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Abstract: To address system parameter changes during permanent magnet synchronous motor
(PMSM) operation, an H∞ filtering algorithm with a dynamic forgetting factor is proposed for
online identification of motor resistance and inductance. First, a standard linear discrete PMSM
parameter identification model is established; then, the discrete H∞ filtering algorithm is derived
using game theory reducing state and measurement noise influence. A cost function is defined,
solving extremes values of different terms. A dynamic forgetting factor is introduced to the weighted
combination of initial and current measurement noise covariance matrices, eliminating identification
issues from different initial values. On this basis, a dynamic forgetting factor is added to weigh
the combination of the initial measurement noise covariance matrix and the current measurement
noise covariance matrix, which eliminates the influence of the discrimination error caused by the
different initial values. Finally, the identification model is built in MATLAB/Simulink for simulation
analysis to verify the feasibility of the proposed algorithm. The simulation results show the proposed
H∞ filtering algorithm rapidly and accurately identifies resistance and inductance values with
significantly improved robustness. The forgetting factor enables quick stable recognition even with
poor initial values, enhancing PMSM control performance.

Keywords: PMSM; H∞ filtering algorithm; parameter identification analysis; dynamic forgetting factor

1. Introduction

The structure of a permanent magnet synchronous motor and other factors can result
in differences in motor parameters under different working conditions. This can reduce the
accuracy of the overall control system and potentially impact system stability [1]. Accurate
identification of motor parameters is therefore crucial.

Compared to offline identification methods, ideal online methods can accurately
estimate motor parameters in real time, enhancing system control performance [2–4]. Cur-
rent online parameter identification methods for permanent magnet synchronous motors
primarily utilize least squares [5–7], model reference adaptive [8–10], and Kalman filter algo-
rithms [11–13]. Uddin et al. [14] realizes online alternating axis inductance by identification
via a model-referenced adaptive algorithm, assuming known, constant stator resistance and
permanent magnet magnetic chain. Gao et al. [15] proposed a model-referenced adaptive
system based on disturbance compensation, designed a real-time disturbance estimator, and
updated the adaptive rate according to the disturbance. This reduces system uncertainty
and disturbance effects and increases model-referenced adaptive algorithm application
scenarios. Based on the permanent magnet synchronous motor mechanical and electro-
magnetic models, Tang et al. [16] designed an adaptive rate improvement model reference
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adaptive algorithm. This estimates rotor position and load torque while designing a load
torque feedforward compensator controller for quick load response. Kalman filtering for
linear systems can be updated in real-time to optimally estimate parameters but often fails
with unknown noise and large modeling errors. The motor system is nonlinear, so many
scholars improved Kalman filtering, such as via extended Kalman filtering [17,18], trace-
less Kalman filtering [19], unscented Kalman filtering [20], etc. Kalman filtering assumes
Gaussian distributed measurement noise, but system noise statistics are often unknown or
time-varying in reality. The adaptive Kalman filtering algorithm in reference [21] addresses
this to some extent by selecting the appropriate covariance distribution to estimate the
covariance matrix, which does not vary significantly. However, it is limited by the linear
Gaussian state model. Researchers have achieved many achievements in engine parameter
identification, but existing methods often only consider Gaussian noise, while practice
engines are often disturbed by non-Gaussian noise and other factors. For Gaussian noise
with unknown covariance, the traditional H∞ filtering algorithm is used. Chen et al. [22]
proposes an adaptive H∞ filtering algorithm for parameter identification, based on the
traditional extended H∞ filtering algorithm, and investigates the online identification of
motor stator inductance and resistance. However, the covariance of the traditional H∞ fil-
tering algorithm is set by humans, which affects the accuracy of the H∞ filtering algorithm.
As inductance parameters are influenced by the motor’s operating state, Liu et al. [23]
establishes a motor model based on the motor’s transient voltage equation and intro-
duces a forgetting factor to improve the least squares identification method, successfully
enhancing algorithm tracking performance. However, setting the forgetting factor to a
specific value makes ensuring the least squares method’s robustness during identification
difficult. Fang et al. [24] takes the error between theoretical and actual output as a vari-
able, dynamically adjusting the forgetting factor, to accelerate algorithm convergence and
ensure robustness.

