frequency of these faulty harmonics can be
expressed as:

fec = (1± n
p
) fs (14)

where fs is the power frequency of the motor. Eec(t), the induced electromotive force when
eccentricity fault occurs, can be expressed as:

Eec(t) = πrlωr


∞
∑

n=1
nNnη

µ0 j0
δh p cos(wst− ϕ)+

∞
∑

n=1
nNn

ηµ0 j0ε
2δh p cos

((
1± n

p

)
wst− (p± 1)ϕ

)
︸ ︷︷ ︸

harmonic components

 (15)

2.3. Influence of Demagnetization Fault on Induce Electromotive Force

A demagnetization fault refers to the partial or complete loss of the ability of the
permanent magnet in the motor rotor to generate magnetic flux. High temperatures and
overloading are the main causes of irreversible demagnetization. As analyzed in the
literature [14], according to the armature reaction of a permanent magnetic motor, demag-
netization of the permanent magnets in the rotor generated in a single slot is irregular in the
counter electromotive force. This is because the flux density generated by a demagnetized
permanent magnet decreases and when this permanent magnet acts on a specific slot, the
generated induced electromotive force decreases, while the induced electromotive force
generated by other permanent magnets that are not demagnetized remains unchanged.
Under such circumstances, there is a distortion of the induced electromotive force gener-
ated in a stator slot within one mechanical cycle. Ede_slot, the counter electromotive force
generated by the fault motor rotor in a stator slot, can be expressed as [14]:
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Ede_slot = Vslot

(
1− Kde

2p

)
cos(2π fet)− KdeVslot

∞

∑
n=1

1
nπ

sin(
πn
2p

) cos
(

2π fet
(

1± n
p

))
︸ ︷︷ ︸
harmonic components

(16)

where Vslot is the amplitude of a counter electromotive force generated by a healthy motor
in a stator slot; Kde indicates the demagnetization degree of a single permanent magnet; p is
the number of pole pairs of the motor and fe is the fundamental frequency of the motor.

Due to the phase difference of the induced electric potential in each slot, according to
the principle of induced electromotive force superposition, the branch induced electromo-
tive force of the healthy AC motor is the superposition of the induced electromotive forces
of each slot of the branch, which can be expressed as:

Ede_b = 2GkN1Ede_slot (17)

G =

{ p
a q single-layer winding

2 p
a q double-layer winding

(18)

where kN1 is the coefficient of motor winding; G is the winding coefficient, which can be
expressed in Equation (18). q is the number of slots per pole per phase, and q = Q/2mp;
a is the number of the branch of the motor. Taking Equation (16) in Equation (18) into
Equation (17) for calculation, the branch current Ede_b is expressed as:

Ede_b = 2GKN1Vslot

(
1− Kde

2p

)
cos(2π fet)− 2KdeGKN1Vslot

∞

∑
n=1

1
nπ

sin(
πn
2p

) cos
(

2π fet
(

1± n
p

))
︸ ︷︷ ︸
harmonic components

(19)

The analysis in the literature [14] shows that for such a symmetrically winding perma-
nent magnetic motor whose slot-pole ratio is 3/2 or its integer times, (this type of motor can
be divided equally into several small units with 3n slots per group of two poles. These small
units are evenly distributed over a space of 360 degrees.) there is partial demagnetization,
the fault characteristic harmonics in the phase-induced electromotive force and current will
set off against each other, and the periodic distortions of the phase-induced electromotive
force and current disappear. In order to observe the characteristics of signal distortion after
the motor fault, the MBCS of the motor is thus selected to analyze the demagnetization
fault of a permanent magnetic motor. The harmonic frequency of a demagnetization fault
can be expressed as:

fde = (1± n
p
) fs (20)

2.4. Influence of Rotor Fault on Current

According to the motor voltage equilibrium equation, the relationship between Efa
(counter electromotive force of the fault motor) and ifa (current of the fault motor) is
expressed as:

U = Ri f a + L
di f a

dt
+ E f a (21)

where R and L represent the resistance and inductance of the motor, respectively. When the
motor rotates at an angular velocity of ω, the current in Formula (21) can be expressed by
the phasor.

.
I f a =

U −
.
E f a

R− jwL
(22)

The voltage and current of the AC permanent magnet motor are triangular periodic
functions, as is the counter electromotive force. When there is a rotor fault in the motor, the
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fault components generated in the counter electromotive force lead to the appearance of
the same specific fault components in the current.

