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Abstract: Farmland irrigation is an essential foundation for good crop growth, while traditional
farmland irrigation techniques cannot fully consider the impact of factors such as natural precipitation
and crop transpiration on crop growth, which can, to a certain extent, result in poor irrigation
decisions and a complex farmland environment that cannot be monitored promptly, thereby reducing
farmland production efficiency. This study designs a farmland irrigation control system based on
a composite controller. Firstly, an irrigation control method is proposed to establish a prediction
model for future rainfall and crop transpiration using historical meteorological data. The composite
controller is designed based on the prediction model to realize an irrigation control operation with
an irrigation value as the control quantity, a water and fertilizer machine, and a solenoid valve as
the actuators. Secondly, an intelligent irrigation control cloud platform based on Java language
is designed to monitor farm information and irrigation operation records in real-time to facilitate
visual management. Finally, the prediction accuracy is high, based on the prediction model results,
which can provide a specific reference basis. The superiority of the proposed controller is verified
by simulation using MATLAB/Simulink. The results show that the proposed controller can be well
suited for nonlinear control systems and has good control performance while ensuring high tracking
accuracy, strong robustness, and fast convergence.

Keywords: irrigation control methods; intelligent irrigation systems; ARIMA predictive models;
fuzzy algorithms; sliding mode controllers

1. Introduction

Water scarcity is a global concern. As an industry that requires more water resources,
the research on water-saving irrigation technology is the most urgent. Many scholars at
home and abroad have conducted extensive in-depth research on water-saving irrigation
technology, and a large number of research results have been achieved. Regarding the
demand to model crop waters, some experts have developed the management-oriented
cropping system model MODERATO [1]. Tolomio et al. [2] proposed a dynamic crop
simulation model to predict future interactions between water and crop. An et al. [3] used
the Pearson correlation coefficient method to analyze the intrinsic linkage and influence
between soil–crop–environment and tomato water demand patterns. The inherent asso-
ciation and impact between the regularity and the regression function of water and crop
physiological parameters were constructed by combining the through-path analysis and
multiple regression methods. Zhang et al. [4] proposed a coupled water–crop growth
(CHC) model to overcome the oversimplification of the crop and irrigation modules in
the water model. Q. Li [5] introduced a new approach named the Sparse Fractional Levy
Quaternion Extended Kalman Filter (SFLQEKF) for predicting stochastic time series. It
has also been found that natural conditions, such as measuring crop physiological parame-
ters, are more efficient than indirect conditions, such as measuring soil environment for
irrigation scheduling methods, by comparing asparagus crop studies [6]. A mathematical
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model of maize crop and stage water relations under catchment recharge irrigation condi-
tions was developed using the BP neural network, which reflects the sensitivity of water
requirements at each developmental stage of maize [7]. These research methods have laid a
solid foundation for crop–water interrelationships. Consequently, the ability to measure
the parameters involved in the individual model accurately becomes a key factor.

