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Abstract: The aim of this paper is to analyze the performance of a state-feedback guidance law, which
is obtained through a classical sliding mode control approach, in a two-dimensional circle-to-circle
orbit transfer of a spacecraft equipped with a continuous-thrust propulsion system. The paper shows
that such an inherently robust control technique can be effectively used to obtain possible transfer
trajectories even when the spacecraft equations of motion are affected by perturbations. The problem
of the guidance law design is first addressed in the simplified case of an unperturbed system, where
it is shown how the state-feedback control may be effectively used to obtain simple mathematical
relationships and graphs that allow the designer to determine possible transfer trajectories that
depend on a few control parameters. It is also shown that a suitable combination of the controller
parameters may be exploited to obtain trade-off solutions between the flight time and the transfer
velocity change. The simplified control strategy is then used to investigate a typical heliocentric orbit
raising/lowering in the presence of bounded disturbances and measurement errors.

Keywords: sliding mode control; continuous-thrust propulsion system; two-dimensional orbit
raising/lowering; spacecraft guidance law

1. Introduction

In a preliminary phase of mission design, the use of a state-feedback control law
represents a viable option to obtain possible transfer trajectories that may be used as an
initial starting point for succeeding (and more refined) analyses. In this context, an inter-
esting approach is based on the use of a rather classical sliding mode control, which is
a variable structure (control) method that alters the dynamical behaviour of a nonlinear
system through the application of a suitable control signal [1]. In particular, sliding mode
control is a basic robust technique, which allows the system trajectory to converge towards
the desired target even in the presence of significant perturbations and measurement er-
rors [2,3]. An interesting discussion about the potentialities of a sliding mode control law
can be found in the review paper by Hung et al. [4] and in the work by Utkin [5].

The literature about the control of satellites by means of sliding mode techniques is rich,
although essentially concentrated on attitude control and terminal guidance maneuvers [6].
In this scenario, Wu et al. [7] investigated the attitude synchronization and tracking problem
including model uncertainties, external disturbances, actuator failures, and control torque
saturation. By proposing two decentralized sliding mode control laws, that work [7]
proved that the control laws guarantee each spacecraft to approach the desired time-
varying attitude and angular velocity while maintaining attitude synchronization among
the other elements in a typical formation structure. Another example is offered by the
work by Massey and Shtessel [8], who adopted a traditional, continuous, high-order sliding
mode strategy to control a satellite formation in a robust manner (i.e., compensating for
model uncertainties and external disturbances). An adaptive sliding mode tension control
method was successfully proposed by Ma et al. [9] for the deployment of tethered satellites,
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when input tension limitations are taken into account. On the other hand, a terminal
sliding mode control law was designed by Liu and Huo [10] for spacecraft rendezvous and
docking while considering both model uncertainties and external disturbances, proving
that the closed-loop tracking error converges to zero in a finite time. The same problem was
also successfully addressed by Dong et al. [11], who constructed a nonsingular terminal
sliding surface by introducing a continuous sinusoidal function to solve the inherent
singularity problem. More recently, Capello et al. [12] designed two controllers, that is,
a first-order sliding mode control for position tracking and a supertwisting second-order
sliding mode control for attitude stability, in which the mutual influence was taken into
account by the introduction of additional disturbances. Kasaeian et al. [13] presented a
robust guidance algorithm to perform a rendezvous between a chaser and a target spacecraft
orbiting around the Earth, revealing that sliding mode control guarantees the tracking of
the required states and minimum final errors even in the presence of uncertainties and
disturbances. Li et al. [14] developed a novel sliding mode control strategy to address the
relative position tracking and attitude synchronization problem of spacecraft rendezvous
with the requirement of collision avoidance, proving the convergence of relative position
and attitude errors even in the presence of external disturbances. Finally, Bassetto et al. [15]
discussed how solar sail attitude maneuvers may be designed in a collinear, artificial,
equilibrium point by implementing a sliding mode control strategy that uses electrochromic
devices as actuators [16–18]. Anyway, there are many other potential feedback control
techniques [19–21], to which the interest reader is invited to refer.