In conclusion, whether it is an eccentricity fault or a demagnetization fault, the mag-
netic flux density generated by the motor rotor will be certainly affected, thereby affecting
the counter-electromotive force of the motor, so that a specific frequency harmonic com-
ponent appears in the counter-electromotive force. These harmonic components lead to
the appearance of the same harmonic components in the current. For a hybrid fault, which
includes both eccentricity faults and demagnetization faults, there exist characteristic fre-
quencies of the two faults in counter electromotive force and current. Additionally, it can
be seen from Formulas (14) and (20) that the frequencies of fault harmonics are similar,
indicating that it is difficult to accurately classify eccentricity faults, demagnetization faults
and hybrid faults by analyzing their frequency-domain fault characteristics.

It can be seen from Formulas (15) and (19) that although all three types of faults lead
to the appearance of similar harmonic components in the counter electromotive force of
the motor, the three types of faults cause this distortion for varied reasons and there are
differences in the induced electromotive force time domain. For a demagnetization fault in
which several certain permanent magnets are demagnetized, and the counter electromotive
force reduces only when the fault permanent magnet rather than the healthy one passes
through a certain slot during a mechanical cycle of the motor motion; it is not the case for
an eccentricity fault in which the overall air gap flux density presents distortion, so the
counter electromotive forces within the whole mechanical cycle are affected. This paper
analyzed these three faults in terms of the time-domain characteristics of signals. The
characteristic vectors of fault classification were constructed by extracting the characteristic
factors of signals, and then these time-domain characteristic factors were identified by
machine learning algorithms to classify the three types of faults.

3. Signal Analysis and Characteristic Extraction

This section is mainly about the acquisition, preprocessin, and characteristic extraction
of MBCS of the three faults. The signals for each type of fault were obtained by numerical
operation. This section also focuses on the characteristic factors of signal selection and the
establishment of characteristic vectors for fault classification.

3.1. Numerical Calculation

With an 8-pole and 48-slot surface-mounted PMSM as the research object, this paper
established a simulation model to obtain MBCS of the three types of faults. The main struc-
tural parameters and model of the motor are shown in Table 1 and Figure 3, respectively.
The simulation analysis is carried out in the open-loop control of PMSM. The operation
state of the permanent magnet motor with different loads at rated speeds was simulated.
A two-dimensional analysis model was established in the finite element software to sim-
ulate the healthy motor and motors with three different faults setting Br (remanence of
permanent magnet material) for demagnetization fault by changing the motor rotation
center for eccentricity fault, and setting three types of faults simultaneously for hybrid fault.
Given that signal samples of the same type of fault have differences, this paper randomly
sets different fault degrees for each type of fault and simulates the working conditions of
motors with different loads. The specific working conditions of the motor settings under
various faults are shown in Table 2. The winding of the PMSM is a star-type connection.

As shown in Figure 3b, the number of parallel branches of the permanent magnet
motor simulated in this paper is two (a = 2). The numbers in Figure 3b are the permanent
magnet numbers. The two branches are symmetrically distributed, and each branch is
composed of four coil assemblies with series connections. Figure 3b shows that the mesh of
the finite element model is encrypted, especially at the air gap, to ensure the accuracy of
this model calculation. The MBCS of A1 was acquired to analyze the fault of the motor.
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Table 1. Parameters of the adopted motor.

Parameter Value Parameter Value

Rated output power 28.3 kW Number of poles(2p) 8
Rated speed 1500 r/min Number of slots(Q) 48

Rated voltage 345 V Number of phase(m) 3
Length 200 mm Parallel branches(a) 2

Stator outer diameter 230 mm Magnet thickness 4.5 mm
Stator inner diameter 149 mm Embrace 0.87
Rotor outer diameter 147 mm Magnet type XG196/96
Rotor inner diameter 60 mm
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Figure 3. Topology structure of the PMSM. (a) Geometric model. (b) Winding construction.

Table 2. The specific working conditions of the motor settings under various faults.

