
Citation: Yang, B.; Xin, L.; Long, Z.

Research on Secure State Estimation

and Recovery Control for CPS under

Stealthy Attacks. Actuators 2023, 12,

427. https://doi.org/10.3390/

act12110427

Academic Editors: Guanghong Yang,

Bin Jiang, Dan Ye and Anyang Lu

Received: 26 September 2023

Revised: 10 November 2023

Accepted: 13 November 2023

Published: 17 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Research on Secure State Estimation and Recovery Control for
CPS under Stealthy Attacks
Biao Yang , Liang Xin and Zhiqiang Long *

College of Intelligence Science and Technology, National University of Defense Technology,
Changsha 410073, China; yangbiao16@nudt.edu.cn (B.Y.); xinliang@nudt.edu.cn (L.X.)
* Correspondence: zhqlong@nudt.edu.cn

Abstract: As the application of cyber-physical systems (CPSs) becomes more and more widespread,
its security is becoming a focus of attention. Currently, there has been much research on the security
defense of the physical layer of the CPS. However, most of the research only focuses on one of the
aspects, for example, attack detection, security state estimation, or recovery control. Obviously, the
effectiveness of security defense targeting only one aspect is limited. Therefore, in this paper, a
set of security defense processes is proposed for the case that a CPS containing multiple sensors
is subject to three kinds of stealthy attacks (i.e., zero-dynamics attack, covert attack, and replay
attack). Firstly, the existing attack detection method based on improved residuals is used to detect
stealthy attacks. Secondly, based on the detection results, an optimal state estimation method based
on improved Kalman filtering is proposed to estimate the actual state of the system. Then, based on
the optimal state, internal model control (IMC) is introduced to complete the recovery control of the
system. Finally, the proposed methods are integrated to give a complete security defense process,
and the simulation is verified for three kinds of stealthy attacks. The simulation results show that the
proposed methods are effective.

Keywords: cyber-physical systems (CPSs); secure state estimation; recovery control; stealthy attacks;
improved Kalman filter; internal model control (IMC)

1. Introduction

Cyber-physical systems (CPSs) refer to the integration of cyber components (comput-
ing and communication) and physical components (sensors and actuators) that interact
in a feedback loop, allowing for potential human intervention, interaction, and exploita-
tion [1]. The widespread utilization of CPSs in diverse sectors such as power transmission,
healthcare, communication, military, transportation, automotive, entertainment, and others
has a direct and profound impact on everyday life, underscoring their immense impor-
tance [2,3]. Nonetheless, the growing integration of the cyber and physical domains has
given rise to novel and perilous security challenges. Notably, previous occurrences have
illustrated the susceptibility of CPSs. The Sapphire worm, which emerged in 2003, re-
sulted in substantial disruption to websites and internet services [4]. In the year 2010,
the Stuxnet virus was specifically designed to attack Iran’s nuclear power plant, causing
significant damage to its centrifuges and resulting in the reactor being non-functional for
a prolonged duration [5]. Similarly, the WannaCry ransomware attack on the National
Health Service in 2017 had severe consequences in terms of both human casualties and
financial losses [6]. These instances highlight the potential ramifications of attacks on CPSs,
which can significantly impact individuals’ lives. Consequently, the study of CPS security
holds significant importance.

The security defense challenges in CPSs can be classified into two distinct layers:
the cyber layer and the physical layer. The defense mechanisms employed in the cyber
layer bear a striking resemblance to those utilized in safeguarding information networks.
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For example, safeguarding against network attacks can be accomplished by employing
encryption keys [7], detecting watermarks [8], and imposing access rights restrictions [9].
The tight integration of CPSs with physical devices introduces a distinctive aspect wherein
attacks on the cyber layer can extend their impact to the physical processes themselves.
This phenomenon is particularly conspicuous in the realm of automatic control systems,
resulting in compromised control performance. Consequently, the protection of the physical
layer assumes paramount importance due to its role as the final barrier of defense and its
ability to offer substantial defensive benefits.

The security defense problem for the physical layer of CPS can be divided into several
stages: attack detection, secure state estimation, and secure control [10]. Among them, each
of them has a different and necessary function. However, most of the studies focus on one
of these phases for analysis and discussion only.

