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Abstract: It is difficult to achieve a high-precision motion control in hydraulic manipulators due to
their structural redundancy, strong coupling of closed-chain structures, and flow–pressure coupling.
In this paper, a high-precision motion control method for hydraulic manipulators is proposed based
on the traditional virtual decomposition control (VDC). The method proposed avoids an excessive
virtual decomposition of the hydraulic manipulator and requires fewer model parameters than
the traditional VDC. Further, the control precision improved by combining an adaptive real-time
update of the inertial parameters. Compared with MBC, the proposed control method improved
the motion accuracy of the hydraulic manipulator by more than 40% and 20% under elliptical and
triangular trajectories. The simulation results showed that the proposed control method reduced
the maximum position errors in Cartesian space by 90.4%, 86.8%, 23.6%, and 44.3% compared with
PID and model-based control (MBC) in the absence of disturbances. The maximum position error
in Cartesian space was reduced by 76.5% compared with that of MBC in a simulation with external
disturbances. It can be seen from all the simulation results that with the proposed control method,
the position error of the manipulator was less than 50 mm. The proposed control method effectively
improved the motion precision of the examined hydraulic manipulator.

Keywords: hydraulic actuators; motion control; manipulator dynamics; virtual decomposition
control

1. Introduction

Hydraulic manipulators are widely used in construction [1], rescue [2,3], port hoist-
ing [4], deep-sea exploration [5], and other heavy-load operations due to their characteristics
of high power, large load carriage capacity, stable transmission, etc. However, they are struc-
turally redundant, present heavy coupling of closed-chain structures, and flow–pressure
coupling. These problems make it difficult to achieve high-precision motion in hydraulic
manipulators compared with electrically driven manipulators. Therefore, it is of great
theoretical and practical significance to research the high-precision control of hydraulic
manipulators.

At present, the available hydraulic manipulator motion control methods are the model-
free control and the model-based control. The model-free control includes PID control [6],
neural network control [7], fuzzy control [8,9], and so on. Lee [10] proposed an adaptive
PID control with the advantages of the adaptive time-delay control. Li [11] researched the
cooperative motion control of multiple manipulators based on distributed recurrent neural
networks. Mohammad [12] introduced a new novel discrete adaptive fuzzy controller for
manipulators that are powered by electricity, which addresses the system’s nonlinearity and
uncertainty. The model-free control avoids the establishment of complex dynamic models
of manipulators and is widely used in electric-drive manipulators. However, it cannot
avoid the influence of inertial force, non-linearity of the hydraulic drive, and closed-chain
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coupling on the control precision of hydraulic manipulators, which limits the improvement
of control precision.

Therefore, the model-based control is more suitable for the high-precision control of
hydraulic manipulators. Traditional model-based control methods are the model predic-
tive control [13], the sliding mode control [14], the adaptive control [15], and so on. The
traditional model-based control requires the establishment of complete dynamic models
of hydraulic systems and manipulators. The mainstream dynamic modeling methods of
hydraulic manipulators include the Lagrange method [16], the Kane method [17], and the
Newton–Euler method [18]. Jouko Kalmari [19] proposed a nonlinear model predictive con-
trol based on numerical optimization in which a particular objective function is minimized
to improve motion precision. Ding [20] proposed a model-based control method (MBC) for
high-precision trajectory tracking control in manipulators based on the Lagrange method.
It compensates for the nonlinear dynamic characteristics of both the manipulator and the
hydraulic actuator. However, the dynamic model based on the Lagrange method will cause
high dimensionality in multi-body manipulators, which reduces the computing efficiency.
Zhou [21] created an adaptive robust controller combined with a backstepping approach
based on the Kane method, which reduced the influence of external disturbance. Zhao [22]
proposed a modal space sliding mode control based on the mathematical model built by
the Newton–Euler method. However, control methods based on traditional modeling
ignore the closed-chain structures in hydraulic manipulators. Therefore, it is impossible to
accurately model the coupling problem generated by the closed-chain structures, which
reduces the control precision.

To solve the problem of strong coupling caused by the closed-chain structures of hy-
draulic manipulators, Zhu [23,24] proposed VDC, which virtually decomposes the closed-
chain structures into open-chain subsystems. Each subsystem is modeled and controlled
separately. This control method was applied by Koivumäki [25,26] to a three-degree-of-
freedom manipulator and by Petrovic [27] to a seven-degree-of-freedom manipulator to
improve the control precision. However, the structure of the manipulators was relatively
simple in these previous studies. The hydraulic manipulator studied in this paper had a
luffing mechanism between every two adjacent links. The luffing mechanism was com-
bined with the links and the hydraulic cylinder to form multiple closed-chain structures.
Each closed-chain structure needs to be decoupled when using the traditional VDC, which
may cause a huge increase in the number of decomposed subsystems. A virtual equivalent
component is here proposed to reduce the number of closed chains caused by the luffing
mechanism. Thus, the complex luffing mechanism became equivalent to a simple compo-
nent through virtual transformation. Each three closed-chain structure became equivalent
to a closed-chain structure consisting of a virtual equivalent component, the links, the
hydraulic cylinder, which reduced the number of subsystems. The complexity of modeling
and the computational cost of the simulation were further reduced. The load distribution
coefficient and the change of inertia parameters were calculated as in [25], considering a
manipulator system with equivalent components.

A high-precision control method for hydraulic manipulators is proposed in this paper.
A 13 m three-degree-of-freedom hydraulic manipulator was the research object. A virtual
decomposition model of the overall manipulator structure was established with fewer mod-
ules than those used by the traditional method, and the complex closed-chain structure was
decomposed into open-chain subsystems. At the same time, an adaptive updated method
of uncertain inertia parameters is proposed to compensate for the structural dynamic
characteristics of the manipulator. Finally, a simulation was carried out on the Simulink
virtual prototype model to verify the effectiveness of the proposed control method.

This paper is organized as follows. The decomposition and dynamics of the manipu
lator are presented in Section 2. The subsystem of hydraulic actuators is introduced in
Section 3. The adaptive design of the inertial parameters and the stability analysis of the
system are described in Sections 4 and 5, respectively. The simulation model of the whole
manipulator system is established in Section 6, and different simulation conditions were
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designed to validate the proposed method. The contribution of this study and the future
research plans are discussed in Section 7. Finally, Section 8 reports the conclusions of
this study.