In the context of spacecraft trajectory design, a robust state-feedback control law can
be used to obtain a possible transfer trajectory that is useful as an initial guess during
the subsequent refinement phase [22]. In that case, potential transfer trajectories can be
obtained by taking into account the orbit perturbations and the model uncertainties with a
reduced computational cost [23]. The aim of this paper is to investigate the potentialities of
a sliding mode control strategy in detecting possible trajectories in a typical circle-to-circle
orbit transfer scenario, in which the spacecraft propulsion system provides a continuously
adjustable and freely steerable propulsive acceleration vector. Among actuators capable
of generating variable propulsive acceleration, there are variable thrust ion engines (such
as NASA’s Evolutionary Xenon Thruster (NEXT)), in which continuous thrust variation
can be replaced by a succession of discrete thrust levels that, on average, provide the
required propulsive acceleration. For example, NEXT has a total of 40 operating points,
with available thrust ranging from 25.5 mN and 236 mN [24]. The proposed approach uses
a standard implementation of the sliding mode procedure [1] to obtain a set of preliminary
results. In this way, the discussed procedure allows the designer to make a trade-off
between the flight time and the required velocity change by selecting the design parameters
of the controller. In particular, the simplified control strategy involves three independent
parameters of the spacecraft dynamics (on which the resulting propulsive acceleration
profile and the characteristics of the transfer trajectory depend), which represent tuning
quantities to be selected by the designer. The main limitation of the proposed approach lies
in the use of an ideal propulsion system to control the nonlinear dynamics of the spacecraft
center of mass. In fact, the time-variation of the thrust vector magnitude, which is an output
of the design procedure, can be used a posteriori to check whether the obtained transfer
trajectory is compatible with the physical constraints of the thruster, such as the maximum
thrust level.

Starting from the simplified scenario, in which the spacecraft orbital dynamics is unaf-
fected by external disturbances or model uncertainties, we firstly discuss how the controller
may be tuned by considering the flight time and total velocity change. The procedure is
then used to investigate an orbit raising/lowering in the presence of bounded disturbances
and measurement errors. The paper is organized as follows. Section 2 presents the math-
ematical model, i.e., the nonlinear differential equations describing the coplanar orbital
motion of a spacecraft around an assigned primary body. Section 3 introduces the sliding
mode control technique in its general form, where bounded disturbances are included in
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the model. Section 4 addresses the design of the sliding mode control law in the simplified
case of an unperturbed system. In particular, Section 4 illustrates the time-variation of
tracking errors (which can be analytically determined when no disturbance is considered in
the mathematical model) and the definition of the control law parameters. The numerical
simulations are described in Section 5, while the concluding remarks are drawn in Section 6.

2. Problem Description and Mathematical Model

Consider a spacecraft S that covers a circular parking orbit of radius r0 around a
primary body with center of mass P and gravitational parameter µ. The mission purpose is
to transfer the spacecraft to a circular and coplanar target orbit of assigned radius r f 6= r0
by means of a continuously adjustable (and freely steerable) propulsion system, which
gives both a radial (ar) and a transverse (at) component of propulsive acceleration. In this
context, the spacecraft two-dimensional dynamics may be described by the classical polar
equations of motion [25]:

ṙ = vr (1)

θ̇ =
vt

r
(2)

v̇r = −
µ

r2 +
v2

t
r
+ dr + ar (3)

v̇t = −
vr vt

r
+ dt + at (4)

where r is the P-S distance and θ is the spacecraft polar angle measured counterclockwise
from the P-S line at the initial time t0 , 0, while vr (or vt) is the radial (or transverse)
component of the spacecraft velocity vector; see Figure 1. In Equations (3) and (4), the terms
{dr, dt} represent possible unknown bounded disturbance accelerations acting along the
radial and transverse directions, with

|dr| ≤ Dr , |dt| ≤ Dt (5)

where Dr ≥ 0 and Dt ≥ 0 are two constant parameters.

parking
orbit

target
orbit

�

S
propelled
trajectory

P

initial
position

t
v

r
v

r

r0

rf

final
position

Figure 1. Reference frame and conceptual scheme of the two-dimensional mission scenario.
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Bearing in mind that the parking orbit is circular, Equations (1)–(4) are completed by
the initial conditions

r(t0) = r0 , θ(t0) = 0 , vr(t0) = 0 , vt(t0) =
√

µ/r0 (6)

while the time-variation of the propulsive acceleration components {ar, at} are to be found
so as to bring the spacecraft states to the desired final values

r(t f ) = r f , vr(t f ) = 0 , vt(t f ) =
√

µ/r f (7)

within a time interval t f . Note that the final polar angle θ(t f ), that is, the angle swept out
by the spacecraft during the transfer, is left free.