To tackle the issue of detecting attacks, a proposed solution in [11] suggests a blended
detection approach. This approach combines two established detection methods to effec-
tively identify a broad spectrum of false data injection attacks. In a recent study [12], a novel
strategy for moving target defense is introduced. This strategy involves the integration of
random and time-varying parameters into the control system, with the aim of obstructing
attackers from devising stealthy attack sequences. Moreover, a novel control architecture
is presented in reference [13], which employs watermark signals and auxiliary systems
to identify spoofing attacks that have an adverse effect on the network control system,
while simultaneously maintaining control performance. Another method proposed in ref-
erence [14] introduces an improved residual-based detection technique that is specifically
tailored for the identification of stealthy attacks on omnidirectional mobile robots (OMRs).
Additionally, there has been significant research conducted on observer-based detection
methods for identifying integrity attacks, including replay attacks, zero-dynamics attacks,
covert attacks, and others [15–17].

Various methods have been proposed to ensure secure state estimation in CPSs. One
method that can be employed to address switching signals and spurious measurement
attacks, and to ensure resilient state estimation, is the utilization of a Bayesian approach
based on random sets [18]. In reference [19], a robust asymptotic fault estimation tech-
nique is developed specifically for CPSs that experience sensor faults. This technique
enables accurate estimation of the system state. Addressing the problem of secure recon-
struction in linear CPSs that encounter sparse attacks on both actuators and sensors, a
descriptor-switched sliding mode observer is proposed in [20]. This observer is designed to
effectively reconstruct the sparse false data injection (FDI) attacks and the system state. In
reference [21], a comprehensive solution is presented which combines detection and fusion
techniques. This solution is based on the utilization of Kullback–Leibler divergences (KLD)
between local posteriors. By employing this approach, the exchange of raw sensor data is
eliminated, while simultaneously ensuring secure state estimation. In the study conducted
by [22], the distributed dynamic state estimation algorithm was designed. This algorithm
utilizes optimal filters and graph theory to obtain local and neighboring gains, thereby
improving the accuracy of state estimation. Additionally, a novel approach is presented
in [23] for constructing two detection variables that do not rely on the invertibility of the
covariance matrix. Subsequently, a multiple information fusion algorithm is developed
based on the obtained detection results.

Several approaches have been proposed to ensure secure control in CPS. One potential
strategy involves implementing an architectural framework for resilient CPS through the
utilization of stochastic model predictive control (MPC). This framework is designed with
the objective of attaining robustness in the presence of stochastic uncertainty and ensuring
resilient control against cyber attacks [24]. In reference [25], a comprehensive system model
incorporating uncertainty is constructed through the analysis of diverse cyber attacks.
Subsequently, robust control theory is employed to ensure secure control of the system
following an attack. A model predictive switching control strategy is proposed in [26] to
address the issue of untrusted data sequences resulting from false data injection attacks.
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This strategy is based on attack perception and aims to compensate for the impact of such
attacks. The paper [27] centers its attention on the utilization of network-based modeling
and proportional–integral (PI) control techniques for a continuous-time direct-drive-wheel
system that operates within a wireless network environment. Additionally, the problem of
event-triggered synchronization of master–slave neural networks under deception attacks
is investigated in [28]. The study proposes appropriate output feedback controllers using
the Lyapunov–Krasovskii functional method. Additionally, a novel approach to the analysis
of the H∞ performance in discrete-time networked systems, considering network-induced
delays and malicious packet dropouts, is presented in reference [29]. The effectiveness of
this approach is demonstrated through the application of an inverted pendulum system.

The growing utilization of CPSs has resulted in a heightened emphasis on the security
aspects associated with it. Nevertheless, it is worth noting that current research endeavors
in the field of CPS security defense tend to focus on isolated facets, thereby neglecting a
holistic and all-encompassing approach. In this paper, we examine a particular scenario
in which a CPS with multiple sensors is susceptible to stealthy cyber attacks, including
zero-dynamics attacks, covert attacks, and replay attacks [30]. To tackle this issue, we
present a comprehensive framework for the process of security defense. This framework
incorporates an attack detection method that relies on enhanced residuals [31], an optimal
state estimation utilizing improved Kalman filtering, and a recovery control strategy based
on the optimal state. By integrating these components, a comprehensive security defense
process is established, encompassing attack detection and recovery control. The validity of
the proposed framework is established through the utilization of design simulations, which
demonstrate the feasibility and effectiveness of our method in addressing the security
challenges encountered by CPSs. This comprehensive approach addresses the existing
research gap by considering the entire security defense process, thereby making a significant
contribution to the enhancement of CPS security.

The main contributions of this paper can be summarized as follows.

(1) For the case of attacks on a CPS containing multiple sensors, an optimal state estima-
tion method based on improved Kalman filtering is proposed, which can achieve the
estimation of the actual state of the CPS after the attack.

(2) Based on the estimated optimal state, a recovery control strategy is designed. And,
combined with the detection method based on improved residuals, a framework for
the security defense process is given.