2. Materials and Methods

In this paper, a 13 m three-degree-of-freedom hydraulic manipulator was selected as
the research object, as shown in Figure 1. Subfigure (a) is the real manipulator studied in
this work. Subfigure (b) is the 3D model and hydraulic schematic and the red arrows mean
coordinates at joints.
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Figure 1. The hydraulic manipulator system studied in this work. (a) the real manipulator studied in
this work. (b) the 3D model and hydraulic schematic and the red arrows mean coordinates at joints.

The virtual decomposition process began with the joint decomposition and link divi-
sion of the hydraulic manipulator’s structure, which established the basic model framework.
Then, we calculated the kinematics/dynamics parameters of each subsystem based on each
coordinate set up on the divided open-chain structure. The load distribution coefficient in
each subsystem was calculated at the last. Through these steps, we could solve the internal
force vector, and the whole dynamic model of the manipulator after virtual decomposition
was established.

2.1. Joint Decomposition and Link Partitioning

The hydraulic manipulator in Figure 2a was first decomposed into subsystems using
the virtual cutting points (VCPs). The VCPs oriented the virtual decomposition of the
manipulator. The manipulator’s parts after virtual cutting still maintained their position
and direction. Force and torque could be applied on one part to affect another part.
Therefore, the VCPs can be considered as points of transmission of effects between two
adjacent subsystems.

Figure 2a shows the decomposition process of the whole hydraulic manipulator
system into multiple subsystems. The manipulator contained three closed-chain structures
associated with the hydraulic cylinders. The directional diagram in Figure 3b illustrates
the dynamic relationship between the substructures of the decomposed system. Each
subsystem was defined as a node. A subsystem with only the initial node was defined as
a source node, and a subsystem at the end of the structure was referred to as a sink node.
Object 0 served as the source node, and object 2 served as the sink node.
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Figure 3. Equivalent closed-chain structures in arm1 and arm2. (a) Multi closed chain structures
consisted by luffing mechanism, hydraulic cylinder and links. The letters in the figure represent the
coordinate systems at the hinge points, (b) Closed-chain structure, (c) Virtual equivalent component
in the equivalent closed chain structure.

The closed-chain structure was decoupled using the traditional VDC to solve the struc-
tural coupling problem of hydraulic manipulators. A study [27] proposed a decomposition
method to reduce the number of subsystems for its research object. However, the hydraulic
manipulator we studied had a more complex structure with luffing mechanisms, as shown
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in Figure 3a. Figure 3a shows multi closed chain structures consisted by luffing mechanism,
hydraulic cylinder and links. The letters in the figure represent the coordinate systems at
the hinge points. If the closed-chain structure formed between the luffing mechanism, the
links, and the hydraulic cylinder, shown in Figure 3b, was decomposed, the number of
subsystems would increase, further increasing the difficulty of the modeling.

To solve this problem, a virtual equivalent component method is proposed in this
paper.

The generalized coordinates of point D in the closed chain 1 in Figure 3b were trans-
formed to obtain point O in the virtual equivalent component through the transformation
matrix, according to Equation (1).

ORD =

 cos(OθD) sin(OθD) 0
− sin(OθD) cos(OθD) 0

0 0 1

 ∈ R3×3 (1)

OrOD× =

 0 −rz ry
rz 0 −rx
−ry rx 0

 ∈ R3×3 (2)

OUD =

[ ORD 03×3
(OrOD×)

ORD
ORD

]
∈ R6×6 (3)

The position transformation matrix between point d and point D could be obtained
using the same method:

DUd =

[ DRd 03×3
(DrDd×)

DRd
DRd

]
∈ R6×6 (4)

Then:
OUd = OUD · DUd (5)

Similarly, the matrix OUG of the coordinate frame G equivalent to O and the matrix
EUF of the coordinate frame F equivalent to E was derived.

The complex luffing mechanisms became virtual equivalent components through the
above processing. Three closed-chain structures were converted into one closed-chain
structure and obtaining the structure “virtual equivalent component—links—hydraulic
cylinder”, which reduced the number of subsystems.

The motion and force interactions between the subsystems were described by addi-
tional coordinate systems. Each closed-chain structure had five coordinate systems. Take
2(a) as an example: the coordinate systems {B1}, {B10}, {B11}, {B12}, and {T1} were set at the
rotating joint and at the piston rod. The X direction of each coordinate system {B} pointed
to the next coordinate system and formed a non-drive open chain. {T1} was the drive
coordinate system of the hydraulic cylinder which constituted the drive open chain. These
coordinate systems describe the motion and force interactions between subsystems, which
are crucial for the system’s control.

2.2. Kinematic Analysis of the Closed Chains

The dynamics of the system was analyzed using the Newton—Euler method in
Figure 4(1b,1c). Each closed chain was composed of four rigid bodies, including two
connecting rods, two hydraulic cylinders three non-driven rotary joints, and one linear-
driver joint.
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In the Figure 4, 1a–3a are three hydraulic actuator assemblies of the hydraulic manipu-
lator. 1b–3b and 1c–3c are open chains of 1a–3a that be virtual decomposed.

The relationship between the joint angles q1, q11, and q12, and the position of piston x1
is described as follows:

x1 =
√

l11
2 + l12

2 + 2l11l12 cos(q1)− x11 − x12 (6)

q11 = arccos((l11 + l12 cos(q1))/(x1 + x11 + x12)) (7)

q12 = arccos((l12 + l11 cos(q1))/(x1 + x11 + x12)) (8)

where l11 and l12 are the lengths of two adjacent links, x11 is the hydraulic cylinder barrel
length, and x12 is the piston rod length.

The joint angular velocities
.
q1,

.
q11,

.
q12 and velocity

.
x1 can be obtained by Equations

(7)–(9) as follows:
.
x1 = −l11l12 sin(q1)

.
q1/(x1 + x11 + x12) (9)

.
q11 =

l12 sin(q1)(x1 + x11 + x12 − l11 cos(q11))
.
q1

(x1 + x11 + x12)
2 sin(q1)

(10)

.
q12 =

l12 sin(q1)(x1 + x11 + x12 − l12 cos(q12))
.
q1

(x1 + x11 + x12)
2 sin(q1)

(11)

The combined linear/angular velocity vector expression in the link coordinate system
A is as follows:

AV =

[ Av
Aω

]
∈ R6 (12)

where Av ∈ R3 and Aω ∈ R3 represent the linear velocity and the angular velocity vectors
in the coordinate system A.

