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Abstract: On-orbit operation tasks require the space robot to work in an unstructured dynamic
environment, where the end-effector’s trajectory and obstacle avoidance need to be guaranteed
simultaneously. To ensure the completability and safety of the tasks, this paper proposes a new
obstacle-avoidance motion planning method for redundant space robots via reinforcement learning
(RL). First, the motion planning framework, which combines RL with the null-space motion for
redundant space robots, is proposed according to the decomposition of joint motion. Second, the
RL model for null-space obstacle avoidance is constructed, where the RL agent’s state and reward
function are defined independent of the specific information of obstacles so that it can adapt to
dynamic environmental changes. Finally, a curriculum learning-based training strategy for RL agents
is designed to improve sample efficiency, training stability, and obstacle-avoidance performance. The
simulation shows that the proposed method realizes reactive obstacle avoidance while maintaining
the end-effector’s predetermined trajectory, as well as the adaptability to unstructured dynamic
environments and robustness to the space robot’s dynamic parameters.

Keywords: redundant space robot; reinforcement learning; obstacle avoidance; null space

1. Introduction

With the development of aerospace technology, space exploration activities become in-
creasingly frequent, and the on-orbit operations, such as spacecraft assembly, maintenance,
debris removal, etc., become urgent demands. The space environment has the features
of no gravity, no air and high radiation, which makes astronauts face great safety risks
when performing on-orbit operations. As a type of typical aerospace equipment, space
robots have high autonomy and flexibility, so they are widely used in various on-orbit
tasks instead of astronauts [1,2]. Moving or carrying loads safely to the target position is
the basic operation in on-orbit operations and also should be the most basic function for
space robots. In general, a space robot is composed of a base with control system and solar
arrays, as well as a manipulator with several links and an end-effector which carries the
load. Therefore, safely moving contains two meanings: Firstly, a smooth, collision-free
trajectory for the load should be provided so that it can reach the target position along this
trajectory. Secondly, the body of the space robot, especially the links of the manipulator,
needs to avoid obstacles in the environment as the load moves along this trajectory. These
two conditions should be met simultaneously, which derives the obstacle-avoidance motion
planning for the space robot [3].

Obstacle-avoidance motion planning is a long-term direction in robotic research. Some
methods, such as visibility graph [4], Voronoi diagram [5], probabilistic roadmap method
(PRM) [6], rapidly exploring random tree (RRT) [7], A* algorithm [8], etc., are widely used
in robotic community. Most of the above methods are aimed at stationary obstacles or the

Actuators 2023, 12, 69. https://doi.org/10.3390/act12020069 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act12020069
https://doi.org/10.3390/act12020069
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0002-4392-8349
https://orcid.org/0000-0001-7338-6045
https://orcid.org/0000-0003-2154-9230
https://doi.org/10.3390/act12020069
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act12020069?type=check_update&version=2


Actuators 2023, 12, 69 2 of 23

situations, where environmental information is known. However, the working environ-
ment of space robot is unstructured and dynamic. There are not only stationary obstacles,
but also moving obstacles that cannot be predicted to their moving trajectories (e.g., floating
debris, and unfixed tools), requiring the obstacle-avoidance motion planning method to
be real-time. Similar to the biological stimulus–feedback mechanism, Khatib [9] proposed
a reactive obstacle-avoidance method based on artificial potential field (APF), which en-
ables real-time response to unstructured dynamic scenes. However, it only constrains the
end-effector’s target position while not the whole trajectory. As a result, the end-effector’s
predetermined trajectory for the task cannot be guaranteed if the obstacle approaches,
which means this method cannot be applied to the tasks that have requirements on the
end-effector’s trajectory. For this problem, researchers noticed that the redundant degrees
of freedom (DOF) of the manipulator can be used to track the end-effector’s predetermined
trajectory while avoiding obstacles. It uses the null-space motion characteristic of the
redundant robot. According to this, many solutions have been proposed, such as null-space
vector assignment [10], redundant manipulator-based APF [11,12], gradient projection
method (GPM) [13,14], objective function optimization [15,16], etc. Among them, redun-
dant manipulator-based APF and GPM are the common used methods with high efficiency
in practice.

In fact, for on-orbit operation tasks, there are strict requirements for the end-effector’s
trajectory, such as maintenance, grasping, and docking, etc., which requires the space robots
to avoid unpredicted moving obstacles as much as possible on the premise of ensuring
the tracking of the end-effector’s predetermined trajectory. Even partial contact or slight
collision is allowed in extreme cases, such as emergency repair on critical fault. Fortunately,
most space robots have redundant DOFs, it means that we can tap the potential of obstacle
avoidance as much as possible without changing the end-effector’s trajectory. However,
unlike the ground robot, there is a motion coupling between the free-floating base and
the manipulator of the space robot. Once the manipulator’s joints are actuated, the end-
effector and the base will move at the same time so that the identical method to the ground
robot cannot achieve the desired effect of obstacle avoidance. At present, the most active
research in this field is GPM and the objective function optimization method. Mu et al. [17]
constructed a unified framework to model the obstacles for a redundant space robot, and
combined GPM to obtain the collision-free trajectories. Hu et al. [18] proposed the gradient
projection weighted Jacobian matrix (GPWJM) method, which takes the end-effector’s
trajectory tracking as the main task, as well as meeting the motion constraints of the base
and links. Wang et al. [19] described the target position arrival and obstacle avoidance
as linear inequality constraints, then integrated them into a quadratic programming (QP)
optimization to calculate the trajectory with the help of non-linear model predictive control
(NMPC). Ni et al. [20] transformed the motion planning problem into a multi-objective
optimization that achieves the target configuration while avoiding obstacles, which is
solved by the particle swarm optimization (PSO) method. Rybus et al. [21] introduced
joint splines into motion planning, then constructed a constrained nonlinear optimization
problem to solve the collision-free and task-required trajectory, which used the active
set method to generate the solution. However, the above methods introduce complex
solution strategies and operation rules, including differentiation, integration and nonlinear
functions, which reduces the computational efficiency. For the space robots with limited
computing resources, low computing efficiency will seriously affect the task performance.