Therefore, this paper proposes a discrete H∞ filtering algorithm containing dynamic
forgetting factor based on minimizing maximum estimation error requiring no assumptions
about system or observation noise characteristics. The remaining paper is organized as
follows: First, a PMSM parameter identification model is established from the PMSM’s
d-q mathematical model. Second, the cost function is defined per H∞ filtering, with the
extreme point solved. Then, a dynamic forgetting factor is introduced to reduce abnormal
initial value influence on the algorithm. Finally, this H∞ filtering with dynamic forgetting
factor identifies PMSM parameters, verifying effectiveness via simulation.

2. Modeling of PMSM Parameter Identification

To facilitate the study, the mathematical model under the synchronous rotation coordi-
nate system d-q of the permanent magnet synchronous motor is usually selected, so that
the stator voltage equation can be expressed as ud = Rsid + dψd

dt −ωeψq

uq = Rsiq +
dψq
dt + ωeψd

. (1)

The equation for the stator chain can be expressed as follows:{
ψd = Ldid + ψf

ψq = Lqiq
. (2)

Substituting Equation (2) into Equation (1) gives the following Equation: ud = Rsid + Ld
d
dt id −ωeLqiq

uq = Rsiq + Lq
d
dt iq + ωe(Ldid + ψf)

, (3)
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where ud and uq are the voltages of the d and q axes, respectively; id and iq are the currents
of the d and q axes, respectively; Rs is the stator resistance; Ψd and Ψq are the stator chain
components, respectively; ωe is the electric angular velocity of the rotor; Ld and Lq are
the inductances of the d and q axes, respectively; and Ψf is the magnetic chain of the
permanent magnet.

The state space equations for the permanent magnet synchronous motor are estab-
lished by selecting the id and iq of the current in the d and q axes and identifying the
parameters Ld and Lq, and Rs as state variables. This paper focuses on the surface-mounted
motor, which satisfies Ld = Lq = Ls. Thus, Equation (3) can be rearranged as follows:

d
dt


id
iq
Rs
Ls

 =


− Rs

Ls
ωe 0 0

−ωe − Rs
Ls

0 0
0 0 0 0
0 0 0 0




id
iq
Rs
Ls

+


1
Ls

0
0 1

Ls
0 0
0 0


[

ud
uq −ωeψf

]
. (4)

Since the coefficient matrix of Equation (4) contains coupling terms, the direct identifi-
cation of Rs and Ls becomes more complex. Therefore, intermediate variables a and b are
introduced to simplify the identification equations. Let a = Rs/Ls, b = 1/Ls. Equation (4)
can be rearranged as follows:

d
dt


id
iq
a
b

 =


0 ωe −id ud
−ωe 0 −iq uq −ωeψf

0 0 0 0
0 0 0 0




id
iq
a
b

+ w. (5)

The output y can be expressed as

y =

[
1 0 0 0
0 1 0 0

]
id
iq
a
b

+ v, (6)

where w represents the process noise of the system and v represents the measurement noise
of the system. The state variable matrix of the system is denoted by x = [id iq a b]T, and
the output variable matrix is denoted by y = [id iq]T. By discretizing Equations (5) and (6)
using the sampling period Ts, the standard linear discrete system form presented below is
obtained as {

xk+1 = Fkxk + wk

yk = Hkxk + vk
, (7)

where wk and vk are noise terms that are random and of unknown statistical properties; Fk
and Hk represent the coefficient matrices as follows:

Fk =


1 ωeTs −idTs udTs
−ωeTs 1 −iqTs

(
uq −ωeψf

)
Ts

0 0 1 0
0 0 0 1


Hk =

[
1 0 0 0
0 1 0 0

] . (8)

Thus, the algorithm in this study uses the H∞ filtering algorithm to detect parameters
a and b using the above model. Next, the values of resistance Rs and inductance Ls are
obtained by relating a and b and Rs and Ls.
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3. H∞ Filtering Algorithm Based on Game Theory

The estimation of xk is denoted as x̂k, and the estimation of the initial state is denoted as
x̂0. In the game-theoretic approach to derive H∞ filtering and estimate xk, including N − 1
moments and N − 1 moments before the measurement condition, the cost function [22]
must be defined as shown in Equation (9):

J1 =

N−1
∑

k=0
‖xk − x̂k‖2

sk

‖x0 − x̂0‖2
P−1

0
+

N−1
∑

k=0

(
‖wk‖2

Q−1
k

+ ‖vk‖2
R−1

k

) . (9)

The presence of disturbances, such as natural noise, produces wk, vk, and x0, that
maximizes J1. Thus, the cost function places wk, vk and x0 in the denominator. To minimize
J1, we must estimate xk in the cost function and find the appropriate solution. Equation (9)
employs symmetric positive definite matrices P0, Qk, Rk and Sk, chosen based on the
specific problem.