The spacecraft dynamics is more conveniently rewritten by introducing the dimension-
less tracking errors in radial distance (x1), radial velocity component (x2), and transverse
velocity component (x3), defined as

x1 ,
r− r f

r0
≡ r

r0
− ρ (8)

x2 ,
vr√
µ/r0

(9)

x3 ,
vt −

√
µ/r f√

µ/r0
≡ vt√

µ/r0
− 1
√

ρ
(10)

where ρ , r f /r0 6= 1 is the dimensionless radius of the target circular orbit. In particular,
ρ ∈ (0, 1) in case of an orbit lowering, whereas ρ > 1 in case of an orbit raising. Substituting
Equations (8)–(10) into Equations (1), (3), and (4) yields

x′1 = x2 (11)

x′2 = − 1

(x1 + ρ)2 +

(
x3 + 1/

√
ρ
)2

x1 + ρ
+ zr + ur (12)

x′3 = −
x2
(
x3 + 1/

√
ρ
)

x1 + ρ
+ zt + ut (13)

where the prime symbol denotes a derivative taken with respect to the dimensionless time
τ, defined as

τ ,
t√

r3
0/µ

(14)

with τ(t0) = τ0 , 0, while
ur ,

ar

µ/r2
0

, ut ,
at

µ/r2
0

(15)

are the two dimensionless control variables, defined as the ratio of the propulsive ac-
celeration components {ar, at} to the primary body gravitational acceleration at r = r0.
Finally, the two terms {zr, zt} in Equations (12) and (13) are the dimensionless forms of the
disturbance acceleration components, defined as

zr ,
dr

µ/r2
0

, zt ,
dt

µ/r2
0

(16)
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which, by assumption, satisfy the inequalities

|zr| ≤ Zr ,
Dr

µ/r2
0

, |zt| ≤ Zt ,
Dt

µ/r2
0

(17)

Equations (11)–(13) are integrated with the three initial conditions

x1(τ0) = x10 , 1− ρ , x2(τ0) = x20 , 0 , x3(τ0) = x30 , 1− 1/
√

ρ (18)

from which it follows that x10 < 0 and x30 > 0 when ρ > 1, while x10 > 0 and x30 < 0
when ρ ∈ (0, 1). Finally, the target states (i.e., the conditions on the target circular orbit) are
expressed in a dimensionless form as

x1(τf ) = x1 f , 0 , x2(τf ) = x2 f , 0 , x3(τf ) = x3 f , 0 (19)

where

τf ,
t f√
r3

0/µ
(20)

is the dimensionless flight time. Note that the τ-variation of θ can be obtained by numeri-
cally integrating the differential equation

θ′ =
x3 + 1/

√
ρ

x1 + ρ
(21)

which is not included in the dynamical system because the final polar angle is left free.
However, solving Equation (21) is necessary to obtain the polar trajectory of the spacecraft.

3. State-Feedback Control Design

In this section, a classical sliding mode control law is used to determine the circle-to-
circle orbit transfer trajectory. The spacecraft states are brought and maintained on two
sliding surfaces, where the system exhibits the desired dynamics of reduced order or one
of the states is at its final equilibrium point. More specifically, the first sliding surface is
described by the equation

s , x2 + λ x1 = 0 (22)

where λ > 0 is a dimensionless design parameter, so that the states {x1, x2} exhibit a
first-order dynamics when the system is on that sliding surface. In fact, bearing in mind
Equation (11), the condition s = 0 implies

x2 = x′1 = −λ x1 (23)

from which the τ-variations of the tracking errors {x1, x2} turn out to be proportional to
e−λ τ , viz.

x1(τ) ∝ e−λ τ , x2(τ) ∝ λ e−λ τ (24)

In other terms, when the system is brought to the sliding surface s = 0, both x1 and x2
converge exponentially to zero with a convergence rate equal to λ.

Now, in order to bring the system on the sliding surface s = 0, it is required that s′ < 0
when s > 0, and s′ > 0 when s < 0. To this end, differentiating s with respect to τ yields

s′ = x′2 + λ x′1 ≡ −
1

(x1 + ρ)2 +

(
x3 + 1/

√
ρ
)2

x1 + ρ
+ zr + ur + λ x2 (25)
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from which selecting ur according to the law

ur =
1

(x1 + ρ)2 −
(

x3 + 1/
√

ρ
)2

x1 + ρ
− λ x2 − δ sign(s) (26)

where sign(2) is the signum function and δ is given by

δ , Zr + K > 0 (27)

in which K > 0 is a dimensionless design parameter, one obtains

s′ = zr − (Zr + K) sign(s) (28)

In this case, s < 0 implies s′ = zr + Zr + K > 0 and s > 0 implies s′ = zr − Zr − K < 0,
while s = 0 implies s′ = zr, that is, the perturbative term zr forces the system to leave the
sliding surface s = 0 once it has been reached.

The second sliding surface is the plane x3 = 0; see Equation (10). Note that the system
is driven to the sliding surface x3 = 0 if x′3 < 0 when x3 > 0, and if x′3 > 0 when x3 < 0.
In this context, if the control parameter ut is selected as

ut =
x2
(
x3 + 1/

√
ρ
)

x1 + ρ
− γ sign(x3) (29)

with
γ , Zt + c > 0 (30)

where c > 0 is a dimensionless design parameter, then

x′3 = zt − (Zt + c) sign(x3) (31)

In this case, x3 < 0 implies x′3 = zt + Zt + c > 0, x3 > 0 implies x′3 = zt − Zt − c < 0,
while x3 = 0 implies x′3 = zt, that is, the perturbative term zt moves the system away from
the sliding surface x3 = 0 once it has been reached.