To calculate the motion chain of the system, we followed the path from the source
node (object 0) to the sink node (object 3) along the directional graph. The linear/angular
velocity vector of the link relative to the joint within a closed chain can be obtained using
the recursive kinematics of the subsystem:

BV ∈ R6



B1V = OUT
B1

OV
B10V = B1UT

B10
B1V − zτ

.
q1

B11V = B1UT
B11

B1V − zτ
.
q1

B12V = B11UT
B12

B11V + z f
.
x1

T1V = B10UT
T1

B10V

(13)

where OV = [0 0 0 0 0 0]T, zr = [0 0 0 0 0 1]T, and zf = [1 0 0 0 0 0]T. AUT
B represents the

transformation matrix of the force and moment vectors in the coordinate system B relative
to the coordinate system A:

AUB =

[ ARB 03×3
(ArAB×)

ARB
ARB

]
∈ R6×6

ARB =

 cos(AθB) sin(AθB) 0
− sin(AθB) cos(AθB) 0

0 0 1

 ∈ R3×3

ArAB× =

 0 −rz ry
rz 0 −rx
−ry rx 0

 ∈ R3×3

(14)
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where AθB represents the angle of deflection of the coordinate system B concerning A, rx,
ry, rz represent the distance of the coordinate system B concerning A in the directions of x,
y, and z.

Taking the transformation of the coordinate system B1 to B10 as an example, B1UB10,
B1RB10, B1rB1B10× can be obtained:

B1RB10 =

 cos(q1) sin(q1) 0
− sin(q1) cos(q1) 0

0 0 1

 ∈ R3×3

B1rB1B10× =

0 0 0
0 0 −l1
0 l1 0

 ∈ R3×3

B1UB10 =

[ B1RB10 03×3
(B1rB1B10×)

B1RB10
B1RB10

]
∈ R6×6

(15)

Since the coordinate systems are located in the same plane, the Z direction is 0
To improve control precision, the concept of needed velocity was introduced in the

VDC, which is different from the desired velocity of the reference trajectory relative to time.
The needed velocity can be used for force/position control. Therefore, the desired velocity
and the associated error, such as the force/position error, can be included in the needed
velocity. Position control is achieved by incorporating position errors into the needed
velocity. Therefore, the desired linear/angular velocity vector of the link relative to the
joint is modified by Equation (14) as follows:

.
q1r =

.
q1d + λ(q1d − q1)

B1Vr =
OUT

B1
OV

B10Vr =
B1UT

B10
B1Vr − zτ

.
q1r

B11Vr =
B1UT

B11
B1Vr − zτ

.
q1r

B12Vr =
B11UT

B12
B11Vr + z f

.
x1r

T1Vr =
B10UT

T1
B10Vr

(16)

where the λ > 0 is the control gain.

2.3. Dynamics Analysis of the Closed Chains

According to [23], the complete dynamics analysis of a mechanical manipulator re-
quires establishing dynamic equations for every virtual decomposed closed-chain structure.
The first closed-chain structure was used as an example in this section.

Define A and B as coordinate systems fixed to the rigid body structure. Assume that
the coordinate system A can be located at all points except for the center of mass. The
coordinate system B is positioned at the mass center. The force vector and moment vector
expression in the coordinate system A is as follows:

AF =

[A f net

Amnet

]
∈ R6 (17)

where the Afnet ∈ R3 and Amnet ∈ R3 represent the force vector and the moment vector in
frame A.

The rigid body dynamics equation for a rigid body coordinate system can be derived
by defining the net force/moment vector. The dynamic equation of a rigid body in free
motion is expressed in the inertial system Io as:[

mA I3
Io

][ .
vo.
ωo

]
+

[
mAg

(ωo×)Ioωo

]
=

[
f net

mnet

]
(18)
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where I3 ∈ R3×3 is the identity matrix, mA is the mass of the rigid body, Io ∈ R3×3 is the
inertia matrix at the center of mass of the rigid body. vo ∈ R3 and wo ∈ R3 represent the
linear velocity vector and the angular velocity vector at the center of mass, respectively. The
net force/moment vectors applied to the mass center are denoted by the symbols fnet ∈ R3

and mnet ∈ R3.
This rigid body’s net force vector and moment vector in the coordinate system A can

be expressed as:
AFnet = AUB

BFnet = AUB

[BRI
BRI

][
f net

mnet

]
(19)

The linear velocity, angular velocity, linear acceleration, and angular acceleration can
be derived by considering Equation (15).

For a rigid body, the linear/angular velocity vector can be updated as[
v
ω

]
=

[I RB
I RB

]
AUT

B
Av (20)

The linear acceleration/angular acceleration vector can be updated as

d
dt (

I RB) = (ω×)I RB[ .
v
.

ω

]
=

[
(ω×)I RB

(ω×)I RB

]
AUT

B
Av +

[I RB
I RB

]
AUT

B
d
dt (

Av)
(21)

Combining Equation (22) and ARI(ω×) = (Aω×)ARI with Equation (19) and mul-

tiplying both sides of Equation (19) by AUB

[BRI
BRI

]
, we can obtain the rigid body

dynamics equation:

MA
d
dt
(AV) + CA(

Aω)AV + GA = AFnet (22)

The closed-chain-driven force/moment vector TF ∈ R6 at a VCP can be obtained
through the recursive dynamic calculation of the subsystem. It can be written as:

T F = T1F + T2F (23)

The force vector and moment vector T1F and T2F at the driving VCP of the open chains
1 and 2 can be expressed as:

T1F = α1
T F + Tη

T2F = α2
T F − Tη

(24)

where α1 and α2 are two load distribution coefficients, with α1 + α2 = 1, and Tη =[
Tη f x

Tη f y 0 0 0 Tηmz

]T
is the internal force vector.

2.4. Calculation of Load Distribution Coefficients and Internal Force Vector

A previous study [25] provide a detailed calculation method of the internal force
vector and load distribution coefficient.