Minimizing J1 directly is challenging; thus, we choose a performance limit that ensures
the J1 cost function meets the following condition:

J1 <
1
θ

. (10)

θ is the performance boundary. We set the following:

J = J1 −
1
θ
=
−1
θ
‖x0 − x̂0‖2

P−1
0

+
N−1

∑
k=0

[
‖xk − x̂k‖2

Sk
− 1

θ

(
‖wk‖2

Q−1
k

+ ‖vk‖2
R−1

k

)]
< 0. (11)

Therefore, from Equation (11), it can be seen that J can be minimized by choosing an
appropriate wk, vk, and x0, while wk, vk, and x0 generated by the noise effect can maximize J.
The noise effect can be expressed by substituting vk into Equation (11). From yk = Hkxk + vk
in Equation (7), it can be seen that vk = yk − Hkxk, and substituting vk into Equation (11)
can be expressed as

J = − 1
θ ‖x0 − x̂0‖2

P−1
0

+
N−1
∑

k=0

[
‖xk − x̂k‖2

Sk
− 1

θ

(
‖wk‖2

Q−1
k

+ ‖yk − Hkxk‖2
R−1

k

)]
= ψ(x0) +

N−1
∑

k=0
Lk

, (12)

where Ψ(x0) and Lk can be expressed by Equation (13), and to solve the extreme-problem
that exists in Equation (12), the extreme points of J with respect to wk and x0 can be found
first, and then the extreme points of J with respect to x̂k and yk.

ψ(x0) = − 1
θ ‖x0 − x̂0‖2

P−1
0

Lk = ‖xk − x̂k‖2
Sk
− 1

θ (‖wk‖2
Q−1

k
+ ‖yk − Hkxk‖2

R−1
k
)

(13)

3.1. Extreme Solutions for wk and x0

To obtain the maximum value with respect to J, we define the Hamiltonian function
as follows:

H = Lk +
2λT

k+1
θ

(Fkxk + wk). (14)
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The 2λT
k+1/θ is the time-varying Lagrange multiplier to be computed (k = 0,. . ., N − 1).

It is clear from the theory of dynamic constrained optimization that we can solve the
constrained optimization problem of J with respect to wk and x0 via the following Equation:

2λT
0

θ + ∂ψ0
∂x0

= 0

2λT
N

θ = 0

∂H
∂wk

= 0

2λT
k

θ = ∂H
∂xk

. (15)

Simplified Equation (15):

2λ0
θ −

2
θ P−1

0 (x0 − x̂0) = 0

x0 = x̂0 + P0λ0

λN = 0

wk = Qkλk+1

2λk
θ = 2Sk(xk − x̂k) +

2
θ HT

k R−1
k (yk − Hkxk) +

2
θ FT

k λk+1

λk = FT
k λk+1 + θSk(xk − x̂k) + HT

k R−1
k (yk − Hkxk)

. (16)

This can be obtained by substituting wk = Qkλk+1 in Equation (16) into Equation (7):

xk+1 = Fkxk + Qkλk+1. (17)

From Equation (16), we obtain x0 = x̂0 + P0λ0, so we can set that

xk = µk + Pkλk. (18)

Equation (18) holds for all k. µk and Pk are functions to be determined, P0 is given,
and the initial value µ0 = x̂0. Assume that xk is an affine function of λk, if the final result is
correct, our assumption is correct. Substituting Equation (18) into Equation (17), we obtain

µk+1 + Pk+1λk+1 = Fkµk + FkPkλk + Qkλk+1. (19)

Substituting λk = Fk
Tλk+1 + θSk(xk − x̂k) + Hk

TRk
−1(yk − Hkxk) in Equation (16) into

Equation (18), we obtain

λk − θSkPkλk + HT
k R−1

k HkPkλk =

FT
k λk+1 + θSk(µk − x̂k) + HT

k R−1
k (yk − Hkµk)