Disturbance Modeling

This section gives a brief description of the source of disturbances (or uncertainties)
that will be included in the numerical simulations. The first one is related to the state
measurement. In fact, when applying a state-feedback control law, it is necessary to
verify whether and how measurement errors or low-frequency sampling affect the control
effectiveness. The measured states, denoted as {x̃1, x̃2, x̃3}, are the sum of a true value xi
and a measurement error Xi, that is,

x̃1 = x1 + X1 (32)

x̃2 = x2 + X2 (33)

x̃3 = x3 + X3 (34)

where Xi is a zero-mean random variable with normal distribution and standard devia-
tion σi.

The second source of disturbance is related to the approximation of the signum
function in Equations (26) and (29) with a sigmoid-like function. Note, in fact, that the
change in sign of ur (or ut) each time the system crosses the sliding surface s = 0 (or
x3 = 0) gives rise to a chattering behaviour, which is typical of the sliding mode control.
Such a phenomenon must be mitigated to prevent the switching frequency of the control
signals from being too high and, therefore, not applicable. A viable option is to implement
a pseudo-sliding mode control [26], which consists of smoothing the discontinuity in
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the signum function to obtain an arbitrarily close but continuous approximation. One
possibility is to approximate the signum function with the sigmoid-like function [26]

S = S(x) ,
x

|x|+ κ
(35)

where κ is an arbitrarily small positive scalar. Note that S(x)→ sign(x) as κ → 0. Using
such a pseudo-sliding mode control, however, causes sliding to no longer take place
because the (continuous) control only drives the states to a neighbourhood of the switching
surfaces [26].

Accordingly, introducing the measured states in Equations (26) and (29) and substitut-
ing sign(x) with S(x), the control variables become

ur =
1

(x̃1 + ρ)2 −
(

x̃3 + 1/
√

ρ
)2

x̃1 + ρ
− λ x̃2 − δ S(s̃) (36)

ut =
x̃2
(
x̃3 + 1/

√
ρ
)

x̃1 + ρ
− γ S(x̃3) (37)

where s̃ , x̃2 + λ x̃1. Measurement errors, low-frequency sampling, and the approximation
of the signum function with the sigmoid-like function S are all treated as disturbance
sources. In practice, this situation is equivalent to using ideal sensors and actuators (i.e.,
sensors capable of measuring the actual states with continuity and actuators capable of
adjusting their control signals with continuity) and to perturbing the system with the
following (bounded) disturbance accelerations:

zr =
1

(x1 + ρ)2 −
1

(x̃1 + ρ)2 −
(
x3 + 1/

√
ρ
)2

x1 + ρ
+

(
x̃3 + 1/

√
ρ
)2

x̃1 + ρ
+

− λ (x2 − x̃2)− δ [sign(s)− S(s̃)] (38)

zt =
x2
(

x3 + 1/
√

ρ
)

x1 + ρ
−

x̃2
(
x̃3 + 1/

√
ρ
)

x̃1 + ρ
− γ [sign(x3)− S(x̃3)] (39)

4. Case of an Unperturbed System

The control law described by Equations (26) and (29) takes a simpler form in the case
of an unperturbed system, which allows some useful analytical relationships to be found in
such a simplified mission scenario. Accordingly, in this section, we analyze the evolution
of the tracking errors and address the control law design problem with the significant
assumption that Zr = Zt = 0. In this simplified case, Equations (28) and (31) become

s′ = −K sign(s) (40)

x′3 = −c sign(x3) (41)

This means that in the absence of perturbative terms, the value of s (or x3) approaches
zero linearly with respect to τ, and once the sliding surface s = 0 (or x3 = 0) is reached for
the first time, the term s (or x3) remains stationary at zero. When Equations (40) and (41)
are integrated with respect to the dimensionless time τ, one obtains the τ-variations of s
and x3 before reaching the sliding surfaces s = 0 and x3 = 0, respectively. The result is

s(τ) = s0 − sign(s0)K τ (42)

x3(τ) = x30 − sign
(
x30

)
c τ (43)
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where s0 , s(τ0) can be written, according to Equations (18) and (22), as

s0 = x20 + λ x10 ≡ λ (1− ρ) (44)

while x30 is given by the last of Equation (18) as a function of ρ. Note that {K, c} represent
a sort of approach speed to the two sliding surfaces.