The load distribution coefficient is an important parameter affecting the dynamic
characteristics of hydraulic manipulators. The load distribution coefficients α1 and α2
describe the force distribution between two open-chain links in the x–y plane when Tf is
applied to the closed-chain driver VCP.

Figure 5a shows the forces applied to the closed-chain driver VCP and the arbitrary
force/moment vectorTf in the coordinate system {T}.
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The subsystem simultaneously applied a reaction force −Tf when the force vector Tf
was applied from the driver VCP of the closed chain to its adjacent subsystem. The force
vector −Tf produced the reaction forces −fL12 and −fL13. The reaction forces −fL12 and
−fL13, as shown in Figure 5b, were decomposed into the force vectors −TfL12 and −TfL13
parallel to −Tf. The relationship can be expressed as follows:

T f = T fL12 +
T fL13

T fL12 = α1
T f = cos(θ) fL12

T fL13 = α2
T f = cos(q22 − θ) fL13

(25)

Combining the law of sines and Equation (26), the expression of the load distribution
coefficient sα1 and α2 can be derived as follows:

α1 = cos(θ) sin(q12−θ)
sin(π−q12)

α2 = sin(θ) sin(q12−θ)
sin(π−q12)

θ = arctan(T fy, T fx)

(26)

The calculation of the force/moment vector at the open-chain VCP required the
calculation of the internal force vector Tη first. The calculation of the internal force vector
Tη required to obtain the forces Tηfx along the x-axis and Tηfy along the y-axis and the
moment Tηmz along the z-axis.

From Equation (16) we have:

zT
τ

B10UT11 = zT
τ

[ B10RT11 03×3
(B10rB10T11×)B10RT11

B10RT11

]
=

0
0
0
0
0
1



T

1 0 0 0 0 0
0
0
0
0

1 0 0 0
0
0

1
0

0
1

0
0

0 −L12 0 1

0
0
0
0

0 L12 0 0 0 1

 =
[

0 L12 0 0 0 1
] (27)
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zT
τ

B11UT12 = zT
τ

[ B11RT12 03×3
(B11rB11T12×)B11RT12

B11RT12

]

=



0
0
0
0
0
1



T

c11 c12 0 0 0 0
c21
0
0
0

c22 0 0 0
0
0

1
0

0
c44

0
0

0 c53 c54 c55

0
0
0
0

c61 c62 0 0 0 1

 =
[

c61 c62 0 0 0 1
] (28)

Since friction in a hydraulic manipulator mainly exists between the hydraulic cylin-
der and the piston, the friction at the undriven joint is assumed to be 0. The following
relationship can be derived from Equation (25):

[
0 0 0 0 0 1

][Tη f x
Tη f y 0 0 0 Tηmz

]T
= zT

τ α2
T F (29)

By combining Equations (25) and (27)–(29), the expression of Tηfy can be derived as
follows:

Tη f y = − zT
τ (

B10F∗+α1
B10UT1

T F)+Tηmz
L12

Tη f x =
zT

τ (
B11F∗+B11UB12

B12F∗+α2
B11UT12

T F)
sin(−q12)(x1+x11+x12)

−
cos(−q12)(x1+x11+x12)

Tη f y+
Tηmz

sin(−q12)(x1+x11+x12)

(30)

The desired net force vector and moment vector can be derived from the desired linear
velocity vector and angular velocity vector:

MA
d
dt
(AVr) + CA(

Aω)AVr + GA + KA(
AVr − AV) = AFnet (31)

Then, the force/moment vector required for the driving VCP of the open chains 1 and 2
can be written as:

T Fr =
T1F + T2F

T1Fr = α1
T Fr +

Tηr
T2Fr = α2

T Fr − Tηr

(32)

In open chain 1, the force vector and moment vector are denoted by:

B10Fr =
B10F∗r + B10UT11

T11Fr
B101Fr =

B101F∗r + B101UB10
B10Fr

(33)

In open chain 2, the force vector and moment vector are denoted by:

B12Fr =
B12F∗r + B12UT12

T12Fr
B11Fr =

B11F∗r + B11UB12
B12Fr

(34)

The output force A required to close the hydraulic cylinder in the chain is:

fcr = xT
f

B12Fr (35)

3. Subsystem of the Hydraulic Actuator

In this section, the dynamics of the hydraulic actuator in the hydraulic manipulator
was derived and calculated [23].

Let fc be the pressure and fu be the output force and define the ff as the friction force.
So, we have:

fc = fu + f f (36)
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According to Bernoulli’s flow equation, the pressure difference is proportional to the
square variance of two flow rates via a valve port. Therefore, the flow gf is proportional to
the product of the square root of the spool control signal and the pressure drop:

g f = k
√

∆pu (37)

where k > 0 is a constant term, ∆p > 0 indicates the pressure drop at the valve port, and u
indicates the spool control signal.

The rates of the flow are defined as ga and gb as follows:

∈ (x) =
{

1, i f x > 0
0, i f x ≤ 0

(38)

ga = cp1v(ps − pa)u ∈ (u) + cn1v(pa − pr)u ∈ (−u)
gb = −cn2v(pb − pr)u ∈ (u)− cp2v(ps − pb)u ∈ (−u)

(39)

where cp1, cn1, cp2, cn2 are the valve port flow coefficients, Ps, Pr, Pa, and Pb are the system
pressure, tank pressure, rod chamber pressure, and rod-less chamber pressure, respectively,
v is a symbolic function.

The equations of pressure dynamics can be described in the following form:

.
pa =

E
sa(cm−c) (ga + sa

.
c)

.
pb = E

sbc (gb − sb
.
c)

(40)

where Sa and Sb represent the rod chamber area and the rod-less chamber area, respectively,
c represents the piston rod displacement, and cm represents the stroke of the piston rod.
Consider

v(x) =
√
|c|sign(c)

sign(x) =


−1 x < 0
0 x = 0

1 x > 0

(41)

Refer to the hydraulic cylinder flow continuity equation and Equation (38):

fcr = sb pb − sa pa.
f cr = E[u f − ( sa

cm−c +
sb
c )

.
c]

(42)

where fcr is the output force, and uf can be written as:

u f =
gb
c −

ga

cm−c = −( cp1v(ps−pa)
cm−c + cn2v(pb−pr)

c )u ∈ (u)

−( cn1v(pa−pr)
cm−c +

cp2v(ps−pb)
c )u ∈ (u) = −Yv(u)θv

(43)

A physical quantity that reflects the flow capacity of the valve is the flow coefficient of
the valve port. The flow capacity of the valve increases with the flow coefficient, and the
pressure loss of the fluid via the valve port decreases. By using least squares identification,
the flow coefficient’s value can be calculated.