Recently, with the development of reinforcement learning (RL) theory, new solutions
have been provided to solve the problem of reactive obstacle-avoidance motion planning
for unpredicted moving obstacles. RL builds an agent that continuously interacts with the
environment, which optimizes its own action generation policy according to the feedback
states and rewards from the environment during each interaction process so as to maximize
the sum of rewards. It has good environmental adaptability and computational real-time
performance, such as DDPG [22,23], TD3 [24], PPO [25], SAC [26], etc., showing great
potential in robotics applications. These methods can generate safe and collision-free
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trajectories from the specified start point to target point based on the feedback states from
the unstructured dynamic environment, but most of them are aimed at mobile robots
that can be regarded as moving particles. For the robots with a chained manipulator,
such as service robots and industrial robots, the research focus is on the completion of
manipulation tasks, which means that the designed RL structures lack native obstacle-
avoidance mechanisms. Their state space and rewards lack the representation of obstacle
information [27], or only aim at some specific obstacles [28] such that these methods are
difficult to be applied to unstructured dynamic environments, where the number and
motion state of the obstacles are not specified. When there are unexpected obstacles which
do not exist during the training process, they are difficult to achieve effective obstacle
avoidance, unless a large number of randomly moving obstacles are introduced during
training, or retraining a new policy for the changed environment. However, adopting these
methods will also greatly reduce the training efficiency of RL. In terms of space applications,
the research on RL-based spacecraft control to improve its autonomous decision-making
performance has made a lot of progress, including spacecraft landing on celestial bodies,
maneuver planning, attitude controlling, rover path planning, etc. [29]. Most of these
methods also regard the spacecraft as a mobile robot with special motion response in space,
rather than a ground industrial or service robot with a chain manipulator, so they cannot
achieve on-orbit operation tasks. However, unlike the ground chain manipulator, using
RL to achieve obstacle avoidance is more difficult for space robots due to the free-floating
characteristic of the base. Yan et al. [30], Du et al. [31], and Wu et al. [32] explored the
application of RL in space robots, preliminarily proving that RL methods, such as soft
Q-learning and DDPG can achieve effective motion planning and control for the space
robot with free-floating base, but obstacle avoidance was not discussed. Wang et al. [33]
developed a model-free hierarchical decoupling optimization (HDO) algorithm for space
robots. The upper layer uses RRT to sample collision-free path points, while the lower layer
uses DDPG to connect each sampling point, so the collision-free motion trajectories can
be generated. Li et al. [34] combined DDPG and APF, then introduced the self-collision
avoidance constraints of the end-effector to realize the motion planning. Although these
methods can be applied to redundant space robots, they do not have the ability to maintain
the end-effector’s predetermined trajectory during the obstacle-avoidance process. As
mentioned above, this ability is very important for the space robot.

In summary, considering the on-orbit operation constraint of obstacle-avoidance
motion and inspired by GPM, we propose a new obstacle-avoidance motion planning
method for redundant space robots by combining the null-space motion with reinforcement
learning. Unlike PRM, RRT and other obstacle-avoidance methods which cannot constrain
the end-effector’s movement, our method can realize reactive obstacle avoidance while
maintaining the end-effector’s predetermined trajectory with good adaptability to the
unstructured dynamic environment, which can cope with the changes of obstacles in the
environment without retraining. The major contributions of this paper are as follows:

• The motion planning framework combining RL with null-space motion for space robots
is proposed to realize reactive obstacle avoidance without changing the end-effector’s
predetermined trajectory.

• The RL agent’s state space and reward function independent of the specific information
of obstacles are defined from the aspect of the robot itself, so that the RL agents can be
applied to unstructured dynamic environments, avoiding retraining for obstacle changes.

• A curriculum learning-based training strategy for RL agent is designed to further improve
the sample efficiency, training stability and performance of the obstacle avoidance.

The rest of this paper is organized as follows: In Section 2, the proposed motion
planning framework is introduced, which contains the end-effector trajectory generation
module and the RL-based null-space obstacle-avoidance module. In Section 3, the RL
paradigm for null-space obstacle avoidance module, as well as state space, action space,
reward function, and the curriculum learning-based training strategy, are described in detail.
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In Section 4, the simulation results are presented and discussed. Finally, the conclusions of
this paper are given in Section 5.

2. Motion Planning Framework

In this section, the motion trajectory of robot joints is decoupled into task-required
motion components and task-independent null-space motion components according to
the redundancy and free-floating characteristic of the space robot. Then the RL-based
obstacle-avoidance motion planning framework is proposed to meet the requirements of
task execution, together with obstacle avoidance in an unstructured environment.

2.1. Joint Motion Decomposition

As Figure 1 shows, assume that the space robot is composed of a base with s motion
dimensions and a manipulator with n joints, where s = 3 if the space robot always moves on
a plane (i.e., planar space robot), while s = 6 if the space robot moves in three-dimensional
space. The motion of the end-effector is the superposition of the base motion and the joint
motion [35], which can be expressed as

ẋe = Jb ẋb + Jmq̇m (1)

where ẋe is the velocity vector of the end-effector, ẋb is the velocity vector of the base, q̇m is
the angular velocity vector of the joints; Jb is the Jacobian matrix describing the mapping
relationship between the base velocity and end-effector velocity, which is related to the
pose of the base xb; and Jm is the Jacobian matrix describing the mapping relationship
between the angular velocity of each joint and the end-effector velocity, which is related to
the configuration of the manipulator qm.

Predetermined 

trajectory

Obstacle 2

Obstacle 1

Safe distance

Base

End-effector

Manipulator

Link 1

Link 2

Link 3

Joint 1

Joint 2

Joint 3

Joint 4

Link n

Figure 1. Schematic diagram of space robot motion in unstructured environment.

Because of the free-floating characteristic on orbit, there is a coupling relationship
between the joint motion and the base motion as

ẋb = Jbmq̇m (2)

where Jbm is the mapping matrix from joint angular velocity to base velocity, which is
related to xb and qm. Substituting Equation (2) into Equation (1), we can obtain

ẋe = (Jb Jbm + Jm)q̇m = J f q̇m (3)
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According to Equation (3), we know that if the pose of the base and the configuration
of the manipulator are specified, the end-effector velocity is only determined by the joint
angular velocity.