The development of sensor technology has provided technical support for accurate
measurements [8]. Vijayakumar et al. [9] used wireless sensor network (WSN) technology
to collect data for accounting and analysis to enhance the intelligence of irrigation sys-
tems with the help of machine learning algorithms. Jitendra Kumar et al. developed and
evaluated a soil moisture sensor [10]. Soulis et al. [11] determined the effect of soil mois-
ture sensor positioning and the accuracy of soil moisture-based drip irrigation scheduling
systems under different conditions. It emphasized the selection of suitable soil moisture
sensors for specific crop needs. Luca Bondesan et al. [12] compared the difference between
irrigation scheduling and variable rate irrigation with the inclusion of sensors and conven-
tional uniform irrigation to demonstrate the importance of sensors in irrigation decision
making. In the context of research on water-saving irrigation equipment, Djalilov et al. [13]
studied the main factors of vibrations occurring in electric motors in irrigation facilities.
They developed a virtual tool to detect and analyze vibrations. Yang Yang et al. [14] propose
a crop rows detection algorithm based on the autonomous extraction of ROI (region of
interest), which can achieve high accuracy and the robust extraction of ROI in various maize
fields. The proposed algorithm can provide a new solution to the machine vision-based
navigation technology for agricultural machinery. The system for driving irrigation equip-
ment using solar photovoltaics has also been investigated and proposed [15]. An electronic
pre-wetting detector was developed for irrigation scheduling, which can improve irrigation
accuracy [16]. In the study of control methods, Mahmoodabadi [17] proposed a robust fuzzy
adaptive integral sliding mode controller for nonlinear uncertain chaotic systems based on a
multi-objective grey wolf optimization algorithm. In the paper, a multi-objective gray wolf
optimization algorithm was used to improve the performance of the proposed controller.
This method can effectively obtain the correct parameters of the proposed controller and
avoid the trial-and-error process. J Torres et al. [18] proposed two anti-winding algorithms
in the framework of sliding mode control to restart the necessary action without affecting
the control action behavior. Alvaro Javier Prado et al. [19] introduced two anti-winding
control algorithms in the framework of sliding mode control to reset the integral control
action in the discontinuous mode promptly without inhibiting the robustness of the whole
control system against disturbances. Zhang Yang et al. [20] proposed a unicycle robot and
designed an adaptive fuzzy controller based on its dynamics model to achieve equilibrium
control. These studies provide effective equipment for irrigation. The development of
network technology is essential for how irrigation equipment can be adapted to intelligent
irrigation systems.

The rapidly developing wireless network technology has been widely used in people’s
lives and work in recent years, such as the design of office automation systems based on
Internet of Things technology, the research of fire information based on computer network
technology, and the research of Chinese medicine health rehabilitation [21–23], which helps
to solve diversified problems encountered in different fields. Xu et al. [24] present a natural
language query and control interface for LoT platforms that effectively parses natural
language commands entered by users, enabling them to perform more complex operations.
Tace et al. [25] proposed an intelligent irrigation system that integrates LoT technologies
and machine learning algorithms in intelligent irrigation systems. A system based on deep
learning algorithms was developed to monitor the number and height of moso bamboo
shoots through image acquisition and YOLOv4 modeling [26]. An Arduino-based irrigation
control system was proposed by conducting extensive experimental trials to automatically
adjust soil water content within a specific depth range [27]. Rathod et al. [28] designed
and developed an automatic irrigation system for greenhouses to optimize water use.
Ling Zhu et al. [29] designed a ZigBee-based automated irrigation system to achieve real-
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time monitoring, remote monitoring, and alarm functions, providing an intuitive on-site
management platform for irrigation users. Wireless sensor network systems have also
supported irrigation research in recent years. Ndunagu et al. [30] proposed an innovative
irrigation system using drip irrigation methods, which was designed and implemented
using wireless sensor networks and Thingspeak.com to manage water resources effectively.
Scholars also developed wireless sensor networks for drip irrigation systems and multi-
intelligent body automatic irrigation systems [31,32].

In summary, with the development of technology, intelligent water-saving irrigation
methods and systems will be the future trend, and research results in this area will be grad-
ually applied. Although these controllers are effective, they have certain limitations. Their
model designs are often universal and cannot effectively combine the weather conditions
of the irrigated area with the local soil conditions, which can easily cause significant errors
in the irrigation operation. For this problem, this paper uses predictive algorithms and
crop coefficients combined with weather data from the summer maize-growing region
of the Yellow Huaihai Sea to calculate crop water consumption. We also use wireless
sensor technology to monitor local soil environment data in real-time and introduce fuzzy
algorithms and sliding mode control methods to design composite controllers to calculate
irrigation volumes and achieve irrigation control.

The significant contributions of the proposed method are as follows:
(1) A method of intelligent farm irrigation control incorporating multiple models is

proposed, integrating sensor technology, wireless network communication technology, the
ARIMA prediction model, a fuzzy algorithm, and sliding mode control.

(2) An intelligent irrigation control system based on Java language is developed, which
realizes the whole smart irrigation.