. (20)

Shifting the terms gives λk as follows:

λk =
[

I − θSkPk + HT
k R−1

k HkPk

]−1
×[

FT
k λk+1 + θSk(µk − x̂k) + HT

k R−1
k (yk − Hkµk)

] . (21)
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Substituting the expression of Equation (21) into Equation (19) gives the following:

µk+1 − Fkµk − FkPk

[
I − θSkPk + HT

k R−1
k HkPk

]−1
×[

θSk(µk − x̂k) + HT
k R−1

k (yk − Hkµk)
]
=[

−Pk+1 + FkPk

[
I − θSkPk + HT

k R−1
k HkPk

]−1
FT

k + Qk

]
λk+1

. (22)

This equation holds when both sides of the above equation are zero at the same time.
Setting the left side to zero gives:

µk+1 = Fkµk + FkPk

[
I − θSkPk + HT

k R−1
k HkPk

]−1
×[

θSk(µk − x̂k) + HT
k R−1

k (yk − Hkµk)
] . (23)

Let the right side of Equation (22) be zero to obtain

Pk+1 = FkPk

[
I − θSkPk + HT

k R−1
k HkPk

]−1
FT

k + Qk

= FkP̃kFT
k + Qk

. (24)

Define
∼
Pk as

P̃k = Pk

[
I − θSkPk + HT

k R−1
k HkPk

]−1
=
[

P−1
k − θSk + HT

k R−1
k Hk

]−1
. (25)

It follows from Equation (25) that if Pk, Sk, and Rk are symmetric, then they will also
be positive definite; and it follows from Equation (24) that if Qk is positive definite, then
Pk+1 will also be positive definite; so, for all k, P0, Sk, Qk, and Rk, if they are all symmetric,

then
∼
Pk and Pk will be symmetric at some point.
It turns out that we are able to find the extreme points of J, so the above assumption

is correct. Using the values of x0 and wk already obtained, we can again find the extreme
points of the function J with respect to x̂k and yk.

3.2. Extreme Solutions for x̂k and yk

Based on the solution of the problem of the extreme points of x0 and wk, we also need
to find the extreme points of the function J with respect to x̂k and yk. From the initial
condition of µk in Equation (18), we can see that λk = P−1

k (xk − µk)

λ0 = P−1
0 (x0 − x̂0)

. (26)

The following can be obtained from Equation (26):

‖λ0‖2
P0

= λT
0 P0λ0 = ‖x0 − x̂0‖2

P−1
0

. (27)

In this case, Equation (12) can be rewritten as

J = −1
θ
‖λ0‖2

P0
+

N−1

∑
k=0

[
‖xk − x̂k‖2

Sk
− 1

θ

(
‖wk‖2

Q−1
k

+ ‖yk − Hkxk‖2
R−1

k

)]
. (28)
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Substituting the expression for xk, the Equation (28) can be rewritten as

J = − 1
θ ‖λ0‖2

P0
+

N−1
∑

k=0

[
‖µk + Pkλk − x̂k‖2

Sk
− 1

θ

(
‖wk‖2

Q−1
k

+ ‖yk − Hk(µk + Pkλk)‖2
R−1

k

)] . (29)

Substituting the expression for wk in Equation (16) into this position of Equation (29)
gives the new equation:

‖wk‖2
Q−1

k
= wT

k Q−1
k wk = λT

k+1Qkλk+1. (30)

As Qk is a symmetric matrix, Equation (30) can be written as

J = − 1
θ ‖λ0‖2

P0
+

N−1
∑

k=0

[
‖µk + Pkλk − x̂k‖2

Sk
− 1

θ ‖yk − Hk(µk + Pkλk)‖2
R−1

k

]
− 1

θ

N−1
∑

k=0
‖λk+1‖2

Qk

. (31)

It follows from Equation (16) that λN = 0; hence,

N

∑
k=0

λT
k Pkλk −

N−1

∑
k=0

λT
k Pkλk = 0. (32)

Equation (32) can be written as

0 = −1
θ
‖λ0‖2

P0
− 1

θ

N−1

∑
k=0

(
λT

k+1Pk+1λk+1 − λT
k Pkλk

)
. (33)