If n > s, i.e., the number of joints of the manipulator is greater than the motion
dimension, the space robot has n − s redundant DOFs. In this situation, there can be
multiple sets of manipulator configurations that meet the specified pose of the end-effector.
For Equation (3), this characteristic can be expressed as

q̇m = J+f ẋe + N f φ̇ = J+f ẋe +
(

I − J+f J f

)
φ̇ (4)

where J+f is the Moore–Penrose pseudoinverse of the space robot Jacobian J f ; N f = I − J+f J f

is the null-space mapping matrix; φ̇ ∈ Rn×1 is the joint null-space velocity vector so that
N f φ̇ constitutes the null-space term of the solution of equation ẋe = J f q̇m, which means
that for ∀φ̇ ∈ Rn×1, q̇m = N f φ̇ makes the equation J f q̇m = 0 always hold.

Therefore, for a free-floating space robot with redundant joints, the joint motion can
be decomposed into two components: one component tracks the motion of the end-effector,
and the other moves the base and links while keeping the pose of end-effector unchanged
(called null-space motion component). Planning the trajectory of term ẋe can make the
end-effector of the space robot move along the task-required path. Simultaneously, the
obstacle avoidance of the links can be realized by choosing different φ̇ in the unstructured
dynamic environment.

2.2. Design of the Motion Planning Framework

The space robot needs to reach the target position along the predetermined trajectory
in the unstructured dynamic environment. During this process, if the distance between the
space robot and the obstacle is less than the specified safe distance, the space robot should
perform the action for obstacle avoidance, as shown in Figure 1. Therefore, according to the
motion decomposition in the previous section, we propose an RL-based obstacle-avoidance
motion planning framework for a redundant space robot, as shown in Figure 2.

End-effector trajectory generation

Null-space obstacle avoidance 

RL policy network

Trajectory 

generator

Core equation of 

joint motion

m f e f

+= +q J x N 

Joint driver of space robot

Environment feedback



ex

exmqbx

Null-space motion

Network 

trainning
t

t+1

 ,      ,      , etc.

Figure 2. Motion planning framework for redundant space robot.

It can be seen from the above figure that the proposed motion planning framework in-
cludes two main modules: the end-effector trajectory generation module and the null-space
obstacle-avoidance module. The former generates the end-effector velocity ẋe according
to the current feedback information, such as the pose of the base and end-effector, the
configuration of the manipulator, etc. The latter generates the null-space solution vector
φ̇ according to the joint angle, the distance of environment obstacles and the other infor-
mation. The outputs of these two modules are superimposed by the core equation of joint
motion Equation (4) to form the final joint angular velocity of the manipulator q̇m at current
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timestep t, which is used as the command of the joint controller to drive the space robot to
track the desired end-effector trajectory. Then, through the environment feedback again,
the state information required by the two modules at the next timestep is obtained, and the
corresponding control command for the next timestep is then generated.

Since Equation (4) completely decouples the joint angular velocity with respect to the
end-effector velocity component and the null-space velocity component, the training and
execution of these two modules can be carried out independently, which provides great
convenience for the design and improvement of motion planning strategies.

3. Null-Space Obstacle Avoidance Based on RL

Reinforcement learning has excellent environmental adaptability. After training is
accomplished, RL can generate instant actions for environmental changes, which is suit-
able for the applications in dynamic scene. Considering the dynamic and unstructured
characteristics of the working environment of space robots, we design the details about the
RL-based null-space obstacle-avoidance strategy, which prevents the collision between the
links and the obstacles, simultaneously maintaining the current pose of the end-effector.

3.1. RL Model for Null-Space Obstacle Avoidance

In order to introduce RL to realize null-space obstacle avoidance, we should transform
this task into a mathematical paradigm for RL problems. The main idea of RL is that the
agent continuously interacts with the environment to adjust and optimize its action policy
according to the feedback states and rewards from the environment during each interaction
so as to maximize the sum of rewards after the task is completed. The process of RL is
shown in Figure 3.

Agent π 

Environment

ActionState Reward

st rt at

st+1

rt+1

Figure 3. The basic process of RL.

As shown in Figure 3, the agent is constantly maintaining an action generation policy
π. For each timestep t, the agent obtains the current state vector st ∈ S and the feedback
reward rt ∈ R from the environment, where S represents the state space composed of all
possible states in the environment, and R is the set of real numbers. If the policy π has been
trained and deployed, it generates the action at ∈ A according to st, where A represents
the action space composed of all executable actions of the agent. Otherwise, the agent
will make decisions based on its interaction experience, knowledge base or other manual
methods to generate action at. Subsequently, the action at acts on the environment to
obtain the state st+1 and reward rt+1 at the next timestep. The above process is repeated
over time. In this process, the agent will train or optimize its own action generation policy
π according to the obtained reward. The ultimate goal of the agent is to train an optimal
policy π∗ to maximize the cumulative reward Rt. It can be expressed as

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞

∑
k=0

γkrt+k+1 (5)

π∗ = arg max
π

E
[

∞

∑
k=0

γkrt+k+1

]
(6)

where γ ∈ [0, 1] is the discount factor of the reward.
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For the null-space obstacle-avoidance of space robots, the agent is a certain policy
π that generates the null-space angular velocity of the joints. The goal of this policy
is to generate the null-space solution vector φ̇ at the current timestep according to the
feedback information—the states of the space robot and the positions of the obstacles in the
environment—so that the manipulator can avoid the obstacles in an optimal way under a
certain evaluation criterion.

Therefore, the action of the agent at is the null-space solution vector, namely,

at = φ̇(t) (7)

The state of the agent st consists of the information about the space robot and obstacles.
In previous works [28], it is usually defined similar to

st = {qm(t), xe(t), xo(t)} (8)

where t is the timestep, qm(t) is the joint angle of the manipulator, xe(t) is the pose of
the end-effector, and xo(t) is the position of the obstacle. The reward from the interaction
between the agent and the environment rt is a feedback function, which is denoted as

rt = r(st, at) (9)

It determines whether the space robot collides with obstacles, and evaluates whether
the current configuration is reasonable so as to guide the policy’s training process. The
specific forms of st and rt in our method are defined in Section 3.2.