This paper proposes an intelligent farm irrigation control method based on the crop
water consumption model, rainfall prediction, a fuzzy algorithm, and sliding mode control.
It also develops a farmland irrigation control system based on this method. The rest of the
study is structured as follows: Section 2 presents the intelligent irrigation control method
for farmland and the prediction and control models used. Section 3 describes the design of
the prediction and control models in detail based on our dataset. In Section 4, we compare
the prediction results and discuss the simulation results of the control model. The paper
concludes with a summary of our results and directions for further research in Section 5.

2. Materials and Methods
2.1. Structure of Farmland Irrigation Control System

This paper proposes an agricultural water-saving irrigation control system, shown in
a simple schematic diagram in Figure 1. In this system, soil monitoring data, multi-year
meteorological data, crop water consumption model, and expected soil moisture content
are used as input data, and the calculation of farmland irrigation volume is carried out
based on the fuzzy sliding mode control method. Then the irrigation valve is controlled
by a computer using a 5G network for automatic irrigation. The soil moisture sensors
deployed in the system farmland use wireless network communication to obtain real-time
soil temperature and humidity data. In addition, a time series model is used to predict
future rainfall and crop transpiration through multi-year climatological data from weather
stations. The precise control cloud platform developed receives irrigation volume data
and then uses the cloud port to control the water and fertilizer machine for regular and
quantitative irrigation. The water and fertilizer machine controls the solenoid valve for
irrigation through the field pipe network system.
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Figure 1. Intelligent irrigation control system diagram: (a) irrigation equipment diagram; and
(b) system schematic.

2.2. Intelligent Irrigation Control Method

A diagram of the proposed intelligent irrigation method is shown in Figure 2, in which
wireless sensor technology and wireless network communication technology are used.
Firstly, the weather station’s multi-year climate database predicts the rainfall and crop
transpiration for the coming week. The soil moisture is input into the fuzzy algorithm
to derive the initial irrigation amount. The soil moisture and the desired soil moisture
content are used to calculate the compensation amount through the sliding mode controller,
combined with the initial irrigation amount to derive the final crop irrigation amount. The
system receives the irrigation volume for the coming week as a control volume. It remotely
controls equipment via the cloud port for irrigation operations when the crop needs water.
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After finishing the irrigation operation, the soil moisture and other information in the
farmland are fed back to the sensors and weather stations in real-time to achieve closed-loop
irrigation control. The composite controller can calculate whether the soil environment
meets the suitable conditions for crop growth and development after the actual irrigation
operation through the feedback data. The irrigation operation can be stopped when the
soil conditions reach the appropriate growth range.

2.3. Rainfall Prediction Model

The autoregressive integrated moving average (ARIMA) model predicts future daily
rainfall. The ARIMA model requires the time series to be smooth, and if a non-smooth time
series is obtained, the first step is to make a difference of order d until the data is soft and
the number of disagreements made is the parameter d. The expression is:

∇dxi = ∇
(
∇d−1xi

)
=

d

∑
i=0

(−1)iCi
dxi−1 (1)

where xi(i = 1, 2, . . . , t) is the predicted value and d(0, 1, 2, . . .) is the number of differences.
The lagged values were then fitted with p (autoregressive term) and q (moving average

term) as parameters, and the present and lagged values of the model random errors were
regressed to build the model [33]. The prediction equation of the ARIMA model with p, d,
and q as parameters can be expressed as:

at = θ0 + ϕ1at−1 + ϕ2at−2 + · · ·+ ϕpat−p + εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q (2)

where a2 is the sample value, ϕi(i = 1, 2, . . . , p), and θj(j = 1, 2, . . . , q) are the model
parameters; εt is a zero-mean white noise sequence.

This model can use the information criterion method to determine the parameters
of p and q. First, the AIC criterion (Akaike Information Criterion) is used to weigh the
complexity of the estimated model and the accuracy of the data fitted by the model.