The rest of this paper is organized as follows. In Section 2, the CPS structure and
stealthy attacks are described, and the improved residual-based attack detection method is
presented. In Section 3, the optimal state estimation based on the improved Kalman filter
and the recovery control strategy based on the optimal state are proposed, and a complete
framework of the security defense process is given. Simulation experiments are designed
in Section 4, and the results are analyzed and illustrated. Section 5 summarizes the full
work and provides an outlook for future work.

2. Model Building and Detection Methods
2.1. System Modelling

The block diagram of the CPS structure with multiple actuators and sensors consider-
ing the case of sensor attacks, actuator attacks, and process attacks is shown in Figure 1.
The CPS structure consists of two main components: the plant side and the monitoring
side. The plant side includes physical devices, actuators, and sensors. The monitoring
side utilizes data from measurement channels to remotely control physical devices. The
monitoring side controls the actuators by sending control commands to enable desired
functions or actions. On the plant side, multiple sensors independently measure the state
of the system and transmit this information to the monitoring side, which then generates
control commands. Each sensor can provide a partial or complete system state indepen-
dently. A multi-sensor selection and fusion module is incorporated into the monitoring
side to acquire the final system state for generating control commands. This module applies



Actuators 2023, 12, 427 4 of 17

principles or methods to combine the different system states obtained from sensors. In this
CPS structure, attackers primarily target the measurement and actuation channels, as well
as directly attack the physical devices, which can have detrimental effects on the CPS.
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attacks, actuator attacks, and process attacks.

The CPS model with multiple sensors, considering the case of containing attacks, is
constructed as:

x(k + 1) = Ax(k) + B(u(k) + au(k)) + EPap(k) + w(k),
ysi ,a(k) = Csi x(k) + D(u(k) + au(k)) + ai

y(k) + FPap(k) + vi(k),
ya(k) = Φ(ys1,a|ys2,a| · · · |ysn ,a). i = 1, 2, . . . , n

(1)

where x(k) ∈ Rp is the state of the system, u(k) ∈ Rm is the control command signal
output from the monitoring side of the system, ua(k) ∈ Rm (ua(k) = u(k) + au(k)) is the
control signal input to the plant side after the attack, ysi ,a(k) ∈ Rn is the measurement
output of the ith sensor after the attack, ya(k) ∈ Rn is the system output after multi-sensor
selection and fusion, au(k) denotes the attack against the actuation channel, ap(k) denotes
the process attack, and ai

y(k) denotes the attack against the ith measurement channel.
Φ(ys1,a|ys2,a| · · · |ysn ,a) denotes some multi-sensor fusion method. EP and FP are known
matrices indicating the locations of components in the system that may be subject to
process attacks. A, B, Csi , and D are the parameter matrices of the system. Csi denotes
the corresponding output matrix when only the ith sensor is considered. w(k) denotes
the process noise and vi(k) denotes the measurement noise of the ith sensor, both obeying
w(k) ∼ N(0, Σw), vi(k) ∼ N(0, Σvi ).

Remark 1. Process attacks refer to attacks that are directly applied to physical devices, causing
direct damage to the physical devices. On the other hand, actuator attacks and sensor attacks involve
actions such as blocking or tampering with signal transmission channels. Given that process attacks
directly cause damage to physical devices and may not require further defensive measures, this paper
focuses solely on studying the security defense of CPSs when actuator attacks or sensor attacks
are present.

Remark 2. The type of attack mentioned in (1) is of additive attack and does not change the model
parameters. Here, a multiplicative attack that causes changes in the model parameters due to
functional anomalies of the system, in the process or sensors and actuators due to cyber attacks, is
not considered.
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Consider the CPS shown in Figure 1 where the observer-based residual detector is
defined at the monitoring side as follows.

ro(k) = ya(k)− Cx̂(k) (2)

where ya(k) ∈ Rm denotes the measurement under attack and x̂(k) ∈ Rn is the state
estimated by the observer. r0(k) is the residual signal that satisfies r0(k) ∼ N(0, Σr0).

According to the χ2 test, the residual evaluation function J(·) can be written as

J(r0(k)) = rT
0 (k)Σ

−1
r0

r0(k) ∼ χ2(m) (3)

So, the logic law of detection to determine the presence of an attack is expressed as{
J(r0(k)) ≤ Jth ⇒ attack− f ree
J(r0(k)) > Jth ⇒ attacked

(4)

When the false alarm rate α is given, the threshold Jth is set to the upper bound
of χ2

α(m).

2.2. Description of Stealthy Attacks

For integrity stealthy attacks, the following definition is first given.