Equation (31) is obtained by subtracting Equation (33) and simplifying the following:

J =
N−1
∑

k=0

[
(µk − x̂k)

TSk(µk − x̂k) + 2(µk − x̂k)
TSkPkλk + λT

k PkSkPkλk+

1
θ λT

k+1(Pk+1 −Qk)λk+1 − 1
θ λT

k Pkλk − 1
θ (yk − Hkµk)

TR−1
k (yk − Hkµk)+

2
θ (yk − Hkµk)

TR−1
k HkPkλk − 1

θ λT
k PkHT

k R−1
k HkPkλk

. (34)

Taking Equation (24) into Equation (34) and organizing it gives the following:

λT
k+1(Pk+1 −Qk)λk+1

= λT
k Pkλk − θλT

k PkSkPkλk + λT
k PkHT

k R−1
k HkPkλk−

2θ(µk − x̂k)
TSkPkλk − 2(yk − Hkµk)

TR−1
k HkPkλk+

θ2(µk − x̂k)
TSkP̃kSk(µk − x̂k) + 2θ(µk − x̂k)

TSkP̃kHT
k R−1

k (yk − Hkµk)+

(yk − Hkµk)
TR−1

k HkP̃kHT
k R−1

k (yk − Hkµk)

. (35)
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Taking Equation (35) into Equation (34) and organizing it gives the following:

J =
N−1
∑

k=0

[
(µk − x̂k)

T
(

Sk + θSkP̃kSk

)
(µk − x̂k)+

2(µk − x̂k)
TSkP̃kHT

k R−1
k (yk − Hkµk)+

1
θ (yk − Hkµk)

T
(

R−1
k HkP̃kHT

k R−1
k − R−1

k

)
(yk − Hkµk)

] . (36)

The goal is to find the solutions to the extreme value problem of J with respect to x̂k
and yk. Therefore, the J of Equation (36) is made to take partial derivatives with respect
to x̂k and yk, respectively, and the partial derivatives are made to be zero. We obtain
the following:

∂J
∂x̂k

= 2
(

Sk + θSkP̃kSk

)
(x̂k − µk) + 2SkP̃kHT

k R−1
k (Hkµk − yk) = 0

∂J
∂yk

= 2
θ

(
R−1

k HkP̃kHT
k R−1

k − R−1
k

)
(yk − Hkµk) + 2R−1

k HkP̃kSk(µk − x̂k) = 0
. (37)

The solutions to Equation (37) are as follows: x̂k = µk

yk = Hkµk

. (38)

x̂k and yk in Equation (38) are the extreme points of Equation (37). If the second-order
partial derivatives of J are positive definite, it means that the extreme point is the minimum
point. The second-order partial derivatives of J with respect to x̂k are as follows:

∂2 J
∂x̂2

k
= 2

(
Sk + θSkP̃kSk

)
, (39)

If Sk + θSk
∼
PkSk is positive definite, x̂k will be the point where J is minimized. The

choice of Sk in Equation (9) is always positive definite, so x̂k will be the point of minimum

of J as long as
∼
Pk is positive definite.

From Equations (23), (24) and (38), a filtering method as shown in Equation (40) can
be derived such that the cost function J1 can be smaller than 1/θ.

Kk = Pk

[
I − θSkPk + HT

k R−1
k HkPk

]−1
HT

k R−1
k

x̂k+1 = Fk x̂k + FkKk(yk − Hk x̂k)

Pk+1 = FkPk

[
I − θSkPk + HT

k R−1
k HkPk

]−1
FT

k + Qk

, (40)

where Kk is the gain matrix.
In order to have a solution to the problem of the observer of Equation (40), the

following conditions must always be satisfied:

P−1
k − θSk + HT

k R−1
k Hk > 0. (41)

4. Forgetting Factor H∞ Filtering Algorithm

In the H∞ filtering algorithm, the noise covariance matrix is artificially set based on ex-
perience, and its initial value affects the accuracy and convergence of the algorithm [25–27].
In this chapter, assuming a fixed process noise covariance matrix, we design a dynamic
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forgetting factor to weight the combination of the initial and current measurement noise
covariance matrices. The initial matrix is gradually forgotten to minimize the effect of
anomalous initial values on the algorithm.