Fault Type Rated Speed Torque of Load Fault Settings

Eccentric fault 1500 r/min
180.16 N, 144.128 N, 108.096 N,

72.064 N, 36.032 N

Static eccentric 0.3 mm
Dynamic eccentric 0.4 mm

Static eccentric 0.2 mm and dynamic eccentric 0.2 mm
(hybrid eccentric)

Demagnetization fault 1500 r/min
180.16 N, 144.128 N, 108.096 N,

72.064 N, 36.032 N

No. 5 pole demagnetization 20%
No. 3 and 5 pole demagnetization 20%
No. 4 and 5 pole demagnetization 20%

Hybrid fault 1500 r/min
180.16 N, 144.128 N, 108.096 N,

72.064 N, 36.032 N

No. 5 pole demagnetization 20% and static eccentric 0.3 mm
No. 3 and 5 pole demagnetization 20% and

Dynamic eccentric 0.4 mm
No. 4 pole demagnetization 20%, static eccentric 0.2 mm and

dynamic eccentric 0.2 mm

The finite element software was used to solve various models so that the MBCS could
be obtained and sampled for the whole cycle. Figure 4 shows a set of MBCS for healthy
motors, demagnetized motors, motors with eccentricity and motors with hybrid faults at
full load under full-cycle sampling.

It can be seen from Figure 4a that within a mechanical cycle, there are differences in the
time domain waveforms of various fault currents, but the differences are so insignificant
that they need to be enhanced by preprocessing the signals. Figure 4b shows the frequency-
domain characteristics of various faults. The frequency domain of the branch currents for
all three types of faults in the figure adds the characteristic harmonic components of 25 HZ,
75 HZ, 125 HZ and 175 Hz at (1 ± n/p) fs with similar harmonic components. Therefore,
the analysis of current frequency domain features can only diagnose the motor with rotor
faults but cannot accurately diagnose the specific fault of the motor.
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Figure 4. MBCS waveforms of motors with different faults (a) in the time domain and (b) in the
frequency domain.

3.2. Signal Preprocessing

It can be seen from Figure 4 that originally the currents of different faults had in-
significant differences in time-domain waveforms, and their differences were mainly on
the wave peaks. In this paper, the time-domain waveforms of different fault currents
were processed for residuals for the reason that the residual value signal of the current
time-domain waveform can filter out the differences between various types of time-domain
waveforms and enhance the differences. The detailed steps are presented as follows:

Step 1: Acquire the MBCS within a whole mechanical cycle of the healthy motor under
various load conditions, and conduct residual processing on the difference between the
MBCS of the healthy motor and of motors with faults under the same working condition.

Step 2: Normalize the obtained residual value signals of various fault branch currents.
Figure 5 shows the residual and normalized results of a set of fault current signals.

Actuators 2023, 12, x FOR PEER REVIEW 10 of 19 
 

 

motors, demagnetized motors, motors with eccentricity and motors with hybrid faults at 

full load under full-cycle sampling. 

100 110 120 130 140
-45

-30

-15

0

15

30

45

60

C
u

rr
en

t 
[A

]

Time [ms]

 Demagnetization fault

 Eccentric fault

 Hybrid fault

 
0 25 50 75 100 125 150 175 200

0

10

20

30

40

50

(1+3/p)fs
(1−1/p)fs

(1+1/p)fs

fs

C
u

rr
en

t 
[A

]

 Demagnetization fault  Eccentric fault  Hybrid fault

Frequency [Hz]

(1−3/p)fs

 

(a) (b) 

Figure 4. MBCS waveforms of motors with different faults (a) in the time domain and (b) in the 

frequency domain. 

It can be seen from Figure 4a that within a mechanical cycle, there are differences in 

the time domain waveforms of various fault currents, but the differences are so insignifi-

cant that they need to be enhanced by preprocessing the signals. Figure 4b shows the fre-

quency-domain characteristics of various faults. The frequency domain of the branch cur-

rents for all three types of faults in the figure adds the characteristic harmonic components 

of 25 HZ, 75 HZ, 125 HZ and 175 Hz at (1 ± n/p) fs with similar harmonic components. 

Therefore, the analysis of current frequency domain features can only diagnose the motor 

with rotor faults but cannot accurately diagnose the specific fault of the motor. 

3.2. Signal Preprocessing 

It can be seen from Figure 4 that originally the currents of different faults had insig-

nificant differences in time-domain waveforms, and their differences were mainly on the 

wave peaks. In this paper, the time-domain waveforms of different fault currents were 

processed for residuals for the reason that the residual value signal of the current time-

domain waveform can filter out the differences between various types of time-domain 

waveforms and enhance the differences. The detailed steps are presented as follows: 

Step 1: Acquire the MBCS within a whole mechanical cycle of the healthy motor un-

der various load conditions, and conduct residual processing on the difference between 

the MBCS of the healthy motor and of motors with faults under the same working condi-

tion. 