Unlike the traditional tabular RL methods, the action vector at and state vector st
we defined are high-dimensional continuous and differentiable variables so that the RL
agent must support continuous action/state space, and has the ability to prevent from
“dimensional disaster” (i.e., inefficient or invalid learning in high-dimensional state space).
Soft actor–critic (SAC) is the current state-of-the-art RL method, which is robust to the
learning of continuous high-dimensional variables, such as robotics. Thus, we adopt SAC
to optimize policy π for better training performance. It should be pointed out that, except
for the requirement of continuous action/state space, our method does not specify the
RL network structure and parameter optimization strategy. In fact, as mentioned in the
introduction, there are many applications of robot planning or controlling with DDPG,
PPO and the other RL methods. Here, we choose SAC, as it has higher data efficiency to
avoid long-time training [26,36]. That is to say, if a better RL method is developed in the
future, we can also use it instead of SAC. The policy π is described as a neural network
with input st and output at, which is expressed as

at = πθ(st) (10)

where πθ represents the neural network that constitutes the policy π, and θ is the parameters
of the neural network. The idea of SAC is to add an entropy function into Equation (6) to
enhance the randomness of policy exploration so as to accelerate the policy convergence
during the training process. Thus, Equation (6) becomes

π∗ = arg max
πθ

E
[
∑

t
γt(r(st, at) + αH(πθ(st)))

]
(11)

where H(·) is the entropy function, which generates a random distribution that affects
the direction of policy exploration according to the action of the neural network πθ ; α is
the temperature of the entropy, which adjusts the ratio of the cumulative reward to the
entropy value.

Specifically, SAC contains a policy network πθ that generates actual actions (i.e., the
null-space solution vector φ̇ for space robot), as well as two main Q-networks Qϕ1 , Qϕ2

and two target Q-networks Qϕ̃1 , Qϕ̃2 that evaluate the quality of the current policy, where
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θ, ϕ1, ϕ2, ϕ̃1, and ϕ̃2 represent the parameter vectors of their corresponding networks,
respectively. The network structure is shown in Figure 4. The detailed training process of
SAC network is described in [26], and we do not explore it in this paper.

 Main Q-network  Main Q-network

Target Q-network Target Q-network

 Policy network

Environment 

feedback

Core equation of 

joint motion

t+1

t

SAC Network

Choose the smaller Q value

KL divergence update

Delayed 

update

Delayed 

update

Soft Bellman 

residual update

2Q1Q

1Q 2Q



Soft Bellman 

residual update

,t trs
t t=a 

1 1,t tr+ +s

m f e f t

+= +q J x N a

Joint driver of 

space robot

End-effector 

trajectory 

generator

( )e tx

( )m tq

Space robot 

forward kinematics

Figure 4. SAC network structure for null-space obstacle avoidance.

3.2. State and Reward Function Definition

It is important to choose appropriate states and reward function for solving the RL task
of space robot obstacle avoidance. As mentioned above, in the previous RL-based robot
planning methods, the state vector is mostly defined similar to Equation (8). However, this
definition is only suitable for a fixed number of obstacles in the working environment. In
the unstructured dynamic environment, the number of obstacles is usually unknown and
even may change during task execution such that the defined state vector cannot match the
actual working environment. It can only be solved by modifying the state definition and
retraining for every change of the scene configuration, which is not practical to be deployed
in reality.

In our method, we treat the obstacles’ state from the perspective of the space robot
itself to solve this problem, i.e., we use the vector p, which represents the distance of each
link and its nearest obstacle to replace the obstacle position xo in Equation (8), as shown in
Figure 5. Specifically, we number the space robot components with i = 0 ∼ n to represent
the base as well as Link 1~Link n, respectively. Let P r

i be the set that contains all the surface
points’ position vectors of Component i, then let pr

i ∈ P r
i be a certain point’s position vector

of Component i. Suppose there are k obstacles in the environment. Let P o
j be the set that

contains all the surface points’ position vectors of Obstacle j, where j = 1 ∼ k, then let
po

j ∈ P o
j be a certain point’s position vector of Obstacle j. Thus, the distance vector between

each component of the space robot and the obstacle can be defined as

pi = arg min
pr

i∈P
r
i , po

j∈Po
j , j=1∼k

∥∥∥po
j − pr

i

∥∥∥, i = 0 ∼ n (12)

So po represents the position vector of the two closest points between the base and the
nearest obstacle, and p1 ~pn represent the position vector of the two closest points between
Link 1~n and their nearest obstacle, respectively.

Therefore, the state vector of the RL model for null-space obstacle avoidance is defined
as

st = {qm, q̇m, p0, p1, · · · , pn} (13)

where qm and q̇m represent the configuration and joint angular velocity of the manipulator
at timestep t; p0 ∼ pn describes the influence of all the possible obstacles in the environ-
ment on the base and the links. It can be seen that the definition is independent of the
environment-specific information, such as the number or the shape of obstacles, which
ensures the generality of the strategy in various unstructured dynamic scenes. In addition,
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the action φ̇, which is generated by the policy network πθ , will not change the pose of the
end-effector, so there is no need to add the related state variables (e.g., end-effector position
xe, and velocity ẋe) to the vector.

Base

Obstacle 1

Obstacle 2

p1

p2

p3

p4

p0

Link 1

Link 2

Link 3

Link 4

Figure 5. Schematic diagram of distance vector definition.

Then, we design the reward function of the environment feedback for the null-space
motion of the space robot. Since the space robot needs to complete other operation tasks,
such as expected trajectory tracking, it is necessary to make the null-space motion have
higher stability and operability to prevent the space robot from generating an oscillating
path or falling into the local optimum in the process of obstacle avoidance. For this purpose,
we propose the following reward function:

r = λ1ro + λ2ra + f (pi)rc (14)

In Equation (14), ro is the obstacle-avoidance feedback term, which is defined as

ro =
n

∑
i=1

min

[
ln

(
eb − ea

ds
‖pi‖+ ea

)
− b, 0

]
(15)

where ds is the specified safe distance between the space robot and the obstacle, and a
and b are the scoping values. In particular, when the distance between the space robot
components (the base or the links) and the single obstacle is less than ds, a negative log
reward ro ∈ [a− b, 0] will be obtained, guiding the space robot to perform obstacle-
avoidance operations. We set a = −1 and b = 0 empirically for normalization. ra is the
motion stabilization term, which is defined as

ra = −
∥∥∥(I − J+f J f

)
φ̇
∥∥∥ (16)

where
(

I − J+f J f

)
φ̇ is the angular velocity component of the joint null-space motion. A

lower null-space angular velocity can prevent the manipulator from oscillating during the
obstacle-avoidance process. λ1 and λ2 are the weights of ro and ra, respectively, which are
used to adjust the relative size to keep the reward value r within a suitable range. rc is the
collision penalty term with a large negative value, and fc(pi) is the indicator function that
judges whether the collision has occurred, which is defined as

fc(pi) =

{
0, if ∃i = 0 ∼ n s.t. ‖pi‖ = 0
1, else

(17)