Define the best estimate of the measurement noise via the following:

Vk = yk − Hk x̂k. (42)

Combined with Equation (7), these yield the following:

vk = Vk − Hk(xk − x̂k). (43)

At this point, the measurement noise covariance matrix is as follows:

Rk = cov(vk) = VkVT
k − HkPkHT

k . (44)

Define the dynamic forgetting factor βk:

βk =
1− α

1− αk , (45)

where α is a constant, usually taken as 0.96~0.99.
Weighting the measurement noise covariance matrix with a dynamic forgetting factor

strengthens the role of the measurement noise covariance matrix in the estimation at that
moment and gradually forgets the initial measurement noise covariance matrix:

Rk+1 = βk(VkVT
k − HkPkHT

k

)
+ (1− βk)Rk. (46)

Combining Equation (46) with the filtering method shown in Equation (40) can lead to
the H∞ filtering algorithm with dynamic forgetting factor shown in Equation (47):

Kk = Pk

[
I − θSkPk + HT

k R−1
k HkPk

]−1
HT

k R−1
k

Rk+1 = βk(VkVT
k − HkPkHT

k ) + (1− βk)Rk

x̂k+1 = Fk x̂k + FkKk(yk − Hk x̂k)

Pk+1 = FkPk

[
I − θSkPk + HT

k R−1
k HkPk

]−1
FT

k + Qk

. (47)

5. Experimental Analysis and Comparison

In order to verify the feasibility of the parameter identification algorithm proposed
in this paper, relevant simulations are carried out in this chapter to verify the simulation
flowchart, and the motor parameters used are shown in Figure 1 and Table 1.

Table 1. Parameters of the PMSM control system.

Parameter Value Unit

DC voltage 24 V
Stator resistance 0.48 Ω

d-axis inductance 2 mH
q-axis inductance 2 mH

Flux linkage 0.01 Wb
Number of pole pairs 4 -
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Figure 1. Permanent magnet synchronous motor system model.

In this section, the parameter identification simulation under a steady-state condition
is carried out first to verify the effectiveness of the proposed identification algorithm then
to verify the robustness of the proposed parameter identification algorithm, the simulation
analysis is carried out for three conditions of motor load change, stator resistance change,
and stator inductance change in turn. At the end, the effectiveness of the parameter
identification algorithm with the addition of a forgetting factor is verified.

5.1. Steady-State Performance

The motor is operating in a steady-state condition. The motor load is set to 0.3 N·m
and the motor speed is set to 600 rpm. The parameters of the recognition algorithm are
set as follows: x0 = [0.01 5 280 550], P0 = diag([0.01 0.1 1 1]), Sk = diag([0.18 0.06 0 0]),
Qk = diag([0 0 0.9 1.18]),and Rk = [1 1], Ts = 0.0001 s. The simulation results are shown in
Figure 2.
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From Figure 2, it can be seen that the proposed parameter identification algorithm
can achieve the identification of resistance and inductance in a short time. The difference
between the final identification result and the actual value of the resistance is almost 0. The
actual value of the inductance is 2 mH, the final identification is 2.1 mH, and the difference
between the final identification result and the actual value of inductance is within 5%,
which proves the effectiveness of the proposed parameter identification algorithm.

5.2. Robustness Verification
5.2.1. Load Torque

The motor speed is set to 900 rpm and the torque changes from 0.2 N·m to 0.4 N·m at
0.5 s. The simulation results are shown in Figure 3.
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From Figure 3, it can be seen that the proposed parameter identification algorithm
can guarantee the identification of the parameters when the torque is changed (twice).
The resistance parameter identification results remain almost unchanged when the torque
is changed. The inductance parameter identification results are 2.2 mH and 2.1 mH,
respectively, and the difference between the changed identification result and the previous
one is within 2%, which proves that the proposed parameter identification algorithm is
robust to the torque-change condition.

5.2.2. Stator Resistance

In this subsection, the simulation simulates two operating conditions: sudden change
in resistance due to motor failure and slow increase in resistance due to temperature
rise and other factors. The stator resistance increased stepwise from 0.48 Ω to 0.8 Ω and
gradually to 0.8 Ω, respectively. The motor speed is set to 900 rpm, the motor load is set to
0.3 N·m, and the simulation results are shown in Figure 4.
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other factors.