AIC = −2 ln(L) + 2K (3)
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where L denotes the maximum likelihood function of the model and K denotes the number
of model parameters. When the sample size is large, combining the assessment with the
BIC criterion (Bayesian Information Criterion) is necessary.

BIC = −2 ln(L) + K ln(n) (4)

where n denotes the sample size and BIC considers the sample size and can effectively
prevent overfitting due to a large sample size. Moreover, BIC can control the situation
where k is too high and when n is small.

It can determine the p and q values corresponding to the smallest sum of AIC and BIC
values as the parameters p and q of the model.

2.4. Crop Transpiration Prediction Model

The ARIMA model described above was also used for crop evapotranspiration pre-
diction. In the case of obtaining the reference evapotranspiration, the crop coefficient Kc is
used to correct transpiration [34,35].

a3 = KcET0 (5)

where ET0 is the predicted evapotranspiration, a3 is the crop evapotranspiration, and Kc
not only varies according to the crop species but also takes different values in different crop
growth cycles.

This paper selected maize as the research object. The crop coefficients Kcini = 0.7
for the early stage, Kcmid = 1.20 for the middle stage, and Kcend = 0.6, 0.35 for the late
stage were obtained according to the crop coefficient table recommended by the Food and
Agriculture Organization of the United Nations.

2.5. Controller Design

The controller design incorporates a fuzzy algorithm and a sliding-mode controller
based on a fault observer, as shown in Figure 3. The fuzzy algorithm can summarize
expert experience and data into linguistic control rules, eliminating the need for an accurate
mathematical model of the controlled object, making it suitable for controlling nonlinear
systems and less complex to implement [36]. The sliding mode controller can overcome
the uncertainty of the system; it also has good control performance for nonlinear systems,
fast response, strong resistance to external disturbances, and good robustness so that it can
adapt to the complex environment of farmland [37].
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2.5.1. Fuzzy Algorithm Design

The fuzzy model for a continuous-time nonlinear system can be expressed as [38]:

Rule Ri : I f z1(t) is Mi
1 and . . . and zp(t) is Mi

p
THEN

.
x(t) = Aix(t) + Biu(t)

(6)
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where Ri is the ith fuzzy inference rule, i is the number of inference rules, and
Mi

j(i = 1, 2, . . . , r; j = 1, 2, . . . , p) is the fuzzy set. (Ai, Bi) is the state space matrix of the
corresponding dimension of the ith local model and the vector of premise variables is
defined as z(t) =

[
z1(t) · · · zp(t)

]
. The fuzzy model can be expressed in the following

compact form using the center of gravity defuzzification method.

.
x(t) =

r

∑
i=1

hi(z)(Aix(t) + Biu(t)) (7)

where the normalized MF hi(z) is defined as:

hi(z) =
ωi(z)

∑r
i=1 ωi(z)

, ωi(z) =
p

∏
j=1

µi
j
(
zj
)

(8)

where µi
j
(
zj
)

is the affiliation level of the premise variable in each fuzzy set Mi
j. It is

important to note that the normalized MFs satisfy the following properties.

0 ≤ hi(z) ≤ 1,
r

∑
i=1

hi(z) = 1,
r

∑
i=1

.
hi(z) = 0 (9)

2.5.2. Sliding Mode Controller Design

In 0–15 cm soils, soil moisture and irrigation volume are approximately linear [39], so
the irrigation system model is constructed as follows:

h− τF = ku (10)

where h is the soil moisture, u is the irrigation volume of the irrigation system, k > 0, and
τF is the fault or uncertainty disturbance caused by various adverse factors.

The systematic error is defined as:

e = ht − hd (11)

where ht is the actual soil moisture and hd is the desired soil moisture.
The slip surface is defined as:

s = ce (12)

The convergence rate is defined as:

.
s = −ks− βsign(s) (13)

where k > 0 and β > 0.
From all the above equations, the controller is obtained as follows:

u =
1
ck
(
ks + βsign(s) + cF̂ + chd

)
(14)

where F̂ is the estimate of τF, defining the Lyapunov function V = s, the derivative of
which yields

.
V =

.
s = c, subject to c < 0, when

.
V < 0, the system can be acquired as

globally asymptotically stable.