Definition 1. When there is an attack in the system, given a false alarm rate α, and the attack
cannot be detected based on the residual signal r0(k) using the detection logic given in (4), then the
attack is said to be stealthy from the detector given in (2).

According to the definition of stealthy attacks, three types of stealthy attacks are
introduced.

(1) Zero-dynamics attack: It requires complete knowledge of the system model to design
attack signals against the actuators. It evades the detector of (3) by adding the attack
signal au(k) to the actuator input without affecting the sensor measurement output,
i.e., ay(k) = 0 [32]. Therefore, the attack form can be expressed as au(k) = υkg, where
the system zero υ and the corresponding input zero direction g can be calculated by
solving the following equation.[

υI − A −B
C 0

][
x0
g

]
=

[
0
0

]
(5)

where x0 is the initial state of the system for which the input sequence au(k) results in
an identically zero output.

(2) Covert attack: It also requires complete knowledge of the system model and attacks
against both actuation channels and measurement channels. In the actuation channels,
the performance of the control system is affected by applying an additive signal
au(k); however, in the measurement channels, the effect of the input attack on the
measurement is eliminated by carefully designing a signal ay(k) [33]. Given the
discrete linear model in (1), ay(k) can be calculated by the following equation.

ay(k) := −C
k−1

∑
i=0

(
AiBau(k− 1− i)

)
(6)

(3) Replay attack: It does not require knowledge of the system model. It only needs
to be able to access the signal transmission channels, to attack the control signals,
and to record and re-cover the measurement data. The replay attack can be specif-
ically described as [34]: in the measurement channels, the measurement data in
the steady-state of the system are recorded in advance, and the actual measure-
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ment values are overwritten with the recorded data when the attack is performed
(i.e., y(k) = y(k − τ), τ > 0); while in the actuation channels, au(k) is designed to
affect the performance of the system. Obviously, the replay attack is stealthy in the
steady-state of the system.

Remark 3. Zero-dynamics attack, covert attack, and replay attack are all additive attacks and satisfy
the stealthy condition of Definition 1. In addition, zero-dynamics attack and covert attack require
complete knowledge of the system model to evade the detection mechanism of (3), while replay attack
does not require it and it is stealthy when the system is stable.

2.3. Detection Method

The analysis of stealthy attacks reveals that their core purpose is to attack the actuators
to make the control performance by attacking the actuators. On the other hand, attacks
against the sensors aim to evade the detection mechanism described in (3). The detection
of stealthy attacks can be achieved by exploiting the differences between the states of the
system on the monitoring side and the plant side [31]. The detection scheme, as shown in
Figure 2, is designed for a system that contains only one sensor capable of independently
measuring the full state of the system. The specific working principle is described below.
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On the monitoring side, the observer is constructed in the following form:{
x̂M(k + 1) = Ax̂M(k) + Bu(k) + L(ya(k)− ŷa(k))
ŷa(k) = Cx̂M(k) + Du(k)

(7)

On the plant side, the observer is constructed in the following form:{
x̂P(k + 1) = Ax̂P(k) + Bua(k) + L(y(k)− ŷ(k))
ŷ(k) = Cx̂P(k) + Dua(k)

(8)

From (7) and (8), it can be found that when there is no attack, x̂P(k) = x̂M(k); when
there is an attack, x̂P(k) 6= x̂M(k). This is because the states on both sides are estimated
based on different signals. Therefore, this difference can be used for the detection of stealthy



Actuators 2023, 12, 427 7 of 17

attacks. Also, to avoid the attack when xP(k) is transmitted to the monitoring side, the
following form of the transmission signal is designed:

β(k) = κ(x̂P(k)) (9)

where κ(·) indicates a certain encryption policy, which is known only to the system itself.
Therefore, the residual signal used to detect stealthy attacks can be constructed as:

rβ(k) = β(k)− κ(x̂M(k)) (10)

3. State Estimation and Recovery Control

The CPS is susceptible to a range of stealthy cyber-attacks, which have a substantial
impact on its control performance. Undoubtedly, the primary focus for both attackers and
defenders lies in determining strategies to enhance the control performance of the control
system, thereby achieving their respective attack and defense objectives. Therefore, it is
imperative to have a comprehensive controller design solution that is capable of detecting,
isolating, and recovering control from stealthy cyber attacks.