Step 2: Normalize the obtained residual value signals of various fault branch cur-

rents. Figure 5 shows the residual and normalized results of a set of fault current signals. 

100 110 120 130 140
-5

-4

-3

-2

-1

0

1

2

3

4

C
u

rr
en

t 
[A

]

Time [ms]

 residual value

 Normalized residual value
Demagnetization fault

 
100 110 120 130 140

-4

-2

0

2

4

6

8

C
u

rr
en

t 
[A

]

Time [ms]

 residual value

 Normalized residual value
Eccentric fault

 

(a) (b) 

Actuators 2023, 12, x FOR PEER REVIEW 11 of 19 
 

 

100 110 120 130 140

-4

-2

0

2

4

6

8

10
 residual value

 Normalized residual value

C
u

rr
e
n

t 
[A

]

Time [ms]

Hybrid fault

 

(c) 

Figure 5. Residual and normalized MBCS of different faults. (a) Demagnetization fault, (b) eccen-

tricity fault and (c) hybrid fault. 

It can be seen from Figure 5 that the residual value time-domain waveforms of dif-

ferent fault branch currents have significant differences in the number of peaks and the 

amplitudes among peaks. Since the fault degree also influences the MBCS residual value, 

the MBCS residual value is normalized in the interval [0, 1] to better compare the wave-

form characteristics of different faults and improve the accuracy of the subsequent classi-

fication model. Figure 6 shows a comparison of the normalization results for a set of faulty 

MBCS. 

100 110 120 130 140

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Low peak 

High peak 

Low peak line

 Demagnetization fault

 Eccentric fault

 Hybrid fault

C
u

rr
en

t 
[A

]

Time [ms]

High peak line

 

Figure 6. Normalized and MBCS residual value of different faults. 

As can be seen in Figure 6, the time-domain waveforms of the MBCS residual value 

normalized after different faults differ significantly in the amplitude and number of wave 

peaks. Meanwhile, in order to determine statistically the amplitude type and number of 

these wave peaks, the high peak lines and low peak lines are set in this paper, and the 

wave peaks are divided into high peak and low peak categories. This allows further com-

parison of the differences in the time-domain waveform fluctuations of the MBCS residual 

value after different rotor faults. The waveform types and numbers of the residual time-

domain waveforms of the branch currents for different faults are shown in Table 3. 

  

Figure 5. Residual and normalized MBCS of different faults. (a) Demagnetization fault, (b) eccentric-
ity fault and (c) hybrid fault.



Actuators 2023, 12, 145 11 of 19

It can be seen from Figure 5 that the residual value time-domain waveforms of dif-
ferent fault branch currents have significant differences in the number of peaks and the
amplitudes among peaks. Since the fault degree also influences the MBCS residual value,
the MBCS residual value is normalized in the interval [0, 1] to better compare the waveform
characteristics of different faults and improve the accuracy of the subsequent classification
model. Figure 6 shows a comparison of the normalization results for a set of faulty MBCS.
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Figure 6. Normalized and MBCS residual value of different faults.

As can be seen in Figure 6, the time-domain waveforms of the MBCS residual value
normalized after different faults differ significantly in the amplitude and number of wave
peaks. Meanwhile, in order to determine statistically the amplitude type and number of
these wave peaks, the high peak lines and low peak lines are set in this paper, and the wave
peaks are divided into high peak and low peak categories. This allows further comparison
of the differences in the time-domain waveform fluctuations of the MBCS residual value
after different rotor faults. The waveform types and numbers of the residual time-domain
waveforms of the branch currents for different faults are shown in Table 3.

Table 3. Waveform comparison of the residual values of the MSCS for different faults.

Fault Type High Peak Low Peaks Number of Wave Peaks

Demagnetization fault 2 0 2
Eccentric fault 1 2 3
Hybrid fault 1 1 2

It can be seen from Table 3 that there are significant differences in the amplitude and
number of wave peaks in the time-domain waveform of the MBCS residual value for differ-
ent faults, and their extraction and quantification can be used to identify the type of rotor
fault. The amplitude and number of wave peaks only represent the partial characteristics
of the signal in the time-domain dimensions, and they indicate the frequency of shocks
and fluctuations in the signal. In the signal time domain analysis, the impulse factor and
other characteristic factors can represent the time-domain fluctuation and distribution
characteristics of the signal more effectively, and they can be extracted more conveniently.
In order to combine machine learning algorithms for fault identification of rotor faults, this
paper further performs feature extraction on the time-domain dimensions of the signals,
quantifies the time-domain waveform differences in the MBCS residual value after various
types of rotor faults, and constructs fault feature vectors for subsequent fault classification
models for training and classification.
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3.3. Signal Characteristic Extraction