The value of τ at which the system reaches the sliding surface s = 0 (i.e., τ = τs)
or the sliding surface x3 = 0 (i.e., τ = τx3) can be expressed in a compact form using
Equations (42) and (43). In fact, enforcing the condition s = 0 in Equation (42) gives

s0 − sign(s0)K τs , 0 (45)

from which

τs ,
λ |1− ρ|

K
(46)

while the condition x3 = 0 in Equation (43) gives

x30 − sign
(
x30

)
c τx3 , 0 (47)

from which

τx3 ,
|1− 1/

√
ρ|

c
(48)

The value of τx3 may be written as a function of τs in a more convenient way by
introducing the dimensionless parameter β > 0 such that

τx3 = β τs (49)

Observing that β is a redundant parameter, it may be used in place of c, which can be
expressed as a function of {K, λ, β, ρ} as

c ,
K
(
1− 1/

√
ρ
)

λ β (ρ− 1)
(50)

4.1. The τ-Variation of Tracking Errors and Controls

The τ-variation of the tracking errors is now calculated, thus allowing the expressions
of ur and ut to be determined through Equations (26) and (29) by simply setting δ = K
and γ = c. To that end, the differential equation governing the τ-evolution of x1 is
found by substituting Equations (11) and (22) into Equation (42) and bearing in mind
Equations (44)–(46), viz.

x′1 + λ x1 =

λ (1− ρ)− sign(1− ρ)K τ if τ < τs

0 otherwise
(51)

Integrating Equation (51) with respect to τ with the initial condition x1(τ0) = 1− ρ
(see Equation (18)) gives the τ-variation of x1, that is,

x1(τ)

sign(1− ρ)
=


K
λ2

(
1− e−λ τ − λ τ

)
+ 1− ρ if τ < τs

K
λ2

(
1− e−λ τs

)
e−λ (τ−τs) otherwise

(52)
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The τ-variation of x2 is instead obtained by deriving Equation (52) with respect to τ
(see Equation (11)), that is,

x2(τ)

sign(1− ρ)
=


K
λ

(
e−λ τ − 1

)
if τ < τs

K
λ

(
e−λ τs − 1

)
e−λ (τ−τs) otherwise

(53)

Finally, the τ-variation of x3 is governed by the differential equation

x′3 =

−c sign(x3) if τ < β τs

0 otherwise
(54)

which must be solved recalling the initial condition x3(τ0) = 1− 1/
√

ρ (see Equation (18)),
and the result is

x3(τ)

sign
(
1− 1/

√
ρ
) =

|1− 1/
√

ρ| − c τ if τ < β τs

0 otherwise
(55)

Note that in the absence of perturbative terms, the maximum values of |x1| and |x3|
occur when τ = τ0, that is,

max(|x1|) = |x10 | ≡ |1− ρ| (56)

max(|x3|) = |x30 | ≡ |1− 1/
√

ρ| (57)

while the maximum value of |x2| (which corresponds to the maximum of |vr|) is reached
when τ = τs, viz.

max(|x2|) =
K
λ
|e−λ τs − 1| (58)

The dimensionless propulsive acceleration components {ur, ut} in absence of per-
turbative terms are simply obtained by substituting Equations (52), (53), and (55) into
Equations (26) and (29) and setting δ = K and γ = c. Those expressions, which are here
omitted for the sake of conciseness, change according to whether β < 1, β = 1, or β > 1.
In particular, ur exhibits a discontinuity equal to K sign(1− ρ) when τ = τs, whereas ut
exhibits a discontinuity equal to c sign

(
1−√ρ

)
when τ = β τs. Accordingly, if β 6= 1,

the profile of the magnitude u ,
√

u2
r + u2

t has two discontinuities (one at τ = τs, the other
at τ = β τs). Otherwise (i.e., when β = 1), the profile of u presents a single discontinuity at
τ = τs.

4.2. Control Parameter Selection

For a given value of ρ, the design of the sliding mode control law amounts to selecting
the values of the triplet {K, λ, β}. The previous expressions allow the flight time and the
total velocity change to be determined and the dimensionless parameters in the control law
to be established, according to arbitrary criteria. More precisely, when the spacecraft orbital
dynamics is unaffected by external disturbances or model uncertainties, the dimensionless
flight time τf and the total velocity change ∆v can be calculated with analytical expressions
or graphic plots that only depend on the design parameters {K, λ, β}.