Consider a CPS as shown in Figure 1 containing multiple actuators as well as multiple
sensors that can be independently measured to obtain the complete system output. The
analysis of stealthy attacks in Section 2 shows that the key to their stealthy implementation
lies in the tampering with the sensor measurement output, while the attack on the actuators
is only to achieve the purpose of the attack and control the specific actions of the system.
Therefore, considering n sensors Πs = {s1, s2, . . . , sn}, there are unknown sensors suffering
from the attack, and the specific attacks are described as follows.

ysi ,a(k) =
{

ysi (k)⇔ attack− f ree
ysi (k) + ai

y(k)⇔ attacked , i = 1, 2, · · · , n. (11)

Without knowing which sensor is under attack, it is undesirable to directly fuse the
sensor output data using the multi-sensor fusion method Φ(ys1,a|ys2,a| · · · |ysn ,a). Therefore,
each sensor must be detected in advance and the sensor detected as being under attack
must be isolated, and finally, the normal sensors are selected for fusion to obtain the correct
system state for recovery control.

3.1. Optimal State Estimation Based on Improved Kalman Filtering

To detect whether each sensor is under attack, the detection method described in
Section 2 is used to calculate the residual signal for each sensor, allowing for the identifi-
cation of stealthy attacks, assuming that the residual signals for all sensors are calculated
as follows:

Θ =
{

rs1
β (k), rs2

β (k), . . . , rsn
β (k)

}
(12)

According to the χ2 detection theory [14], drawing on the detection logic of (3) and
(4), the detection of stealthy attacks can be achieved for each sensor: J

(
rsi

β (k)
)
≤ Jth−β ⇒ attack− f ree

J
(

rsi
β (k)

)
> Jth−β ⇒ attacked

,i = 1, 2, · · · , n (13)

Assuming that the set of residual signals of the sensors that detected the attack is
denoted as

Θa =
{

rsi ,a
β (k) ∈ Θ|si ∈ Πs

}
⊆ Θ (14)

After detecting the sensors under attack, they need to be isolated and the remaining
normal sensors are used to estimate the system state. Therefore, weighting factors are
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introduced to achieve isolation and fusion according to (12) and (14). That is, the fusion
function Φ(ys1,a|ys2,a| · · · |ysn ,a) in (1) is constructed in the following form:

Φ(ys1,a|ys2,a| · · · |ysn ,a) =
n

∑
i=1

εiysi ,a(k) (15)

where εi is the weight value corresponding to each sensor calculated from the residual
signal rβ(k), calculated as shown below.

εi =


0 , rsi

β (k) ∈ Θa(
rsi

β (k)∑
1

r
si
β (k)

)−1
, rsi

β (k) ∈ Θ−Θa
(16)

From (16), it can be found that once a sensor detects an attack, its corresponding
weighting factor is set to 0, while sensors that are not detecting an attack are weighted and
fused according to the corresponding residuals. These residuals provide insights into the
extent of state deviation, causing larger residuals to correspond to lower weighting factors
during the calculation process.

Then, according to the explanations in Remarks 1 and 2, the model of CPS shown in (1)
can be simplified to the following form without considering process attacks:

x(k + 1) = Ax(k) + B(u(k) + au(k)) + w(k)
ysi ,a(k) = Csi x(k) + D(u(k) + au(k)) + ai

y(k) + vi(k)

ya(k) =
n
∑

i=1
εiysi ,a(k)

(17)

where ysi ,a(k) is the measurement output of the ith sensor after attacking and Csi is the
corresponding system output matrix.

Meanwhile, on the monitoring side, the state estimation equation and the observation
estimation equation for (17) are:

x̂(k + 1|k) = Ax̂(k|k) + Bu(k)
ŷsi ,a(k + 1|k) = Csi x̂(k + 1|k) + Du(k)

ŷa(k + 1|k) =
n
∑

i=1
εi ŷsi ,a(k + 1|k)

(18)

where ŷsi ,a(k + 1|k) is the value estimated at moment k for the measurement output of the
ith attacked sensor at moment k + 1.

Then, the state error covariance matrix P(k + 1|k) can be calculated as follows:

P(k + 1|k) = cov{x(k + 1)− x̂(k + 1|k)}
= cov{Ax(k) + B(u(k) + au(k)) + w(k)− Ax̂(k|k)− Bu(k)}
= cov{A(x(k)− x̂(k|k)) + Bau(k) + w(k)}
= AP(k|k)AT + BΣau BT + Σw

(19)

where Σau is the covariance matrix of the attack signal au(k) and Σw is the covariance matrix
of the process noise w(k).