The time domain analysis of a signal is an intuitive analysis of the change in signal
characteristics information over time. The commonly used methods to extract signal
characteristics include mean value, root mean square value, waveform factor, kurtosis factor,
etc. First, 11 commonly used character factors were selected to establish fault characteristic
vectors. Table 4 shows the meanings and the corresponding statistical calculation formulas
of 11 characteristic factors.

Table 4. Meanings and statistical calculation formulas of selected characteristic factors.

Characteristic Factor Statistical Calculation Formula Characteristic Factor Statistical Calculation Formula Meaning

Absolute-mean
Deviation: F1

1
N

N
∑

n=1
|x(n)| Standard Deviation: F2

√
1

N−1

N
∑

n=1
[x(n)− x]2 Represents the

time-domain
fluctuation energy

of the signal
Root-mean-square

Value: F3

√
1
N

N
∑

n=1
x2(n) Peak Value: F4 max|x(n)|

Shape Factor: F5 F3/F1 Crest Factor: F6 F4/F3

Represents the
time-domain
distribution

characteristics of
the signal

Impulse Factor: F7 F4/F1 Margin Factor: F8 F4·
(

1
N

N
∑

n=1

∣∣∣√x(n)
∣∣∣)−2

Skewness: F9

N
∑

n=1
[x(n)−x]3

(N−1)σ3
x

Kurtosis: F10
N
∑

n=1
[x(n)−x]4

(N−1)σ4
x

Energy: F11
N
∑

n=1
x2(n)

In Table 3, x(n) refers to the time sequence function that represents the value of each
signal data point; N is the number of data points in the signal; x is the average value of
x(n); σx is the standard deviation of x(n). Eleven characteristic factors were extracted from
a group of preprocessed residual value signals of currents from three types of faults to
construct fault characteristic vectors. A comparison of the characteristic factors of a set of
three types of faults is shown in Figure 7.
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Figure 7. Characteristic factors of different rotor faults.

It can be seen from Figure 7 that various rotor faults show significant differences in
F7 (pulse factor), F8 (margin factor), and F9 (skewness), so these three factors can serve as
good characteristics for fault classification. While the similarity between F4 (peak value)
and F5 (waveform factor) is relatively high, it will interfere with the classification results
and affect the accuracy of the classification results, so they should be removed. Therefore,
this paper selected nine feature factors, such as F7 (pulse factor), F8 (margin factor), and F9
(skewness) to establish fault characteristic vectors.
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4. Fault Classification and Diagnosis Algorithm

This section is divided into three parts: first, introduce the optimization process of
SVM parameters by GA; second, the GA-SVM model is trained and tested by using the fault
characteristic vector samples obtained before; third, evaluate the accuracy of the GA-SVM
model in classifying different faults and compare its classification result with those of other
commonly used classification algorithms so as to verify the effectiveness of the method
proposed in this paper.

4.1. Diagnosis Principle Based on SVM

SVM is a binary classification model whose core lies in maximizing the “minimum
interval”. By establishing the kernel functions, SVM maps inseparable data to a high-
dimensional space and seeks a maximum interval hyperplane for data classification, as
shown in Figure 8.
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Figure 8. The optimal hyperplane.

In Figure 8, the square represents Sample A, the round represents Sample B, and H is
the optimal classification line for the optimal hyperplane. H1 and H2 are the parallel lines
of the two types of sample points closest to the optimal classification line H, respectively.
The distance between H1 and H2 is the classification interval. The sample points A1, A2
and B1 on the two lines are the points closest to H in the two types of samples, which are
called support vectors.