2.5.3. Fault Observer Design

We are constructing a nonlinear fault observer.
.
zd = −lzd − l[λ + ku]

F̂ = zd + λ

l =
.
λ
h

(15)
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where zd is the observer’s internal state variable, λ is a nonlinear function, and l is the non-
linear observer gain. The disturbance estimation error is defined F̃ = τF − F̂, considering
the slow change of the composite disturbance in the process control, and the assumptions
of the disturbance observer are set to

.
τF ≈ 0. The expression can be described as:

.
F̃ =

.
τF −

.
F̂ = − .

zd −
.
λ = lzd + l[l + ku]− lh = l

(
F̂− τF

)
= −lF̃ (16)

The Lyapunov function is defined as Vs = F̃, the derivation of which yields
.

Vs =
.
F̃ = −lF̃ < 0, so that the fault observer is asymptotically stable.

3. Design Example

In this paper, soil moisture sensors were deployed to obtain soil moisture data in
real-time in farmland in Suzhou City, Anhui Province, and then to make predictions of
future daily rainfall and crop transpiration values based on historical data of daily rain in
Suzhou City from 1951 to 2019 and daily transpiration from 2010 to 2019 [40]. Although
the datasets of different periods in Cebu City are used, the ARIMA model can be used to
predict the rainfall and crop transpiration during the same period and then to combine the
obtained soil moisture data to calculate the initial irrigation amount. At the same time, we
set up water-saving irrigation equipment in the city and developed a monitoring cloud
platform to achieve remote irrigation control, as shown in Figures 4 and 5.
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3.1. Soil Moisture Data Acquisition

Some of the historical data on soil moisture collected by the soil moisture sensor are
shown in Figure 6. A wireless gateway also needs to be set up to enable data transfer, which
is saved in a database and can be viewed and queried in real-time in the developed cloud
platform for historical data.
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3.2. Future Rainfall Model Design

The ARIMA model order was first determined using the information criterion method.
When selecting the ARIMA (p,d,q) model for forecasting, the parameters were chosen from
low to high order according to 0, 1, 2, and 3, using the values of AIC and BIC to select the
optimal value model. The results are shown in Table 1.

Table 1. AIC and BIC values for each model.

Models AIC BIC Models AIC BIC

ARIMA(0,0,1) 1.6575 1.6576 ARIMA(2,0,1) 1.6531 1.6535
ARIMA(0,0,2) 1.6537 1.6539 ARIMA(2,0,2) 1.6532 1.6536
ARIMA(0,0,3) 1.6532 1.6535 ARIMA(2,0,3) 1.6532 1.6536
ARIMA(1,0,0) 1.7236 1.7237 ARIMA(3,0,0) 1.6956 1.6959
ARIMA(1,0,1) 1.6533 1.6536 ARIMA(3,0,1) 1.6532 1.6536
ARIMA(1,0,2) 1.6532 1.6535 ARIMA(3,0,2) 1.6532 1.6536
ARIMA(1,0,3) 1.6532 1.6535 ARIMA(3,0,3) 1.6532 1.6537
ARIMA(2,0,0) 1.7059 1.7062

Based on the comparison results, it was found that the model ARIMA(2,0,1) had
the smallest sum of AIC and BIC, so this model was selected for forecasting. The model
variables were taken to be p = 2 and q = 1.