Similarly, the observation error covariance matrix S(k + 1) can be calculated as follows:

S(k + 1) = cov{ya(k + 1)− ŷa(k + 1|k)}

= cov
{

n
∑

i=1
εi

(
Csi (x(k + 1)− x̂(k + 1|k)) + Dau(k) + ai

y(k) + vi(k)
)}

=
n
∑

i=1
ε2

i

(
Csi P(k + 1|k)Csi T + DΣau DT + Σai

y
+ Σvi

) (20)
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where Σai
y

is the covariance matrix of the attack signal ai
y(k) and Σvi is the covariance matrix

of the measurement noise vi(k).
The goal of Kalman filtering is for an iterative estimation expression based on errors

that can be continuously corrected, in the form shown below:

x̂(k + 1|k + 1) = x̂(k + 1|k) + Wẽ(k + 1) (21)

where W is the Kalman gain matrix and ẽ(k + 1) is the observation estimation error, de-
fined as

ẽ(k + 1) = ya(k + 1)− ŷa(k + 1|k) (22)

The solution procedure for W is as follows:

P(k + 1|k + 1) = cov{x(k + 1)− x̂(k + 1|k + 1)}
= cov{x(k + 1)− x̂(k + 1|k)−W(ya(k + 1)− ŷa(k + 1|k))}

= cov
{(

I −W
n
∑

i=1
εiCsi

)
(x(k + 1)− x̂(k + 1|k))−W

n
∑

i=1
εi

(
Dau(k) + ai

y(k) + vi(k)
)}

=

(
I −W

n
∑

i=1
εiCsi

)
P(k + 1|k)

(
I −W

n
∑

i=1
εiCsi

)T

+
n
∑

i=1
ε2

i

(
WDΣau DTWT + WΣai

y
WT + WΣvi WT

)
(23)

Expanding (23) into the form of a trace:

trace(P(k + 1|k + 1))

= P(k + 1|k)−
(

W
n
∑

i=1
εiCsi

)
P(k + 1|k)− P(k + 1|k)

(
W

n
∑

i=1
εiCsi

)T

+

(
W

n
∑

i=1
εiCsi

)
P(k + 1|k)

(
W

n
∑

i=1
εiCsi

)T

+
n
∑

i=1
ε2

i

(
WDΣau DTWT + WΣai

y
WT + WΣvi WT

)
(24)

trace(P(k + 1|k + 1)) to W by taking the partial derivative and making it equal to 0 to
compute the optimal W:

∂

∂W
trace(P(k + 1|k + 1)) = −2P(k + 1|k)

(
n

∑
i=1

εiCsi

)T

+ 2WS(k + 1) = 0 (25)

Finally, the optimal W can be obtained:

W =

P(k + 1|k)
(

n
∑

i=1
εiCsi

)T

S(k + 1)
(26)

Then, substituting (23) into (19) again, the iterative form of the state error covariance
matrix can be obtained by simplification:

P(k + 1|k) = A

(
I −W

n

∑
i=1

εiCsi

)
P(k|k− 1)AT + BΣau BT + Σw (27)

In conclusion, considering isolation and fusion of the attacked sensors, the optimal
state estimation based on the improved Kalman filtering can be summarized as
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x̂(k + 1|k) = Ax̂(k|k) + Bu(k)

x̂(k|k) =
(

I −W
n
∑

i=1
εiCsi

)
x̂(k|k− 1)−

n
∑

i=1
εiWDu(k− 1) + Wya(k)

W = P(k|k− 1)
(

n
∑

i=1
εiCsi

)T[ n
∑

i=1
ε2

i

(
Csi P(k|k− 1)Csi T + DΣau DT + Σai

y
+ Σvi

)]−1

P(k + 1|k) = A
(

I −W
n
∑

i=1
εiCsi

)
P(k|k− 1)AT + BΣau BT + Σw

(28)

3.2. The Recovery Control Strategy Based on Optimal State

In the context of security defense in CPSs, the goal is to ensure that the system can
maintain normal operation even after an attack. Therefore, once an attack is detected using
the method described in Section 2 and attack isolation and system state estimation are
performed according to the method in Section 3, the next step is to implement recovery
control for the system based on the obtained results. This section presents an optimal
state-based recovery control strategy and provides a comprehensive overview of attack
detection, attack isolation, state estimation, and recovery control. It outlines a complete
framework for protecting CPS security, as depicted in Figure 3.
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Figure 3. The security defense process of CPS includes attack detection, secure state estimation, and
recovery control.

In control systems, the primary control objectives are to ensure stable tracking of the
reference input and meet the control requirements. The internal model control (IMC) has a
wide range of applications in the control field. It enables the system to track the reference
input asymptotically with zero steady-state error. This paper proposes a solution to the
recovery control problem of CPS under attacks. It introduces an integration link of the
reference input signal by combining IMC with the optimal state. This approach aims to
achieve stable operation of the attacked system based on the target command.