Thus, once any component of the space robot collides with any obstacle, the RL
agent will obtain a large negative reward value, then the current training episode will
be terminated.
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3.3. Training Strategy

Usually, during the training of RL agent, the training environment is required to be
as random as possible so as to ensure that the policy has sufficient generalization to deal
with various environmental states. However, the obstacles only occupy a small part of the
area compared to the workspace of the space robot so that in most randomly generated
scenarios, the moving space robot does not collide with obstacles. As a result, in the training
process of obstacle avoidance, it is difficult to generate enough obstacle collision negative
rewards to guide the neural network to search in the direction of the optimal policy. Thus,
it results in low training efficiency, unstable convergence and poor performance of obstacle
avoidance. In order to avoid this problem, we propose the corresponding training strategy
for null-space obstacle avoidance, which gradually improves the RL policy’s adaptability
to various scenarios and states by curriculum learning so as to achieve a trade-off between
the convergence of the training process and generalization to different scenarios.

Firstly, if the position of obstacle in the scenario is randomly generated, in most
cases, the motion of the space robot is always outside the obstacle’s safe area, as shown in
Figure 6a. This will generate a large number of invalid samples and seriously reduce the
training efficiency. In order to avoid this problem, in each training episode, the initial state
is set as the space robot has entered the obstacle’s safe area, as shown in Figure 6b. In this
way, the RL agent can receive a negative reward at the beginning of the episode according to
the designed reward function, making the trajectory of this episode an effective sample that
can guide the direction of the agent’s policy searching. The detailed process is described
as follows:

(a) Specify the maximum number of training episode nep_max, the obstacle safe distance
ds and the manipulator’s initial configuration of the space robot qm0;

(b) Randomly select the obstacle position po
j which subjects to the condition 0 < ‖pi‖ < ds,

where j is the serial number of the obstacles;
(c) Start the current episode to sample the trajectory which is generated from the SAC

policy network, then update the network parameters by the SAC training pipeline;
(d) Turn to (b) for the next episode, until reaching nep_max.

Base

Position 1

Position 2

Position 3

Position 4

Obstacle jSafe distance 
sd

(a) Generating obstacles at random positions.

Base

ds

Position 1

Position 2

Position 3

Position 4

Obstacle j

Safe distance 

(b) Generating obstacle positions within the safe distance.

Figure 6. Schematic diagram of obstacle position generation strategy.
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Secondly, the manipulator configurations and the end-effector positions are changeable
for different scenarios or tasks. The RL agent needs to simultaneously learn a null-space
policy for the changes of obstacle position, end-effector position and manipulator configu-
ration. However, in practical applications, the possible obstacle positions are independent
of the end-effector positions, which leads to the distribution discontinuity of the target state
space in the whole state space, as shown in Figure 7. If the number of training samples
is insufficient, it is easy to fall into the local optimum, which greatly reduces the policy’s
performance. To this end, we design the adjustment strategies for the end-effector positions
and the manipulator configuration for different training stages:

(a) Specify the maximum number of training episode nep_max, the cumulative reward
threshold Rs, and an initial manipulator configuration qm0;

(b) Calculate the end-effector position xe by forward kinematics according to qm0;
(c) Start current episode under the condition of the unchanged xe to sample the trajectory

of the space robot in null-space, and learn the obstacle-avoidance policy in null space
by the SAC training pipeline;

(d) If the cumulative reward in this episode is Rt > Rs, which means the space robot
has learned an available policy under the condition of the end-effector position xe,
then let qm0 ← qm0 + ∆qm0, where ∆qm0 is a random configuration-changing vector.
Otherwise, skip this step.

(e) Turn to (b) for the next episode, until reaching nep_max.

Base Base

State Space

Target space 

for  pe1、po1

s1

s2

s3

s4

State transition State transition

Configuration  qm1→qm2  

to avoid Obstacle 1

pe1

pe3

po1
po3

Target space 

for  pe1、po2

Target space 

for  pe3、po3

Target space 

for  pe3、po4

po4

po2

Target space for 

other parameters

State vector  s1→s2

qm1

qm2

Configuration  qm3→qm4  

to avoid Obstacle 3

qm3

qm4

State vector  s3→s4

Figure 7. Schematic diagram of obstacle position, end-effector position and target state space distribution.

In addition, we also use automating entropy adjustment strategy [37] to update α
automatically for Equation (11):

J(α) = Ea∼πθ
[−α log πθ(a|s)− αH̄] (18)
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α← α− ε · ∇α J(α) (19)

where J(α) is the objective function to update α, H̄ is the specified target entropy value, ε
is the scale factor. As the training progresses, α will be gradually decreased to make H(·)
approach the target entropy value H̄. Therefore, the randomness of actions will be greater
at the initial stage of training to expand the action exploration space and increase the
possibility of searching for better policy. Then the randomness will be gradually reduced
over the training process to ensure the convergence.

Combining all the above training strategies, the final training process is shown in the
following Algorithm 1:

Algorithm 1: The training strategy for null-space obstacle avoidance of space robot.

Set the safe distance ds, reward threshold Rs, number of obstacles k, scale factor ε;
Set the initial manipulator configuration qm0, initial temperature parameter α;
Set the random vector generator for manipulator configuration change ∆qm0;
Initialize SAC network πθ , Qϕ1 , Qϕ̃1 , Qϕ2 , Qϕ̃2 ;
for n = 1 ∼ nep_max do

xe = forward_kinematics (qm0);
Select k the obstacle position po

j ( j = 1 ∼ k ), which subjects to 0 < ‖pi‖ < ds

for ∀i = 0 ∼ n ;
Initialize cumulative reward Rt = 0;
Obtain state st from the environment;
while t = 0 ∼ tmax do

at = πθ(st) ;
Let q̇m = at to drive the space robot, obtain state st ;
rt = r(st, at) ;
Rt = Rt−1 + rt ;
Train and update network parameters πθ , Qϕ1 , Qϕ̃1 , Qϕ2 , Qϕ̃2 by

Equation (11) according to SAC;
if ‖pi‖ > ds or ‖pi‖ = 0 (i = 0 ∼ n) then

Break internal loop;
end

end
Obtain ∆α based on the optimization result of Equation (18);
α← α + ∆α;
if Rt > Rs then

qm0 ← qm0 + ∆qm0;
end

end

4. Simulation and Discussion

In order to verify the effectiveness of the motion planning method proposed in this
paper, we designed the task scenario for a space robot and conducted the numerical
simulation experiments. Then, we discussed the experimental results. All simulations were
run on a computer with Intel i9-10900X 3.70 GHz CPU, Gigabyte X299-WU8 motherboard
and four 16 GB Samsung DDR4 RAMs.