The fitting formula is

at = 0.13632at−1 + 0.032244at−2 − εt−1 (17)

The Durbin–Watson (DW) test, which is used to test the first-order autocorrelation
of the residuals in the regression analysis, is better the closer the value of this statistic is
to two. The result of the Durbin–Watson test for this model was 1.9998, suggesting that
the reasonable accuracy was high and the modeling met the requirements. Lastly, the
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research data were analyzed and predicted according to the established ARIMA(2,0,1)
model. The combined test data and indicated data are shown in Figure 7, showing that
the ARIMA model’s fitted results are similar to the actual rainfall variation trend. Future
rainfall forecasts are presented in Figure 8.
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3.3. Evapotranspiration Model Design

The ARIMA model order was first established in conjunction with the information
criterion, and the parameters were selected from low to high demand according to 0, 1, 2,
and 3, using the values of AIC and BIC to determine the optimal value model. The results
are described in Table 2.

The model ARIMA(1,0,3) was considered the most effective, given that the sum of
AIC and BIC was minimal. Thus, the values of the parameters in the model are p = 1 and
q = 3. After determining the order, the tentative model parameters are estimated, generally
using the maximum likelihood estimation method, and the final fitted formula based on
the model estimation results is

at = 0.73652at−1 − 1.2404εt−1 + 0.15286εt−2 + 0.10479εt−3 (18)
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The Durbin–Watson operation resulted in 1.9921, with a high fitting accuracy, and
the modeling satisfied the requirements. Eventually, transpiration was predicted by the
established ARIMA(1,0,3) model. Comparing the expected data for 2019 with the accurate
data from 2010 to 2019 indicates that the model prediction results and the actual evapotran-
spiration data have a similar tendency. The comparison plots and prediction results are
illustrated in Figures 9 and 10.

Table 2. AIC and BIC values for each model.

Models AIC BIC Models AIC BIC

ARIMA(0,0,1) 2.4706 2.4718 ARIMA(2,0,1) 2.4422 2.4446
ARIMA(0,0,2) 2.4505 2.4523 ARIMA(2,0,2) 2.4418 2.4447
ARIMA(0,0,3) 2.4456 2.4480 ARIMA(2,0,3) 2.4421 2.4457
ARIMA(1,0,0) 2.4937 2.4949 ARIMA(3,0,0) 2.4712 2.4736
ARIMA(1,0,1) 2.4423 2.4441 ARIMA(3,0,1) 2.4421 2.4450
ARIMA(1,0,2) 2.4421 2.4445 ARIMA(3,0,2) 2.4422 2.4458
ARIMA(1,0,3) 2.4417 2.4446 ARIMA(3,0,3) 2.4417 2.4458
ARIMA(2,0,0) 2.4797 2.4815
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3.4. Composite Controller Design

This article uses the predicted amount of rainfall in Suzhou City, the expected amount
of crop transpiration, the soil moisture data collected by sensors, and the expected soil
moisture content as input parameters of the composite controller, with the irrigation
amount as the output parameter. Three inputs and a single output were employed in the
fuzzy algorithm. Based on theoretical analysis and the experience of actual operators, the
variables were fuzzified into five ranks: extra small, slightly small, medium, large, and
extra large, as displayed in Table 3. The triangular affiliation function is used for both input
and output quantities and expressed in Figure 11. The fuzzy control rules are constructed,
and the fuzzy rule variable relationships are shown in Figure 12, which offers a nonlinear
relationship between the variables. Since all three input quantities have five linguistic input
values, there are 5 × 5 × 5 = 125 fuzzy rules. The details are shown in Table 4.

Table 3. The subset of fuzzy variables.

Grade Future Rainfall Crop
Transpiration Soil Moisture Amount of

Irrigation

Extra small VP VT VH VI
Sightly small SP ST SH SI

Medium MP MT MH MI
Large LP LT LH LI

Extra large XP XT XH XI
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Table 4. Fuzzy rules.