The reference input signal γ(k) is generated by the following model:{
γ(k) = xγ.
γ(k) = 0

(29)

Also, the tracking error e(k) is defined:

e(k) = ya(k)− γ(k) (30)
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Then, the state space can be extended as follows:(
e(k + 1)
z(k + 1)

)
=

[
0 C
0 A

](
e(k)
z(k)

)
+

[
0
B

]
(u(k)− u(k− 1)) (31)

where z(k) denotes the difference of the state variable x(k), i.e., z(k) = x(k)− x(k− 1).
If the system shown in (31) is controllable, then a set of feedback control signals can be

designed to make the system stable, i.e.,

u(k)− u(k− 1) = −
[
F1 F2

](e(k)
z(k)

)
(32)

This means that the tracking error e(k) is stable. Therefore, the system is then able to
track the reference input signal with zero steady-state error. Integrating (33), the feedback
control signal inside the system is obtained as

u(k) = −F1

k

∑
i=1

e(k)− F2x(k) (33)

Since the state x(k) of the system cannot be obtained directly, the optimal state estimate
x̂(k|k) is obtained by an improved Kalman filtering method and used to replace the true
state x(k) in (34).

4. Simulation Results

In this section, a practical simulation is carried out to demonstrate the effectiveness of
the proposed optimal state estimation method and recovery control strategy.

4.1. Simulation Setup

Consider a four-wheeled Omnidirectional Mobile Robot (OMR) with the system
parameters shown below [14]:

A =

 −0.1759 8.0754× 10−4 0.0000
8.0754× 10−4 −0.1759 0.0000

0.0000 0.0000 −0.0675

, B =

 0.0299 0.0299 0.0299 0.0299
0.0299 −0.0299 0.0299 −0.0299
−0.0887 −0.0887 0.0887 0.0887


It is assumed that the mobile robot contains three independent sensors, each of which

can independently measure partial or complete state information. So, the matrix of system
output parameters corresponding to each sensor is given as

Cs1 =

0.9 0 0
0 0.9 0
0 0 0.9

, Cs2 =

0.8 0 0
0 0.8 0
0 0 0.8

, Cs3 =

0.6 0 0
0 0.6 0
0 0 0.6


The state variables x =

[ .
x,

.
y,

.
θ
]T

of the OMR are the X-axis and Y-axis travel ve-
locity and rotation angular velocity in the robot coordinate system. The process noise
is set to w(k) ∼ N(0, 0.001) and the measurement noise of the three sensors is set to
v1(k) ∼ N(0, 0.008), v2(k) ∼ N(0, 0.005), and v3(k) ∼ N(0, 0.003) respectively.

In the recovery control, the feedback matrix of (34) is set to:

F =
[
F1 F2

]
=


0.8721 0.8356 −0.2802
0.8660 −0.8306 −0.2839
0.8760 0.8369 0.2956
0.8700 −0.8293 0.2919

4.5969 4.4453 −1.8020
4.5894 −4.4127 −1.8089
4.6138 4.4478 1.8594
4.6064 −4.4102 1.8526


On the monitoring side, the expected movement strategy is set to drive forward in

a straight line with a speed of
.
x(k) = 0.5 from the initial state x(k) = [0, 0, 0]T , during
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which the output of the sensor s1 is mainly used, i.e., the sensor fusion module is set
to: Φ(ys1,a|ys2,a|ys3,a) = 0.9ys1,a + 0.05ys2,a + 0.05ys3,a. Without considering the attack, the
normal state of the mobile robot is shown in Figure 4.
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Figure 4. The normal state and fused measurement output of the OMR when no attack is added:
(a) is the normal state; (b) is the fused measurement output.

Remark 4. In all figures of this paper, the asterisk superscript (i.e., *) indicates that the results
obtained using the method proposed in this paper were used. In contrast, the absence of the asterisk
superscript indicates that the results obtained by the method proposed in this paper were not used.

4.2. Results Discussion
4.2.1. Zero-Dynamics Attack

Zero-dynamics attack is mainly stealthy by designing the attack signal au(k), and there
is no direct attack signal to attack the measurement channels. Therefore, in the simulation,
the measurement output matrix Cs1 of the sensor s1 is used to solve (5) and assume that the
sensor s1 does not have access to the rotational state information. The parameters related
to the zero-dynamics attack design in (5) are calculated as follows and injected into the
actuation channels at k > 300.