For example, the value of τf can be obtained by assuming that the orbit transfer termi-
nates when the tracking errors x1 and x2 are sufficiently close to zero. To that end, the value
of τf is defined as the instant at which the exponent λ (τ − τs) in Equations (52) and (53)



Actuators 2023, 12, 444 10 of 19

satisfies the equality λ (τf − τs) = n, for an assigned value of n ∈ R+. In this context, using
Equation (46), one obtains

τf = τs +
n
λ
≡ λ |1− ρ|

K
+

n
λ

(59)

Note that τf can be minimized with respect to λ by enforcing the necessary condition

∂τf

∂λ
= 0 (60)

in Equation (59), from which

λ = λ? ,

√
n K
|1− ρ| (61)

so that, by assuming λ = λ?, the expression of the dimensionless flight time becomes

τf = 2

√
n |1− ρ|

K
≡ 2 τs|λ=λ? (62)

A suitable value of n may be chosen by evaluating the tracking error x1 at the final
time τ = τf , that is,

x1(τf ) =
e−n (1− e−n)

n
x10 (63)

Figure 2, which describes the variation of x1(τf )/x10 with n when λ = λ?, shows that
a value of n = 4 (when x1(τf )/x10 ' 0.0045) is reasonable from a practical point of view.
In fact, the percentage error in orbital radius, that is, the function

εr ,
|r(t f )− r f |

r f
× 100 ' 0.45 |1− ρ|

ρ
(64)

is less than 1% when n = 4 and ρ > 0.310; see Figure 3. Therefore, it is assumed that n = 4
in the rest of the paper.
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Figure 2. Variation in x1 f /x10 with n when λ = λ?.
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Figure 3. Percentage error in (final) orbital radius as a function of ρ when n = 4.

According to Equations (61) and (62), the expressions of λ? and τf when n = 4 become

λ? = 2

√
K

|1− ρ| (65)

τf = 4

√
|1− ρ|

K
≡ 8

λ?
(66)

Note that Equation (66) relates the flight time τf to the value of λ necessary to minimize
the flight time for fixed values of K and ρ. Such a value of λ is a function of K and ρ, as
described by Equation (65). This means that for given values of ρ and τf , λ can be chosen
by reversing Equation (66), that is, by setting λ = λ? ≡ 8/τf . In this case, the value of K is
related to ρ and λ (or to ρ and τf ) through Equation (65), and Figure 4 shows the variation
in τf with K and ρ.
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Figure 4. Variation in τf with {K, ρ} when λ = λ? and n = 4.

The value of β can be chosen with the aid of another parameter that usually determines
the transfer performance. More precisely, β may be related to the total velocity change ∆v
of the transfer, defined as

∆v ,
∫ τf

0
u dτ (67)
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Note that β ∈ (0, 2], since β → 0 (or β = 2) means that the sliding surface x3 = 0 is
reached at the beginning (or at the end) of the transfer; see Equations (49) and (62). Figure 5
shows the values of β (referred to as β?) that minimize the total velocity change when
λ = λ?, n = 4, and ρ = {0.723, 1.524} (the same values of ρ that will be used for some
numerical applications of the proposed control law) as a function of K ∈ (0, 1]. In fact, K
corresponds to the magnitude of the discontinuity of ur when τ = τs (see Section 4.1), and a
value of K greater than 1 would imply a discontinuity of |ar| greater than the gravitational
acceleration on the parking orbit. Figure 6, instead, shows the variation in ∆v with K when
λ = λ?, n = 4, and β = β?. Note that the function ∆v|β=β?(K) exhibits a global minimum.
When ρ = 0.723, such a minimum is reached when K ' 0.097 and the corresponding values
of ∆v and β? are ∆v ' 0.357 and β? ' 1.368, respectively. If, instead, ρ = 1.524, such
a minimum is reached when K ' 0.032 and the corresponding values of ∆v and β? are
∆v ' 0.324 and β? ' 1.242, respectively.
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Figure 5. Variation in β? with K when λ = λ? and n = 4. (a) ρ = 0.723; (b) ρ = 1.524.

0 0.2 0.4 0.6 0.8 1

0.3

0.6

0.9

1.2

1.5

(a)

0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

0.7

0.8

(b)

Figure 6. Variation in ∆v|β=β? with K when λ = λ? and n = 4. (a) ρ = 0.723; (b) ρ = 1.524.

In essence, the design of the control law only requires the choice of the single param-
eter K. For example, we have already seen that a value of K may be determined using
Equations (65) and (66) by fixing the total flight time τf , or using Figure 6 by looking for
the value of K that minimizes the function ∆v|β=β?(K), so that K may be thought of as sort
of trade-off parameter, as discussed in the next section.

5. Numerical Simulations and Mission Application

The proposed control strategy is now used to analyze two classical circle-to-circle inter-
planetary transfers. In particular, the radius of the circular parking orbit is r0 = r⊕ , 1 au,
which is consistent with a spacecraft that leaves the Earth’s sphere of influence using a
parabolic escape trajectory, with the simplifying assumption that the Earth’s heliocentric
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orbit is circular. The radii of the target orbits are r f = {0.723, 1.524} au, so the analyzed
mission scenarios describe simplified ephemeris-free Earth–Venus and Earth–Mars or-
bit transfers.