4.1. Simulation Scenario

For better display, we take a planar space robot with a floating base and a 3-DOF
manipulator to verify our method, where the end-effector tracks the position so that
the robot has a single redundant degree. The schematic diagram is shown in Figure 8,
and the Denavit–Hartenberg (D-H) parameters and dynamic parameters are shown in
Tables 1 and 2, respectively. The constraints are listed in Table 3.
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Base
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Figure 8. Schematic diagram of the space robot.

Table 1. D-H parameters of the space robot.

Component Frame ai−1(m) αi−1(
◦) di(m) θi(

◦)

b→ 0 0.05 0 0 0
0→ 1 0 0 0 qm1
1→ 2 0.1 0 0 qm2
2→ 3 0.1 0 0 qm3
3→ e 0.1 0 0 0

Table 2. Dynamic parameters of the space robot.

Component Mass Centroid pci(m) Inertia Tensor Ici(kg · m2)
m(kg)

[
px, py, pz

] [
Ixx, Iyy, Izz, Ixy, Ixz, Iyz

]
Base 500 [0, 0, 0] [20, 20, 20, 0, 0, 0]

Link1 10 [0.25, 0, 0] [0.00025, 0.8333, 0.8333, 0, 0, 0]
Link2 10 [0.25, 0, 0] [0.00025, 0.8333, 0.8333, 0, 0, 0]
Link3 10 [0.25, 0, 0] [0.00025, 0.8333, 0.8333, 0, 0, 0]

End_effector 10 [0.25, 0, 0] [0.00025, 0.8333, 0.8333, 0, 0, 0]

Table 3. Constraint condition of the space robot.

Item Value Item Value

qm1 [−120◦, 120◦] φ̇1 [−1◦, 1◦]
qm2 [−160◦, 160◦] φ̇2 [−1◦, 1◦]
qm3 [−160◦, 160◦] φ̇3 [−1◦, 1◦]

The simulation environment is developed by PyGame on OpenAI Gym, which is
shown in Figure 9. The initial base position, orientation and manipulator configuration are
set at pb0 = [−0.2, 0]T(m), rb0 = 0◦ and qm0 = [−45, −90, 45]T(◦) respectively. Several
obstacles with radius ro = 0.005 (m) and safe distance ds = 0.02 (m) are positioned
randomly at po1, po2, . . . , pok in the scenario (k = 2 in Figure 9). The space robot needs to
avoid these obstacles at a safe distance ds while tracking the predetermined end-effector
trajectory to the target position pt.

Base

xI

yI

po1

po2

pt

pe

OI

ds ro

Figure 9. Simulation environment for planar space robot.

4.2. Training Process

We trained the RL agent with the hyperparameters in Table 4 to validate our null-space
obstacle-avoidance method. As a comparison, we conducted two cases of training strategy:
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one is the curriculum learning strategy (Algorithm 1) proposed in Section 3.3, another
is the common strategy, which takes the random initial manipulator configuration for
each episode.

Table 4. Hyperparameters of the RL agent for training.

Hyperparameter Value Hyperparameter Value

Learning rate 0.001 Obstacle number k 1
Discount factor γ 0.99 Reward threshold Rs −50
Target entropy H̄ −4 Scale factor ε 1

Temperature α 0.2 Configuration change ∆qm0 (−15◦,+15◦)
Replay buffer size 1× 105 Reward parameter λ1 10

Batch size 100 Reward parameter λ2 0.3
Max length of an episode 600 Reward parameter rc −100

As Figure 4 shows, the SAC networks are composed of MLP fully connected layers.
The policy network has an input layer with 14 nodes (the dimension of the state vector st),
an output layer with 3 nodes (the dimension of the action vector at) and 256 hidden layers
with 256 nodes. Each Q-networks has an input layer with 17 nodes (the dimension of st
and at), an output layer with 1 node, and 256 hidden layers with 256 nodes. All the nodes
use ReLU for the activation function.

The training process went through 600 epochs, and each epoch contains 20 episodes,
where an episode lasts 600 timesteps at most. Once the distance between the obstacle
and the manipulator is greater than the safe distance or the manipulator collides with the
obstacle, the episode will be terminated. If the distance between the links and the obstacles
is greater than ds or less than rs, or the moving time elapses over 600 timesteps, the episode
will terminate and come to the next episode until the current epoch ends. A performance
test of 20 episodes is set between each epoch to verify the learning effect so far. The test
results of the average, minimum and maximum accumulated rewards after each epoch for
the above two training cases are shown in Figure 10.

It can be seen from Figure 10a that using our strategy, the cumulative reward is gradu-
ally converged after 300 epochs, and the difference between the maximum and minimum
values is reducing, indicating that a relatively stable null-space obstacle-avoidance policy
has been learned. In Figure 10b, as the training proceeds, the average and minimum
of the cumulative reward fluctuate greatly all the time, showing that the performance
is poor in the test, which cannot achieve effective obstacle avoidance under some initial
manipulator configurations.