The Equation of the regression matrix and identification terms is obtained by separat-
ing the flow coefficient contained in Equation (42) as follows:

Yv(u) =



.
pa Aa −

.
pb Ab

v(ps−pa)
cm−c u ∈ (u)

v(pa−pr)
cm−c u ∈ (−u)

v(ps−pb)
c u ∈ (−u)

v(pb−pr)
c u ∈ (u)



T

∈ R1×5 (44)
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θv =
[
E−1 cp1 cn1 cp2 cn2

]T ∈ R5 (45)

Before the simulation, preparations were made to obtain chamber pressure, piston
displacement, and other relevant parameters by arbitrarily designing a running trajectory.
The following least squares technique was used to calculate the valve port flow coefficient
and the effective elastic bulk modulus, to introduce the identified parameters into the
control method.

The least squares method equation is written as:

XTXθ = XTY ⇒ θ = (XTX)
−1

XTY (46)

The force term and the piston velocity term composed of the pressure feedback of two
chambers were added to the control equation. The output force of the hydraulic cylinder
and the speed of the piston were fed back to the control system in real time. The stability
and control precision were controlled by the control valve-related output signal. The term
ufd is determined according to the Equation (44)

u f d =
(

1
Ê

) .
f cr + ( sa

cm−c +
sa
c )

.
c + kcr( fcr − fc) + kc(

.
cr −

.
c)

= Yc θ̂c + kcr( fcr − fc) + kc(
.
cr −

.
c)

(47)

u = − 1
ĉp1v(ps−pa)

cm−c + ĉn2v(pb−pr)
c

u f d ∈ (−u f d)−
1

ĉn1v(pa−pr)
cm−c +

ĉp2v(ps−pb)
c

u f d ∈ (u f d) (48)

with
Yc =

[ .
f pr

.
x

lo−x

.
x
x

]
∈ R1×3

θc =
[

1
β sa sb

]T
∈ R3

(49)

ufd can be rewritten according to Equation (52) when the condition of Equation (51) is
satisfied:

(
cp1v(ps−pa)

cm−c + cn2v(pb−pr)
c ) > 0

( cn1v(pa−pr)
cm−c +

cp2v(ps−pb)
c ) > 0

(50)

u f d = Yv(v)θ̂v (51)

The vectors θ̂ f , θ̂c and θ̂v are updated as:

s f = (
.
xr −

.
x)YT

f
sc = (

.
xr −

.
x)YT

c
sv = (

.
xr −

.
x)YT

v

(52)

The γth elements of θ̂ f , θ̂c, and θ̂v are updated as:

θ̂ f γ =
(

s f γ, ρ f γ, θ f γ, θ f γ, t
)

, ∀γ

θ̂cγ =
(

scγ, ρcγ, θcγ, θcγ, t
)

, γ = 1, 2, 3

θ̂vγ =
(

svγ, ρvγ, θvγ, θvγ, t
)

, γ = 1, 2, 3, 4

(53)

4. Adaptive Design of the Inertial Parameters

The inertial parameters of a hydraulic manipulator are a group of time-varying pa-
rameters in the process of motion. The inertial parameters can be calculated and updated
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in real time to increase control precision. Based on Equation (32), the parameters to be
estimated are separated linearly to obtain:

MA
d
dt
(AVr) + CA(

Aω)AVr + GA + KA(
AVr − AV) = YAθA (54)

Taking closed chain 1 as an example, the net force vector and moment vector required
for four rigid bodies are calculated as follows:

B1F∗r = YB1θ̂B1 + KB1(
B1Vr − B1V)

B10F∗r = YB10θ̂B10 + KB10(
B10Vr − B10V)

B11F∗r = YB11θ̂B11 + KB11(
B11Vr − B11V)

B12F∗r = YB12θ̂B12 + KB12(
B12Vr − B12V)

(55)

where KB1 ∈ R6×6, KB10 ∈ R6×6, KB11 ∈ R6×6, and KB12 ∈ R6×6 are the positive definite gain
matrices θ̂B1 ∈ R13, θ̂B10 ∈ R13, θ̂B11 ∈ R13, and θ̂B12 ∈ R13. θ̂ is an estimated parameter
matrix containing mass, moment of inertia, product of inertia, and other parameters.

Select the function Φ as an updating law of 13 group parameters for each rigid body:

θ̂B1γ = Φ(sB1γ, ρB1γ, θB1γ, θB1γ, t)
θ̂B10γ = Φ(sB10γ, ρB10γ, θB10γ, θB10γ, t)
θ̂B11γ = Φ(sB11γ, ρB11γ, θB11γ, θB11γ, t)
θ̂B12γ = Φ(sB12γ, ρB12γ, θB12γ, θB12γ, t)

(56)

γ represents the γth parameter, and ρB1γ is the parameter updating gain. θB1γ and
θB1γ are the upper and lower limits of θ̂B1γ, respectively.

SBi can be expressed as:

sB1 = YT
B1(

B1Vr − B1V)
sB10 = YT

B10(
B10Vr − B10V)

sB11 = YT
B11(

B11Vr − B11V)
sB12 = YT

B12(
B12Vr − B12V)

(57)

The equation for Φ(s(t), k, a(t), b(t), t) ∈ R considering a time derivative is as follows:

.
Φ = ks(t)ψ

ψ =


0 Φ ≤ a(t)&s(t) ≤ 0
0 Φ ≥ b(t)&s(t) ≥ 0
1 others

(58)

5. Stability Analysis of the System

The VDC control law is designed according to the dynamics of the subsystems. The
dependency vector x(t) of a subsystem is defined as a virtual function of L∞, and y(t) as
a virtual function of L2. The L2-L∞ stability and convergence of the whole system can
be guaranteed when each subsystem has the required stability and convergence. Define
a scalar term corresponding to each VCP, called virtual power flow (VPF). VPF is the
inner product of the velocity error and the force error and defines the dynamic interaction
between subsystems. VPF plays a crucial role in the virtual stability of subsystems and
ensures the L2-L∞ stability of the whole system.