υ = 1.008, g = [−0.0803;−0.0803; 0.0803; 0.0803]

The real state, estimated state, and fused measurement output of the OMR with and
without taking the proposed approach in this paper after the injection attack are given in
Figure 5. From Figure 5b,d, it can be found that the real state of the OMR can be basically
estimated using the method proposed in this paper, and the fused measurement output
can also show the real state of the system very well.

After detecting the attack and estimating the correct state of the OMR, recovery control
is introduced, as shown in Figure 6, which shows the system after adding recovery control.
From the figure, by taking recovery control, the rotation angular velocity of the OMR can
be adjusted so that it will no longer rotate.

4.2.2. Covert Attack

The main purpose of the covert attack is the attack on the actuation channels. Therefore,
at the simulation moment k > 300, the attack target is set to xa(k) = [1, 0, 0]T , i.e., after
injecting the attack, the resulting state of the OMR is straight ahead with a speed of 1 m/s.
Also, to satisfy the stealthy condition, the attack signal is added to the sensor s1 according
to (6) without attacking the other two sensors.

The real state, estimated state, and fused measurement output of the OMR with and
without taking the proposed approach in this paper after the injection attack are given in
Figure 7. From Figure 7a, it is found that a better estimation of the system state can be
achieved when the state of the OMR is estimated by adopting the method proposed in this
paper. In this case, the actual state is 1 m/s, while the average value of the estimated state
is 1.07 m/s. In addition, Figure 7b also demonstrates that the fused measurement output
after detection is also valid.
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Figure 5. The real state, estimated state, and fused measured output of the OMR with and without
taking the proposed approach in this paper after the injection attack: (a) is the real state and estimated
state of the X-axis velocity; (b) is the real state and estimated state of the rotation angular velocity;
(c) is the fused measurement output of the X-axis velocity; (d) is the fused measurement output of
the rotation angular velocity.
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Figure 6. The situation of the OMR after adding recovery control: (a) is the situation of the X-axis
velocity; (b) is the situation of the rotation angular velocity.
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Figure 7. The real state, estimated state, and fused measured output of the OMR with and without
taking the proposed approach in this paper after the injection attack: (a) is the real state and estimated
state of the X-axis velocity; (b) is the fused measurement output of the X-axis velocity.

Figure 8 illustrates the change in the system state after taking recovery control at
k > 600. The results show that the OMR can restore the normal driving state by adopting
the recovery control strategy.
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4.2.3. Replay Attack

According to the production conditions of the replay attack, the attacked sensor is s1,
the target xa(k) = [0, 0.3, 0]T . The attack strategy is described as follows: collect the output
data of the sensor s1 for 100 < k < 300, inject the attack at k > 300, continuously overwrite
the output data of the sensor s1 with the previously collected data, and simultaneously
calculate au(k) injected into the actuation channels according to the attack target xa(k).

The real state, estimated state, and fused measurement output of the OMR with and
without taking the proposed approach in this paper after the injection attack are given in
Figure 9. Figure 10 illustrates the change in the system state after taking recovery control at
k > 600. The results show that the OMR can restore the normal driving state by adopting
the recovery control strategy.
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Figure 9. The real state, estimated state, and fused measured output of the OMR with and without
taking the proposed approach in this paper after the injection attack: (a) is the real state and estimated
state of the X-axis velocity; (b) is the real state and estimated state of the Y-axis velocity; (c) is
the fused measurement output of the X-axis velocity; (d) is the fused measurement output of the
Y-axis velocity.
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5. Conclusions

This paper introduces a comprehensive framework that addresses the security defense
of CPSs. The framework encompasses three key components: attack detection, secure state
estimation, and recovery control. The proposed processes hold significant importance in
enhancing the security of CPSs. To commence, an analysis is conducted on the structural
characteristics of CPSs, resulting in the development of a state-space model that encom-
passes sensor attacks, actuator attacks, and process attacks. A comprehensive description
of the three different categories of stealthy attacks is provided. Next, we employ an existing
attack detection method that is based on improved residuals to effectively detect these
stealthy attacks. Building upon the obtained detection results, this study proposes an
optimal state estimation method that utilizes an improved Kalman filtering approach. This
method allows for precise estimation of the true state of the system. Finally, the utilization
of internal model control is proposed to enhance system recovery control through the
utilization of optimal state estimation. Simulation verification showcases the exceptional
efficacy of the proposed methods in achieving secure state estimation and recovery control.
In our future research endeavors, our objective is to tackle the nonlinearity inherent in CPSs
and investigate more advanced attack behaviors to further strengthen the defense mech-
anisms of CPSs. Additionally, the integration of artificial intelligence and reinforcement
learning methodologies into the stage of system recovery presents promising prospects for
enhancing the overall security of the system.
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