Figure 10c compares the average cumulative reward curves of the two training cases.
We can see that the average cumulative reward of our method is temporarily lower in the
initial training stage compared with the random initial configuration strategy; however,
in the middle and late stages, the curve of our method is consistently higher than the
latter. This is mainly because in the initial stage, our method tried to explore the policy for
different obstacle positions under a fixed initial configuration. In other words, we restricted
the target state space as well as the to-be-searched state space. Although there were many
failed attempts, the RL agent learned the policy of reaching into the target state space from
its edge under the specified initial configuration. After that, it gradually switched to other
initial configurations to generalize the policy. Therefore, we can see that the test curve
fluctuates to a certain extent after each switching of the initial configuration, indicating that
the RL agent is carrying out the adaptive learning for the changed initial configuration. As
for the random initial configuration strategy, each episode simultaneously generated the
random initial configuration and obstacle position, resulting in the catastrophic expansion
of the to-be-explored state space. The RL agent was trained with insufficient available
samples, which obtained unstable test results. Figure 10d compares the obstacle-avoidance
success rates of the two training cases. We define a successful obstacle avoidance as the
minimum distance between the obstacle and each component of the space robot being
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greater than safety distance ds through the space robot’s motion within 600 timesteps.
Therefore, it is considered a failure if any component collides with the obstacle, or the
minimum distance is not greater than ds after 600 timesteps. From Figure 10d, we can also
see a trend similar to that in Figure 10c as mentioned above. Finally, the success rate of
our method converges to about 90%, while the success rate of random initial configuration
strategy is about 83%, which is slightly lower than our method.
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(a) The cumulative reward curve for our training strategy.
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(b) The cumulative reward curve for random initial configuration.
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(c) The average cumulative reward comparison for our strategy and random initial strategy.

Figure 10. Cont.
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(d) The success rate comparison for our strategy and random initial strategy.

Figure 10. The cumulative reward and success rate curves of two training cases.

4.3. Results Discussion
4.3.1. Training Results

Figure 11 shows the null-space obstacle-avoidance motion of the space robot for
different numbers of obstacles by the learned RL agent. The color in the figure gradually
deepens over time so that the moving trajectory of the space robot can be seen intuitively.
In the initial state, the distance between the obstacle and the links are less than the safety
distance ds. Driven by the learned RL agent, the manipulator moved in the direction
away from the safety boundary of the obstacle until the distance was greater than ds, then
gradually stopped moving. During this process, the pose of the base changed slightly due
to the motion coupling relationship between the base and the manipulator. However, the
position of the end-effector did not change, which proves the null-space obstacle-avoidance
characteristic of our method.

(a) Avoidance for single obstacle (b) Avoidance for two obstacles

Figure 11. Null-space obstacle-avoidance trajectory of the space robot.

It can be seen from the simulation that our method has no limit to the number of
obstacles. Although the RL agent was trained on a single-obstacle scenario, it is still
applicable for scenarios with two or more obstacles. In addition, by combining with the
end-effector trajectory generation strategy, it can achieve the high-required end-effector
trajectory tracking task and obstacle avoidance in an unstructured dynamic environment
simultaneously, as Section 4.3.3 shows.

4.3.2. Performance of Obstacle Avoidance

When performing tasks, the space robot needs to carry different loads, which are
usually grasped by the end-effector or placed in specific storage areas of the base, resulting
in mass distribution changes. Since the free-floating characteristic of the base, the different
mass distribution will change the coupling degree between the base and the manipulator so
that the original strategy cannot adapt to the changed dynamic nature of the robot, which
is still a challenge faced by many planning and control methods for space robot.
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To illustrate the robustness to payload mass change of our method, we used the
above learned RL agent without modification to test the performance in different mass
distributions. We set up 20 groups to test the effect of mass changes on the obstacle
avoidance performance, where 10 groups for different base mass (from 100 kg to 1000 kg),
and 10 groups for different end-effector mass (from 50 kg to 500 kg). Each group contained
100 obstacle avoidance tests. After a group was completed, we recorded the success rate of
obstacle avoidance and the cumulative reward obtained by the RL agent. The results are
shown in Figure 12.

As can be seen from Figure 12a, under the conditions of different base mass, the
average success rate of the RL agents in null-space obstacle avoidance is 91.2%, and the
cumulative reward is about −130, which is basically the same as the test results in the later
training stage (the cumulative reward curve after 300 epochs in Figure 10a, indicating that
base mass change has little effect on obstacle-avoidance performance. From Figure 12b, it
can be seen that the average success rate is 89.3%, and the success rate decreases slightly
with the increasing of the end-effector mass, while the changing trend of the cumulative
reward is not obvious, indicating that the end-effector mass change also has little influence
on the obstacle avoidance performance. Since the mass of the load is generally not greater
than the base, it can be considered that our method has good robustness to the load changes
according to the test results, which can meet the needs of practical tasks.

It should be pointed out that there is about a 10% failure rate in the above tests. They
are caused by the loss of single directional motion capability, which comes from the strict
null-space constraint, while not being caused by our method. Figure 13 shows a typical
failure case, where an obstacle is placed near Link 2. Due to the restriction of the null-space
constraint, Link 2 lost the ability to move upward to leave the obstacle’s safe distance border.
In fact, no matter how the RL agent drove the space robot, Link 2 was always within the
safe distance, or even closer to the obstacle such that the collision occurred. Therefore, in
these cases, obstacle avoidance is impossible unless the end-effector’s positions are allowed
to change; however, it is beyond the scope of the premises in this paper. We consider
relaxing the strong constraint of null-space motion to solve this problem in later research.

Considering the null-space motion constraint, we did not compare our method with
the conventional obstacle-avoidance motion planning methods, such as PRM and RRT,
because they are difficult to meet the precondition of keeping the end-effector’s position
unchanged during obstacle avoidance. Instead, we tested the common method GPM for
null-space motion in the above simulation scenario with the same computer and program-
ming language. We tested 500 episodes, where the initial manipulator configuration and
obstacle position are randomly generated for each episode. We observed the effect of GPM
and our method, respectively, in each episode and recorded the success rate of obstacle
avoidance, as well as the average time to generate φ̇ at each timestep. The results are
shown in Table 5. It can be seen from the test results that the success rates of the two
methods are the same, while neither of them reaches 100%. As mentioned in the previous
paragraph, it was caused by the random generation of the initial manipulator configuration
and obstacle position for which, in some cases, it is impossible to avoid the obstacle without
changing the end-effector’s position, such as in Figure 13. In fact, both methods achieved
the same 457 successful episodes, and the other 43 episodes failed unless the end-effector’s
position was changed. It manifests that the two methods are at a nearly equivalent level for
null-space obstacle avoidance. However, our method saves nearly 68% of the computation
time compared to GPM. This is because our method obtains action values directly from the
learned policy network, while the GPM computation relies on the iterative computation of
the kinematics of the space robot, which consumes a lot of time.
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(a) Comparison of different base masses.
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(b) Comparison of different end-effector masses.

Figure 12. The performance of the RL agent in different mass distributions.

Figure 13. A failure case in null-space obstacle avoidance.