Future
Rainfall

Crop
Transpiration

Soil Moisture

VH SH MH LH XH

VP VT LI MI MI MI SI
SP VT MI MI SI SI SI
MP VT MI SI SI SI VI
LP VT SI SI SI VI VI
XP VT SI VI VI VI VI
VP ST LI LI MI MI SI
SP ST LI MI MI SI SI
MP ST MI MI SI SI SI
LP ST MI SI SI SI VI
XP ST SI SI VI VI VI
VP MT LI LI LI MI MI
SP MT LI LI MI MI SI
MP MT LI MI MI SI SI
LP MT MI MI SI SI VI
XP MT MI SI SI VI VI
VP LT XI XI LI LI MI
SP LT XI LI LI MI MI
MP LT LI LI MI MI SI
LP LT LI MI MI SI SI
XP LT MI MI MI SI VI
VP XT XI XI XI XI LI
SP XT XI XI XI LI LI
MP XT XI XI LI LI MI
LP XT XI LI LI MI MI
XP XT LI LI MI MI SI

Some of the irrigation volume calculations are shown in Figure 13.
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4. Analysis and Discussion of the Results
4.1. Analysis of the Predicted Results of the Decision Model Inputs

The predicted values of some precipitation and evapotranspiration in Suzhou City,
Anhui Province were selected for comparison and analysis with the actual values, as shown
in Figures 14 and 15. It can be noted that the relative error is relatively small and the model
has high prediction accuracy. The ARIMA model can be employed to anticipate future
rainfall and crop evapotranspiration. It also provides a reference basis for irrigation volume
decision making.
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4.2. Comparative Analysis of Control Results

Simulation experiments are carried out to verify the effectiveness and good perfor-
mance of the proposed sliding mode controller (SMC). We set up the simulation environ-
ment in MATLAB/Simulink R2021a.

To better evaluate the proposed controller performance, the traditional SMC controller
and proportion integration differentiation (PID) controller are also given for comparison
purposes [41]. The nominal parameters of the control parameters of the three controllers
are listed in Table 5.

Table 5. Controller parameters.

Controllers Parameter Values

SMC control c = 8.92, k = 835, β = 1.3, λ = 132
PID control Kp = 8.4, Ki = 1.35, kd = 0.12

The simulation of the PID controller and the SMC controller in the case of faults is
presented in Figure 16. The incorporation of flaws in the system will enhance the control
difficulty of the system to a greater extent. The proposed composite controller has superior
tracking accuracy compared to the PID controller in the case of faults because the fault
observer is added to the proposed composite controller to estimate flaws accurately and
efficiently. According to the comparison results, the composite controller designed in
this paper has a higher control accuracy and better robustness than the PID controller.
Furthermore, it can achieve faster error convergence and better tracking of the reference
signal in fault operation mode.
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Figure 16. Comparison of simulation results for different controllers: (a) simulation results of the PID
controller; and (b) simulation results of the SMC controller.

Moreover, we clearly see from the graph that the tracking curves under the SMC
control are pretty smooth, while the ones under the PID control have a more apparent chat-
tering phenomenon. The reason is that the SMC control exhibits smoother control inputs
than the PID controller, resulting in a smoother tracking response for the proposed control.

5. Conclusions

This study has designed an intelligent irrigation control system for crop irrigation in
agricultural fields. At first, a brilliant irrigation control method incorporating multiple
models is proposed in this system. Through the comprehensive employment of sensor
technology, wireless network communication technology, the ARIMA prediction model,
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and a composite controller, real-time soil moisture data can be acquired and combined
with crop coefficients to achieve crop transpiration and future rainfall prediction. Then, the
controller is designed using the expected soil moisture content. Furthermore, in response
to better monitoring of the collected data and irrigation operations, an intelligent irrigation
control cloud platform based on Java language was developed to achieve intelligent and
automated irrigation control throughout the process. Eventually, MATLAB/Simulink
verified the proposed fuzzy sliding mode control’s effectiveness in setting faults. The
simulation results demonstrate that the SMC has efficient tracking performance and ensures
the stability and security of the irrigation system effectively.

The method proposed in this study still has some limitations. Because there are many
influencing factors, such as climate and soil, to facilitate the research, we only adopted soil
moisture, rainfall, and evapotranspiration for modeling in this paper. Consequently, there
are still some things that could improve irrigation estimation. The following work will
sufficiently consider more relevant parameters and combine them with machine learning
theory to further enhance the accuracy of the decision model.
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