Define a non-negative adjoint function and take its derivative as:

v(t) ≥ 1
2 x(t)T Px(t)

.
v(t) ≤ −y(t)TQx(t)− s(t) + ∑

{A}∈Φ
pA − ∑

{C}∈Ψ
pC∫ ∞

0 s(t)dτ ≥ −γs

(59)
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The dependency vector x(t) of the virtual decomposed subsystem is defined as the
virtual function of L∞, and y(t) as a virtual function of L2, where 0 ≤ γs ≤ ∞, P and Q are
two diagonally positive definite matrices, Φ and Ψ are coordinate systems placed at the
driven cut point, PA and PC are VPFs. The inner product of the error of the force/moment
vector and the error of the linear/angular velocity vector is known as PA:

pA = (AVr −V)
T
(AFr − AF) (60)

The accessory vectors B1Vr − B1V and B10Vr − B10V of the first open chain are chosen
as virtual functions of L2 and L∞. The non-negative adjoint function of the first open
chain is:

ν1 = νB1 + νB10 (61)

where vB1 and vB10 are non-negative adjoint functions of the two links of the open chain 1:

νB1 = 1
2 (

B1Vr − B1V)
T MB1(

B1Vr − B1V) + 1
2

13
∑

γ=1
(θB1γ − θ̂B1γ)

2
/ρB1γ

νB10 = 1
2 (

B10Vr − B10V)
T MB10(

B10Vr − B10V) + 1
2

13
∑

γ=1
(θB10γ − θ̂B10γ)

2
/ρB10γ

(62)

The derivation of vB1 and vB10 in relation to time is obtained with:

.
νB1 ≤ −(B1Vr − B1V)

TKB1(
B1Vr − B1V) + (B1Vr − B1V)

T
(B1F∗r − B1F∗)

.
νB10 ≤ −(B10Vr − B10V)

TKB10(
B10Vr − B10V) + (B10Vr − B10V)

T
(B10F∗r − B10F∗)

(63)

The following equation is obtained by combining Equations (13), (16), (28), (30), (32)
and (52):

(B1Vr − B1V)
T
(B1F∗r − B1F∗) = (B1Vr − B1V)

T
[(B1Fr − B1F)− B1UB10(

B10Fr − B10F)]
= pB1 − [B10UT

B1(
B1V r − B1V)− B10UT

B1zτ(
.
qr −

.
q)]T × B1U B10(

B10Fr − B10F)
= pB1 − pB10 + (

.
qr −

.
q)zT

τ (
B10Fr − B10F) = pB1 − pB10

(64)

(B10Vr − B10V)
T
(B10F∗r − B10F∗)

= (B10Vr − B10V)
T
[(B10Fr − B10F)− B10UT11(

T11Fr − T11F)]
= pB10 − [B10UT

T11(
B10Vr − B10V)]

T
(T11Fr − T11F)

= pB10 − pT11

(65)

The derivative of v1 in relation to time is:
.
ν1 =

.
νB1 +

.
νB10

≤ −(B1Vr − B1V)
TKB1(

B1Vr − B1V)− (B10Vr − B10V)
TKB10(

B10Vr − B10V) + pB1 − pT11
(66)

In a similar manner, the time derivative of the second open chain non-negative adjoint
function can be written as follows:

.
ν2 =

.
νB11 +

.
νB12

≤ −(B11Vr − B11V)
TKB11(

B11Vr − B11V)− (B12Vr − B12V)
TKB12(

B12Vr − B12V)
+pB2 − pT12 + (

.
xr −

.
x)( fcr − fc)

(67)

The simultaneity of Equations (24) and (33) can be obtained as follows:

T Fr − T F = (T1Fr − T1F) + T2Fr
T2F) (68)

Suppose a non-negative adjoint function is 0 and multiply by (TVr − TV)T:

0 = pT − pT1 − pT2 (69)
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The virtual stability of the first open chains and two zero mass objects can be proved.
Now, let us address (

.
xr −

.
x)(fur – fu), which prevents the open chain’s stability.

Define a vector vc according to the hydraulic dynamics and control equations as
follows:

νc =
1

2E ( fcr − fc)
2 + kc

2 ∑
γ
(θ f γ − θ̂ f γ)

2
/ρ f γ+

1
2

3
∑

γ=1
(θcγ − θ̂cγ)

2
/ρcγ + 1

2

4
∑

γ=1
(θvγ − θ̂vγ)

2
/ρvγ

(70)

It follows from Equations (44) and (47) that

u f d − u f =
1
E
(

.
f cr −

.
f c)−Yc(θc − θ̂c) + kcr( fcr − fc) + kc(

.
cr −

.
c) (71)

The time derivative of vc satisfies the condition as follows:

.
νc = −kcr( fcr − fc)

2 + ( fcr − fc)Yc(θc − θ̂c) + ( fcr − fc)(u f d − u f )

−kx( fpr − fp)(
.
xr −

.
x)−∑

γ
kx(θ f γ − θ̂ f γ)

.
θ̂ f γ

ρ f γ
−

3
∑

γ=1
(θcγ − θ̂cγ)

.
θ̂cγ

ρcγ
−

4
∑

γ=1
(θvγ − θ̂vγ)

.
θ̂vγ

ρvγ
6 −kcr( fcr − fc)

2 − kc( fur − fu)(
.
cr −

.
c)

(72)

Define B11Vr − B11V, B12Vr − B12V, and fcr − fc as virtual functions for both L2 and L∞.
The second open chain’s non-negative adjoint function is redefined as follows:

v = v2 +
vc

kc
(73)

and
.
ν =

.
ν2 +

.
νc
kx

6 −(B21Vr − B21V)TKB21(B21Vr − B21V)n
−(B22Vr − B22V)TKB22(B22Vr − B22V)

− kcr
kc
( fcr − fc)

2 + pB2 − pT12

(74)

The derivative of the Lyapunov function of the hydraulic manipulator is a negative
definite function, while the energy function is positively definite. Equation (70) can be
derived:

fcr − fc ∈ L2∩L∞
B1 Vr − B1 V ∈ L2∩L∞

B10 Vr − B10 V ∈ L2∩L∞
B11 Vr − B11 V ∈ L2∩L∞
B12 Vr − B12 V ∈ L2∩L∞

(75)

The virtual stability of the first and second open chains can be proved by the above
Equations.