In the same inner product space D, there are many hyperplanes. Any hyperplane can
be expressed as: {

ωTx + b = 0|x ∈ D, b ∈ R
}

(23)

where ω is the linear predictor vector, and b is the offset. Assume L = {(x1, y1), . . . , (xi, yi), . . . ,
(xm, ym)} (where i = 1, . . . , m) as the sample set and yi = {1, −1} as the classification label.
If xi belongs to the first type, yi = 1; if xi belongs to the second type, yi = −1. The optimal
classification hyperplane can not only realize accurate classification but also maximize
the classification interval and thus converts to the problem of solving a second order
convex programming.

min
ω,ξ

1
2 ωTω + C

m
∑

i=1
ξi

s.t.yiω
T ϕ(xi) ≥ 1− ξi

ξi ≥ 0; i = 1, . . . , m

(24)

In Formula (24), ξi is the slack variable; m is the total number of samples; ϕ(xi) is
the characteristic mapping; C is the penalty factor, which is used to balance the model
complexity and loss error. The kernel function of SVM is the inner product function which
aims to segment the samples in high-order vectors. Whether the kernel function is suitable
or not hinges on the classification effect of SVM. There are three common kernel functions:
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radial basis function, linear kernel function, and polynomial kernel function. Radial basis
function is used as the kernel function of SVM in this paper, which is expressed as follows:

K(x, xi) = e−γ‖x−xi‖2
, γ > 0 (25)

where γ is the regularization parameter of the kernel function. As SVM is essentially a
binary classifier, multiple binary classifiers can be established to diagnose different types of
rotor faults; in this case, various motor faults can be classified by using only one solution.

4.2. SVM Parameter Optimization Based on GA

For SVM, the selection of penalty factor C and the kernel function parameter γ greatly
influences the generalization ability of input samples and the classification accuracy. How-
ever, the selection of C and γ is subject to subjective factors, so it is hard to pick out the
optimal values in practical scenarios. For this reason, GA is used in this paper to find out
the optimal values of C and γ in the SVM. The basic principle is to introduce the GA during
the establishment and training of the SVM classifier so that the search property of GA can
facilitate the excellent performance of the SVM classifier. The detailed operation steps are
as follows:

Step 1: Acquisition of branch current signals ib of PMSM operation under different
operating conditions after the occurrence of different types of rotor faults.

Step 2: The time-domain waveforms of the acquired branch currents ib are prepro-
cessed and the time-domain features are extracted to construct the fault feature vectors for
fault classification. These certain numbers of fault feature vector samples constitute the
sample set, and they are divided into training set and test set.

Step 3: Input training set samples. Binary encoding of the SVM parameters for which op-
timal values are sought, and determination of the population size and population initialization.

Step 4: Design the fitness function and calculate the fitness. Determine whether the
fitness meets the termination condition. If it is not satisfied, then the individuals in the
population take the genetic operations such as selection, crossover and mutation to obtain
the offspring population and recalculate the offspring population fitness. Continue to
determine if the termination condition is met. Iterate until the termination condition is met.

Step 5: When the loop iteration is performed until the termination condition is satisfied,
parameter binary decoding is performed and the optimal C and γ are output.

Step 6: The sought optimal parameters C and γ are assigned to the SVM (GA-SVM
model), and the GA-SVM model is trained in combination with the training set. After
training, a test set is used to perform a multi-fault classification test.

Step 7: The branch current signal ic during PMSM operation is acquired and the
branch current ic is subjected to Fourier transform to obtain the frequency spectrum. The
frequency spectrum is determined whether there is a significant increase in the fault
harmonic component of (1 ± n/p)fs.

Step 8: Determine the presence of significant characteristic harmonic components in
the branch current ic spectrum and then preprocess the branch current ic time-domain
waveform and extract time domain features. The feature vectors are constructed and
brought into the GA-SVM model for rotor fault identification.

The flow chart for constructing the GA-SVM model and using GA-SVM for rotor fault
diagnosis and identification of PMSM is shown in Figure 9.
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5. Results and Analysis

The data used in this paper were obtained from finite element simulation. Taking
the difference between signal samples of the same type of fault into consideration, this
paper randomly sets different fault degrees for each type of fault and simulates the working
conditions of motors with different loads. Sampling within the whole cycle was completed
in different time frames to obtain 94 groups of MBCS in each group of various faults, so
the total number is 282 groups of signals. Data preprocessing and feature extraction are
performed on each group of data to obtain 94 sets of feature vector samples for each group
of faults, for a total of 282 groups of characteristic vector samples.