Table 5. Performance comparison of GPM and our method.

Comparison GPM Our Method

Success Rate 91.4% 91.4%
Calculating Time 2.367 ms 0.753 ms

4.3.3. Application in Dynamic Environment

Further, we tested the performance of our method in dynamic environments. We ap-
plied the learned RL agent without modification to the unstructured dynamic scenario with
the following two conditions: (1) the end-effector needs to move along a predetermined
trajectory; and (2) there are movable obstacles in the scenario that need to be avoided. In this
scenario, the initial configuration of the space robot, the target position of the end-effector,
as well as the initial and target position of the obstacle, are randomly generated.

Figure 14 shows the scenario settings of the simulation, with the initial base position
pb0 = [−0.2, 0]T (m), initial base orientation rb0 = 0◦ and initial configuration of the manip-
ulator qm0 = [20, −130, 140]T (◦). The end-effector moved linearly from the initial position
pe_start = [−0.004, −0.010]T (m) to the target position pe_target = [0.076, 0.070]T (m) at the
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trapezoidal velocity profile with parabolic blends. There was an obstacle moving linearly
in the scenario, from the initial position po_start = [−0.094, 0.100]T (m) to the target po-
sition po_target = [−0.023, −0.010]T (m); the motion curve is shown in Figure 15. In this
case, the space robot moved directly according to the joint trajectory calculated by inverse
kinematics without obstacle avoidance, then Link 1 and Link 2 broke through the obstacle’s
safe distance border ds = 0.02 (m) successively, as shown in Figure 16. In detail, Figure 17
shows the distance curve between the obstacle and Link 1/Link 2 over time. It can be seen
from the figure that the distance between Link 1 and Link 2 was less than the safe distance
with 11.9 s, since Link 2 collided with the obstacle at 27.5 s. Obviously, it was a failed task.

po_start

po_target

pe_start

pe_target

Figure 14. The scenario settings of the dynamic environment.
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Figure 15. The motion curve of the obstacle.

Figure 16. The trajectory without obstacle avoidance of the space robot.
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Figure 17. The distance curve from the obstacle to the links without obstacle avoidance.

We tested the same task with our method. In this case, the motion trajectory of the
space robot is shown in Figure 18. As can be seen from the figure, the end-effector moved
along the desired linear trajectory, while the RL agent actively drove Joint 2 and Link 2 to
avoid the obstacle. Figure 19 shows the distance curve from the obstacle to Link 1/Link 2
by our method. In the initial stage, the distance curve is basically the same as Figure 17.
The difference comes after 11.9s. Under the control of the RL agent, the distance between
the obstacle and Link 1/Link 2 was kept at the safe distance until the obstacle was far
away from Link 1 at 21.2 s, while still maintaining the safe distance from Link 2. Figure 20
compares the end-effector’s real trajectory by our method with the desired trajectory
required by the task. In this figure, the real trajectory almost completely coincides with
the desired trajectory, indicating that the obstacle-avoidance motion component strictly
followed the null-space constraint, having no effect on the motion of the end-effector.

Figure 18. The obstacle-avoidance trajectory of the space robot by our method.
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Figure 19. The distance curve from the obstacle to the links by our method.
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Figure 20. The motion curve of the end-effector by our method.

The simulation results demonstrate the effectiveness and adaptability to a dynamic un-
structured environment of our proposed RL-based null-space obstacle-avoidance method.
It also shows that our motion planning framework has good extensibility, which can be
combined with different end-effector trajectory generators to perform more complex and
no-collision manipulation tasks.

5. Conclusions

In this paper, a new obstacle-avoidance motion planning method for redundant space
robots via reinforcement learning is proposed. Utilizing the redundant characteristics of
the space robot, this method constructs an obstacle-avoidance motion planning frame-
work, which introduces RL into null-space motion to realize reactive obstacle avoidance
without changing the end-effector’s predetermined trajectory. Then, the proposed RL
agent model as well as the training strategy for null-space obstacle avoidance is combined
to the framework, which enables our method to have good adaptability to unstructured
dynamic environments. The simulation results show that our method can avoid the sta-
tionary/moving obstacles steadily and effectively with sufficient computational efficiency,
as well as having no need to retrain for the changes of obstacle number or motion states
in the dynamic environment. Our method has good robustness to the space robot’s load
mass, which is an important case to be considered in the practical application of space robot
methods. We prove the advantages of our method in this aspect through a large number of
tests. In addition, the simulation results also demonstrate the openness and extensibility
of our method, which can be easily combined with the end-effector trajectory generation
strategies, simultaneously realizing the complex motion tracking of the end-effector and
the obstacle avoidance of the links for trajectory focused tasks.

In order to apply our method to real scenarios, the following steps need to be im-
plemented: firstly, obtain the relatively accurate kinematics and dynamic parameters of
the space robot so that the simulation environment can reliably simulate the real motion
response in the space environment; secondly, train the RL agent according to the proposed
strategy in the simulation environment built by the ground computer; thirdly, deploy the
trained RL agent program to the control computer, which is launched into orbit with the
space robot; finally, start this program when the space robot performs on-orbit operation
tasks, where the joint angle and velocity come from the joint sensor embedded in the
manipulator, and the obstacle information depends on the measurement results from the
visual sensor so that the necessary state value is provided for the RL agent to realize null-
space obstacle avoidance. Our method mainly consumes hardware resources in the ground
training stage. After training, the RL agent can be executed without excessive hardware
conditions, so it can be easily deployed to the control computer of the space robot.

It should be pointed out that null-space motion cannot guarantee the absolute obstacle-
avoidance capability of the space robot in the full range of its workspace. Specifically, the
links of the space robot may lose single directional motion capability by the null-space



Actuators 2023, 12, 69 22 of 23

constraint such that it cannot avoid the obstacle in this direction unless the end-effector is
no longer restricted to following the predetermined trajectory. Therefore, under the premise
of the null-space constraint, the success rate of obstacle avoidance cannot reach 100% for
random obstacles. For this situation, we need to allow the RL agent to relax the null-space
constraint of tracking the end-effector’s predetermined trajectory when necessary so that
once the obstacle’s motion exceeds the coping ability of null-space obstacle avoidance, the
RL agent can still ensure the safety of the space robot. We will solve this problem in future
research so as to further improve the performance of obstacle avoidance.
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