6. Simulation and Analysis
6.1. Simulation Platform

A complete hydraulic manipulator simulation platform was built by Matlab/Simulink
to test the control precision of the proposed method.

The hydraulic system is shown in Figure 6. The V means the velocity of piston rod. The
u means valve control voltage and the P is pressure in the two chambers of the hydraulic
cylinder. The F means drive force. It was composed of the hydraulic power module, a
valve-controlled cylinder module, and a liquid–solid interaction module. The hydraulic
power module included a hydraulic pump and a hydraulic oil tank. The valve-controlled
cylinder module consisted of electro-hydraulic servo valves and hydraulic cylinders. The
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liquid–solid interaction module included a velocity source module and a force sensor
module. Table 1 displays the primary system’s parameters.

Actuators 2023, 12, x FOR PEER REVIEW 19 of 28 
 

 

The virtual stability of the first and second open chains can be proved by the above 

Equations. 

6. Simulation and Analysis  

6.1. Simulation Platform 

A complete hydraulic manipulator simulation platform was built by Matlab/Sim-

ulink to test the control precision of the proposed method. 

The hydraulic system is shown in Figure 6. The V means the velocity of piston rod. 

The u means valve control voltage and the P is pressure in the two chambers of the hy-

draulic cylinder. The F means drive force. It was composed of the hydraulic power mod-

ule, a valve-controlled cylinder module, and a liquid–solid interaction module. The hy-

draulic power module included a hydraulic pump and a hydraulic oil tank. The valve-

controlled cylinder module consisted of electro-hydraulic servo valves and hydraulic cyl-

inders. The liquid–solid interaction module included a velocity source module and a force 

sensor module. Table 1 displays the primary system’s parameters. 

 

Figure 6. Hydraulic system’s model in Simulink. 

  

Figure 6. Hydraulic system’s model in Simulink.

Table 1. Hydraulic system’s parameter setting for the simulation model.

Model Parameter Value Model Parameter Value

Pressure source Pressure 25 [Mpa] Hydraulic Oil Volume modulus 7000 [bar]
Density 850 [kg/m3]

Proportional
valve1

Maximum flow P-A\A-T 10 [L/min] Hydraulic Stroke 840 [mm]
Maximum flow P-B\B-T 10 [L/min] Cylinder 1 Viscous friction 10,000 [N/(m/s)]

Proportional
valve2

Maximum flow P-A\A-T 10 [L/min] Hydraulic Stroke 863 [mm]
Maximum flow P-B\B-T 10 [L/min] Cylinder 2 Viscous friction 10,000 [N/(m/s)]

Proportional
valve3

Maximum flow P-A\A-T 10 [L/min] Hydraulic Stroke 700 [mm]
Maximum flow P-B\B-T 10 [L/min] Cylinder 3 Viscous friction 10,000 [N/(m/s)]

The physical model is shown in Figure 7. Table 2 displays the primary structural
parameters of the physical model of the hydraulic manipulator.

Table 2. Structure parameters of the simulated mechanical model.

Parameter Arm 1 Arm 2 Arm 3

Length [m] 5.550 3.75 3.7
Mass [kg] 883 250 190

Angle range [deg] 0◦–88◦ −180◦–0◦ −60◦–180◦

Cylinder mass [kg] 55.9 48.7 32.6
Cylinder diameter [mm] 110 100 80

Piston mass [kg] 37.1 21.3 10.6
Piston diameter [mm] 63 55 45

Rotational inertia [kg·m2] 5562.988 723.350 427.5
Density [kg·m3] 7700 7700 7700

Damping coefficient
[Nm/(rev/min)] 250 250 250
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Figure 7. Physical model of the manipulator in Simulink.

Figure 8 displays the Simulink-built VDC control algorithm model. The whole control
algorithm model consisted of four parts, as shown in the following Figure. The output force
of the hydraulic cylinder was obtained through kinematics and dynamics calculations by
inputting the desired joint angles. The movement of the whole manipulator was controlled
by the spool displacement signal of the servo valve.
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Figure 8. Simulation model of VDC control algorithm.

6.2. Method Validation in a Simulation without Disturbances

To test the control ability of the proposed method, the valve ports’ flow coefficients and
the elastic volume moduli of the servo valves had to be identified first. The flow coefficients
and elastic bulk moduli of each valve were identified by the least squares method and
Equation (42)–(44). Table 3 shows the results.
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Table 3. Valve ports’ flow coefficient and elastic bulk modulus values.

Parameter Servo Valve 1 Servo Valve 2 Servo Valve 3

E−1
[

m2

N

]
2.6 × 10−8 2.6 × 10−8 2.6 × 10−8

cp1

[
m3

s
√

Pa

]
2.3 × 10−7 1.2 × 10−7 6.3 × 10−8

cn1

[
m3

s
√

Pa

]
2.1 × 10−7 1.7 × 10−7 1.8 × 10−7

cp2

[
m3

s
√

Pa

]
9.3 × 10−8 1.73 × 10−7 1.2 × 10−7

cn2

[
m3

s
√

Pa

]
2.3 × 10−8 1.7 × 10−7 4.8 × 10−7

The triangular trajectory and elliptical trajectory were used in the simulation to verify
the control precision of the algorithm. The starting point of the trajectory was set to (1.2 m,
0 m). The running times of the triangular trajectory was 80 s, and that of the elliptical
trajectory was 50 s. The sampling interval time was 0.001 s. The PID and MBC control
methods were compared with the VDC in the simulation to better illustrate the efficacy
of our method. The simulation results are shown in Figure 9. The trajectory curves of the
end of the manipulator in the directions X and Y are shown in Figure 9a,b, respectively.
Figure 9c–e shows the comparative effect of the angle error of three joints. The comparison
of the end position errors is shown in Figure 9f–h. The control of the joint angles’ errors by
VDC was superior to that of the other two control algorithms, except for the joint angle 3
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Similarly, a comparison was conducted for the elliptical trajectory, as shown in
Figure 10.
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The control results for the two trajectories are shown in Table 4.