From Figure 4, it can be seen that the proposed parameter identification algorithm
can guarantee the identification of the parameters when the resistance is changed and
guarantees the qualified response speed when the resistance is changed abruptly, which
proves that the proposed parameter identification algorithm connects the robustness to the
working condition of the resistance change.

5.2.3. Stator Inductance

In this section, the simulation simulates the inductance change condition correspond-
ing to the previous section. The stator inductance is abruptly changed from 2 mH to 4 mH
and gradually increases from 2 mH to 4 mH. The motor speed is set to 900 rpm, the motor
load is set to 0.3 N·m, and the simulation results are shown in Figure 5.
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From Figure 5, it can be seen that the proposed parameter identification algorithm
can guarantee the identification of the parameters when the inductance is changed and
guarantees the qualified response speed when the inductance is changed abruptly, which
proves that the proposed parameter identification algorithm connects the robustness to the
working condition of the inductance change.

5.3. Validation of the Forgetting Factor

In this section, the steady-state condition of Section 5.1 is re-simulated for the iden-
tification algorithm before and after adding the forgetting factor. Then, the R matrix is
changed to [10 10] to verify the effectiveness of the forgetting factor proposed in this paper.
The comparative simulation results are shown in Figure 6.
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From Figure 6, it can be seen that the recognition algorithm with the added forgetting
factor is not much different from the previous algorithm when the initial parameters are
normal. However, when the initial parameters are abnormal, the observation results of
the recognition algorithm without the added forgetting factor are abnormal, while the
proposed forgetting factor is able to correct the error and recognize the parameters in time.

6. Discussion

With the development of modern power electronics technology, PMSMs are increas-
ingly used in CNC machine tools, robots, and new energy vehicles due to their simple
structure, high efficiency, and high functionality. However, there are modeling errors and
noise uncertainties in PMSM systems. To meet the system’s requirements for robustness,
we adopt the H∞ filtering algorithm. However, the noise covariance matrix and the upper
performance limit of the H∞ filtering algorithm are set empirically, which may affect the
accuracy of the algorithm. If they are not set appropriately, it may lead to a decrease in
system accuracy and even to filtering divergence.

The application of the H∞ filtering algorithm to real PMSMs requires online identifica-
tion of several parameters, such as motor speed, rotor position, and magnetic chain. These
parameters will be collected by measuring instruments in the motor system and processed
by the H∞ filtering algorithm, which reduces the influence of noise and other external
disturbances, achieving high-accuracy online parameter identification of the motor and
improving system robustness. However, implementing the H∞ filtering algorithm in a real
PMSM system faces many challenges.

(1) Sensor noise: The PMSM control system uses sensors to obtain measured values of
the motor state, which may contain sensor noise. The H∞ filtering algorithm must
consider the influence of sensor noise when dealing with external noise interference.
If the statistical characteristics of the sensor noise change, the accuracy of the H∞
filtering algorithm may be affected.

(2) High sampling rate and data processing requirements: Servo motors are generally
divided into three control rings-current, speed, and position. The frequency of each
ring determines its position, with higher frequencies corresponding to inner rings.
PMSM control systems require high sampling rates for accurate measurement and
control, increasing hardware and real-time performance requirements. Additionally,
H∞ filtering may need to process large amounts of data, which is challenging for
devices with limited data processing capabilities.

7. Conclusions

Through theoretical analysis and simulation verification, it can be concluded that the
H∞ filtering algorithm based on game theory can obtain the recognition results quickly and
accurately without making any assumptions about the noise, and its robustness has been
significantly improved. The H∞ filtering algorithm after adding the improved forgetting
factor can quickly and stably obtain the recognition result under the situation of poor initial
value, which compensates the recognition error caused by human setting.

The algorithm proposed in this paper improves the estimation accuracy and robust
performance of the original algorithm to some extent, but there are still deficiencies to
be improved:

(1) This paper improves the H∞ filtering algorithm by adding a dynamic forgetting
factor, achieving weighted estimation of the initial and current measurement noise
covariances. Although the accuracy of the algorithm is improved, it takes more time
due to multiple iterations per time step.

(2) The motor in the simulation ran at low speed, and the algorithm is inadequate for high-
speed operation. The subsequent work can focus on identifying motor parameters
during high-speed operation.
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