Bearing in mind Equations (32)–(34), it is assumed that (i) the sensors measure the
states once per day; (ii) σ1 = σ2 = σ3 = 10−4, which means that the measurement error
in {x1, x2, x3} is less than 0.01% with a probability of 68.3%; and (iii) the sigmoid-like
function S = S(x) of Equation (35) is obtained with κ = 10−2. Although the numerical
simulations consider measurement errors, low-frequency sampling, and the approximation
of the signum function with the sigmoid-like function, the parameters used in the control
law can be those found in Section 4.2 thanks to the robustness of the proposed approach.

For example, assume that λ = λ?, n = 4, β = β?, and select K such that ∆v|β=β? is
minimized (the corresponding value of K will be referred to as Kv), so that according to
Figure 6, one has Kv ' 0.0969 (or Kv ' 0.0320) when ρ = 0.723 (or ρ = 1.524). The nu-
merical simulations give a flight time of about 394 days (or 949 days) in the Earth–Venus
(or Earth–Mars) mission scenario. Moreover, Figure 7 shows the corresponding (two-
dimensional) heliocentric trajectories, while Figure 8 shows the time-variations of the
propulsive acceleration components {ar, at}. In particular, each black dot in Figure 8 corre-
sponds to one day (i.e., to the sampling period of the states), while the red lines show the
propulsive acceleration components in case of ideal sensors and actuators (that is, when
only the approximation of the signum function with the sigmoid-like function is taken
into account).
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Figure 7. Transfer trajectories when K = Kv in the two interplanetary mission scenarios. (a) Earth–
Venus case; (b) Earth–Mars case.

A second case considered in the simulations is when the flight time is assigned,
λ = λ? ≡ 8/τf , n = 4, and β = β?. For example, by assuming that the transfer time
coincides with the Hohmann transfer one, the values of τf become

τf = τH , π

√
(1 + ρ)3

8
'

2.512 if ρ = 0.723

4.454 if ρ = 1.524
(68)

which correspond to a flight time of 146 days in the Earth–Venus scenario and to 259 days in
Earth–Mars case. In these cases, by using Equation (66), the values of λ? and K, respectively
referred to as λ?

H and KH , are given by

λ?
H =

8
τH
'

3.185 if ρ = 0.723

1.796 if ρ = 1.524
(69)
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KH = |1− ρ|
(

λ?
H
2

)2
'

0.702 if ρ = 0.723

0.423 if ρ = 1.524
(70)

while the values of β? are chosen by using Figure 5 to minimize the total velocity change, viz.

β? '

1.234 if ρ = 0.723

1.138 if ρ = 1.524
(71)

In this context, Figure 9 shows the interplanetary transfer trajectories, while Figure 10
collects the time-variations of the propulsive acceleration components {ar, at} for the two
mission scenarios.
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Figure 8. Time-variations of ar and at when K = Kv in two typical interplanetary mission scenarios.
(a) Radial component, Earth–Venus case; (b) transverse component, Earth–Venus case; (c) radial
component, Earth–Mars case; (d) transverse component, Earth–Mars case.

Once the control parameters are selected and the transfer trajectory is obtained, it is
possible to evaluate the time-variation of the magnitude of the propulsive acceleration

vector a ,
√

a2
r + a2

t during the transfer. Figure 11 shows the values of a as a function of
time in the four cases previously described. The curves depicted in that figure can be used
to evaluate, a posteriori, the feasibility of the obtained transfer trajectory according to the
actual thruster installed on board. In particular, Figure 11a (or Figure 11b) indicates that the
maximum value of a during an Earth-Venus (or Earth-Mars) transfer with K = Kv is about
0.6 mm/s2 (or 0.25 mm/s2), while Figure 11c (or Figure 11d) shows that the maximum value
of a is roughly 4.2 mm/s2 (or 2.5 mm/s2) for an Earth–Venus (or Earth–Mars) case when
τf = τH . Therefore, if, for example, the installed thruster gives a maximum propulsive
acceleration of 0.3 mm/s2, when K = Kv, one concludes that the transfer trajectory obtained
in the Earth–Mars case can be theoretically flown, while the result in the Earth–Venus
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scenario gives a trajectory that violates the propulsive constraint. In the latter case (that is,
in the Earth–Venus scenario with K = Kv), the designer could suitably change the control
law parameters in order to reduce the maximum value of a reached during the transfer.
For example, when K = 0.03 and β = 1.48, the maximum value of a reduces to about
0.29 mm/s2, while the flight time rises to roughly 1413 days.
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Figure 9. Transfer trajectories when τf = τH in two typical interplanetary mission scenarios. (a) Earth–
Venus case; (b) Earth–Mars case.