The obtained data are divided into training set and test set samples; the training set
data are used for model training and the test set data are used to test the classification
accuracy of the model. The training set data is used for model training, and the test
set data is used for testing the accuracy of the model. Sixty-four sets of samples from
each class of data are classified as the training set, with 192 sets of data. The remaining
30 sets of data in each group are combined into the test set, and the number of samples
in the test set is 90. The training set samples are brought into the model for iterative C,
γ-parameter training and optimization search, and classification training. The model is
built by adding labels to the PMSM rotor fault types, and the output of the model is set as:
category 1 to represent demagnetization faults, category 2 to represent eccentricity faults,
and category 3 to represent hybrid faults. The parameters of the GA-SVM training model
were set as follows: the population size is 40 (pop); the number of iterations was selected
as 100 (terminated times); the value interval of the optimal parameter (C, γ) was limited
to [0, 100].

Figure 10a shows the iterative operation diagram of the genetic algorithm to optimize
C and γ by GA. According to the optimal reserve strategy, the fitness of the optimal
individuals in the population gradually increases and steadily stands at 93.2%. The optimal
value of the parameter C was calculated to be 25.1435, and the optimal value of the
parameter γ was calculated to be 5.636. Figure 10b shows that the predicted class values of
all samples are exactly equal to the actual class values, indicating that the predicted class of
GA-SVM is exactly the same as the actual class. The GA-SVM model training set rotor fault
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classification results achieve an accuracy of 100%, indicating that the combination of C and
γ achieves optimal classification performance.
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Finally, 90 groups of samples in the testing set were introduced to the GA-SVM model
to get the classification results, and the accuracy of the results was quantitatively evaluated.
The diagnosis results are shown in Figure 11.
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The test set classification results of the GA-SVM model for rotor faults are shown in
Figure 11. There are some samples in the figure where the predicted category values do
not match the actual category values, and most of the misclassified samples are category
2 samples that are misclassified as category 3 (the samples that were misclassified have
been marked in Figure 11). However, overall, the classification accuracy of the test set
samples reached 92.22%, and the trained GA-SVM model has high accuracy in the PMSM
rotor fault classification problem, which can effectively solve the classification problem of
rotor faults in PMSM.

In order to further illustrate the superiority of the GA-SVM model in identifying
the rotor faults of PMSM, several commonly used classification algorithms such as KNN,
LDA, SVM and BP were selected to compare with the classification accuracy results of the
GA-SVM model. The obtained 282 characteristic vector samples will be trained by the
above classification models, and the classification results are shown in Figure 12.
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Figure 12 indicates that the GA-SVM model has higher accuracy than other classifica-
tion algorithms in classifying each type of fault; in particular, when there is a hybrid fault
in PMSM, the KNN and LDA models show obviously lower accuracy than the GA-SVM
model. Table 5 shows the average accuracy of commonly used classification models. It can
be seen that the average accuracy of the GA-SVM model reaches 92.2%, which is much
higher than that of other algorithms. In addition, compared with traditional SVM models,
the GA-SVM model also presents higher average accuracy, indicating that the penalty factor
(C) and the kernel function parameter (γ) of SVM optimized by a genetic algorithm can
effectively improve the diagnostic performance of SVM.

Table 5. Average accuracy of a commonly used classification model.

Algorithm Model KNN LDA SVM BP GA-SVM

Accuracy 85.1% 77% 74.4% 77.6% 92.2%

6. Conclusions

In this paper, we find that the demagnetization fault, eccentricity fault and hybrid
fault of a PM synchronous motor produce similar fault characteristics in the electrical signal
of the motor, and the traditional method of frequency domain feature analysis cannot
effectively identify these three types of rotor faults. However, the analysis of the fault
mechanism reveals that there are differences in the time-domain waveform changes of
the branch circuit electrical signals after various types of faults in the PMSM. Based on
these differences, this paper proposes a method to identify multiple faults in the rotor
of a permanent magnet synchronous motor based on extracting the time domain feature
factors of the branch currents after a rotor fault, constructing a fault feature vector, and then
combining the GA-SVM model to perform multiple classification of the feature vector. The
GA-SVM model classification results prove the effectiveness of the method. The method
is based on the operation of the motor at a constant speed. In this article, a universal
permanent magnet synchronous motor is the motor under study. The technique of rotor
multi-fault diagnosis and identification based on the GA-SVM model suggested in this
research may be utilized with a few collected samples and produce a satisfactory diagnosis
effect as long as the permanent magnet synchronous motor can operate at the rated speed
for a period of time. In future work, we will consider the study of multi-class rotor fault
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diagnosis and the identification of permanent magnet synchronous motors under variable
speed conditions. Additionally, in the future, we will validate our proposed method
through experiments.
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