Table 4. Comparison of the maximum position errors in Cartesian space of the 3 examined methods.

Method PID MBC VDC Effect Compare
with PID

Compare
with MBC

Triangular
trajectory 125.3 mm 15.7 mm 12 mm Triangular

trajectory
Decrease
by 90.4%

Decrease
by 23.6%

Elliptical
trajectory 170.2 mm 40.2 mm 22.4 mm Elliptical

trajectory
Decrease
by 86.8%

Decrease
by 44.3%
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The maximum position errors of the proposed control method were smaller than MBC
and PID methods, as shown in Table 4. Compared with PID, the maximum position errors
under VDC control were reduced by 113.3 mm and 147.8 mm, corresponding to a decline
of 90.4% and 86.3% respectively. MBC showed higher control precision, to a certain extent,
than PID. However, the maximum position errors were still further reduced by 3.7 mm
and 17.8 mm in the two trajectories when using VDC, with a reduction of 23.6% and 44.3%.
Therefore, VDC achieved a high-precision control of the manipulator in an environment
without external disturbance. External disturbances were the applied in a simulation to
further test the control precision of the proposed method.

6.3. Method Validation in a Simulation with External Disturbances

A straight trajectory was designed from the starting point (The red dot in Figure 11a,
position coordinate (12, 0)) to the final point (The gray dot in Figure 11a, position coordinate
(10, 2)), and instantaneous disturbances of 1000 N were applied to the tip of the manipulator
(tip of link 3) at the 8th and 25th second, as shown in Figure 11a,b. MBC was compared
with VDC to better test the control effect, and the results are shown in Figure 11c–f.

As observed in Figure 11c–d, the maximum end position error of arm 3 was 33.4 mm,
while the maximum end position error of the manipulator was 117.2 mm when using MBC.
As observed in Figure 11e–f, the maximum end error of arm 3 and the overall maximum end
error when using the proposed control method were 12.2 mm and 27.5 mm, respectively
(the arrow means to point in detail for the part of the influence of disturbances in curve).
The position errors were reduced by 63.4% and 76.5%, respectively, compared with the
position errors under MBC control. In addition, Figure 10c–f also shows the end amplitudes
caused by two external disturbances under different control methods. The two amplitudes
under VDC control were 2.4 mm and 2.3 mm, with a decrease of 97.1% and 97.8% compared
to the amplitudes of 89.7 mm and 76.1 mm obtained under MBC control.

The effect of an external impact on the motion precision of the manipulator was
effectively reduced, which proved the efficacy of the proposed high-precision control
algorithm.
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7. Discussion

The structure of most hydraulic manipulators is relatively simple, and most of them are
driven by hydraulic actuators directly connected to the links. The hydraulic manipulator
researched in this paper had a complex structure, with closed chains composed of a link,
a luffing mechanism, and a hydraulic actuator. The traditional VDC needs to decompose
this complex strongly coupled closed-chain structure several times. Thus, the kinematic
derivation of the system would become complicated, and at the same time, the design of the
control law would become more difficult. The kinematic features of the luffing mechanism
and the arm were treated as equivalent in this paper, avoiding multiple cuts to the complex
structure by considering equivalent external forces applied to the hinge points of the two
arms. This method reduced the number of subsystems generated and the calculation cost.
The simulation results in different environments showed that this method could ensure a
high control accuracy while reducing the number of subsystems. All the work in this paper
was based on simulation only. A real hydraulic system includes oil viscosity, hydraulic
cylinder friction, etc., which may be affected by environmental temperature, humidity, and
other factors. The characteristics of the oil flow and the structure of the pipeline limit the
dynamic response of the hydraulic system, which could cause a delay in the execution of
the control instructions. Future research will attempt to test the proposed control method
using a genuine hydraulic manipulator and then refine it in light of the experimental
findings.
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8. Conclusions

The motion control precision of hydraulic manipulators is difficult to improve due
to problems such as structural redundancy, strong coupling in closed-loop structures, and
flow/pressure coupling. In this paper, a high-precision motion control method based
on VDC is proposed for hydraulic manipulators. The method decomposed the coupled
structure into independent and complete subsystems based on the dynamic models of the
hydraulic system and the manipulator. The virtual cutting method proposed in this paper
could decouple the manipulator with fewer modules compared with the traditional VDC.
Avoiding an excessive virtual decomposition of the hydraulic manipulator and requiring
fewer model parameters. An adaptive algorithm was used to identify and update the
inertial parameters of the manipulator in real time and reduce the influence of the inertial
parameters. Finally, a simulation model was established for a 13 m three-degree-of-freedom
hydraulic manipulator. Simulations were used to test the efficacy of the control method in
various situations. The results showed that the maximum position errors of the proposed
control method were reduced by 90.4%, 86.8%, 23.6%, and 44.3% compared with the
errors of the PID and MBC methods. The maximum position errors when using VDC
in the simulation with external disturbances was reduced by 76.5% compared with that
obtained with MBC. The amplitude and the stability time were reduced by more than 97%.
Therefore, higher motion control precision can be achieved in hydraulic manipulators with
the proposed method.
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Abbreviations

Name Description and Unit
VDC Virtual decomposition control
VCP Virtual cutting point
VPF Virtual power flow
MBC Model-based control
CC Closed chain
OC Open chain
v Linear velocity in the original frame
w Angular velocity in the original frame
qi Joint angle (rad)
xi Displacement of the cylinders (mm)
.
qi Joint angle velocity (rad/s)
.
xi Velocity of the hydraulic cylinder (mm/s)
.
qir Required angular velocity (rad/s)
.
qid Desired angular velocity (rad/s)
sa Hydraulic cylinder area with the rod (cm2)
sb Hydraulic cylinder area without the rod (cm2)
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c Displacement of the piston rod (mm)
ps System pressure (Mpa)
pa Hydraulic cylinder pressure with the rod (Mpa)
Pb Hydraulic cylinder pressure without the rod (Mpa)
E Bulk modulus (pa)
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