0 50 100 150

-4

-2

0

2

4

(a)

0 50 100 150

-1.5

-1

-0.5

0

0.5

1

(b)

0 100 200 300

-3

-2

-1

0

1

2

3

(c)

0 100 200 300

-0.5

0

0.5

(d)

Figure 10. Time-variations of ar and at when τf = τH in two typical interplanetary mission scenarios.
(a) Radial component, Earth–Venus case; (b) transverse component, Earth–Venus case; (c) radial
component, Earth–Mars case; (d) transverse component, Earth–Mars case.
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Figure 11. Time-variations of a in the four test mission scenarios. (a) Earth–Venus case, K = Kv;
(b) Earth–Mars case, K = Kv; (c) Earth–Venus case, τf = τH ; (d) Earth–Mars case, τf = τH .

The previous results may be easily extended to trade-off solutions between the flight
time and the total velocity change necessary to complete the transfer. Recall in fact that,
for a given value of ρ, the flight time is a function of K according to Equation (66), while the
total velocity change depends on K as Figure 6 shows. Therefore, it is possible to plot the
value of ∆v|β=β? as a function of τf . The results are shown in Figure 12, where K ranges
within the interval [Kv, 1] and the black squares correspond to the cases in which the flight
time equals the Hohmann transfer time. Figure 12 represents a simple and effective means
to identify reasonable compromise solutions, which are useful in a preliminary analysis of
the trajectory design.
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Figure 12. Trade-off solution between flight time and total velocity change in two typical interplane-
tary mission scenarios. (a) Earth–Venus case; (b) Earth–Mars case.
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6. Conclusions

In this paper, we have investigated the capabilities of a sliding mode control technique
of rapidly generating a possible trajectory for a spacecraft in a typical circle-to-circle orbit
transfer mission scenario. Such a control strategy, which is a robust technique usually used
for controlling nonlinear systems affected by disturbances, has been employed here to
obtain simple mathematical relations and graphs that allow the designer to estimate the
(possible) transfer trajectory characteristics as a function of few tuning parameters.

The proposed approach has shown to be effective even in the presence of bounded
disturbances due to measurement errors and low-frequency sampling. It may be effectively
employed in an early phase of trajectory planning, that is, just before the usual refinement
phase that provides the nominal spacecraft trajectory to be tracked during the transfer.
In particular, the discussed approach has the scope of reducing the complexity of the
mathematical model and the computational cost required to obtain a possible solution to
the transfer problem. However, rather strong simplifying assumptions have been adopted,
such as the use of a sort of ideal thruster with a freely steerable thrust vector, or the
definition of the error in terms of the desired states. A more accurate estimate of the actual
propulsive acceleration profile can be obtained by relaxing some of those assumption. This
aspect represents the natural extension of this work.
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Notation

a propulsive acceleration magnitude (mm/s2)

ar radial component of the propulsive acceleration (mm/s2)

at transverse component of the propulsive acceleration (mm/s2)

c speed of approach to x3 = 0 when Zt = 0
dr radial component of the disturbance acceleration (mm/s2)

Dr maximum of |dr|, (mm/s2)

dt transverse disturbance acceleration, (mm/s2)

Dt maximum of |dt| (mm/s2)

K speed of approach to s = 0 when Zr = 0
KH value of K corresponding to τf = τH
Kv value of K that minimizes the total velocity change
n dimensionless positive parameter; see Equation (59)
P primary body center of mass
r orbital radius (au)
s linear combination of {x1, x2}; see Equation (22)
S spacecraft center of mass
S sigmoid-like function; see Equation (35)
t time (days)
u magnitude of command signal
ur dimensionless value of ar
ut dimensionless value of at
vr radial velocity component (km/s)
vt transverse velocity component (km/s)
X normally distributed random number
{x1, x2, x3} dimensionless tracking errors along {r, vr, vt}
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zr dimensionless radial component of the disturbance acceleration
Zr maximum magnitude of zr
zt dimensionless transverse component of the disturbance acceleration
Zt maximum magnitude of zt
αt thrust angle (rad)
β ratio of τx3 to τs
δ auxiliary parameter; see Equation (27)
∆v dimensionless velocity change
γ auxiliary parameter; see Equation (30)
εr percentage error in orbital radius
θ polar angle (rad)
λ convergence rate of x1 and x2
λ?

H value of λ? corresponding to τf = τH
µ primary body gravitational parameter (km3/s2)

ρ ratio of r f to r0
σ specific standard deviation
τ dimensionless time
τH dimensionless Hohmann transfer time
τs time to reach the condition s = 0
τx3 time to reach the condition x3 = 0
Subscripts
0 initial
f final
Superscripts
· derivative with respect to t
′ derivative with respect to τ

? design value
∼ measured
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