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Abstract: Point machines are the actuators for railway switching and crossing systems that guide
trains from one track to another. Hence, the safe and reliable behavior of point machines are pivotal
for rail transportation. Recently, scholars and researchers have attempted to deploy various kinds
of sensors on point machines for anomaly detection and/or incipient fault detection using date-
driven algorithms. However, challenges arise when deploying condition monitoring and fault
detection to trackside point machines in practical applications. This article begins by reviewing
studies on fault and anomaly detection in point machines, encompassing employed methods and
evaluation metrics. It subsequently conducts an in-depth analysis of point machines and outlines
the envisioned intelligent fault detection system. Finally, it presents eight challenges and promising
research directions along with a blueprint for intelligent point machine fault detection.
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1. Introduction

Many countries and regions favor railway transportation because of its advantages
of large volume, fast speed, low price, punctuality, low energy consumption, and small
occupation of land [1]. Although there are many kinds of rail transportation systems,
covering high-speed rail networks, urban rail transit systems, mag-lev (magnetic levitation)
lines, heavy haul railways, and existing railroads, all of them require turnouts to connect
multiple lines. More precisely, point machines (known as railway switch machines) are
designed to push and pull the switch rails to allow a train on one track to cross over
to another.

Clearly, the safe and reliable operation of point machines contributes enormously to
the safety and efficiency of rail transportation. Unfortunately, point machines naturally
undergo a degradation process as operational wear takes hold. Mechanical transmission
components and electrical units in point machines inevitably fail. Furthermore, point
machines work alongside railway lines, where the environment is ordinarily harsh. Diverse
faults, including common, intermittent, or even unexpected ones, can occasionally occur,
and may cause incidents or even accidents. Poor maintenance and missed faults tend to
cause system delays or even heavy casualties, e.g., the Potters Bar accident in 2002, which
resulted in seven deaths and 76 injuries) [2]. Consequently, railway operators have to
confront complicated fault detection during regular inspections. Maintenance and repair
staff are required to detect faults over time with a missed detection rate of zero. Hence,
scholars and engineers have put forth considerable effort to capture the relevant behavioral
characteristics by means of different sensors installed on point machines for fault detection,
thereby forming a matter of rising concern as well as a research focus.
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Scholars engaged in railway signaling have been taking up the related research direc-
tions for more than twenty years, and a number of review articles concerning condition
monitoring and fault detection have been published. For example, Márquez et al. [3]
summarized the different kinds of sensors and fault detection methods used in three typi-
cal types of point machines for the actuators of turnout systems, i.e., electro-mechanical,
electro-hydraulic, and electro-pneumatic point machines, up to 2009. Hamadache et al. [2]
described the fundamentals of point machines and presented a review of existing tech-
niques according to model-based and data-driven methods up to 2019. In addition, they
discussed potential opportunities for future studies.

As studies have become more abundant, a comprehensive review of condition moni-
toring and fault detection of point machines is highly desirable. Consequently, we have
decided to complete this review. The key contributions of the present review article are
as follows:

1. We provide a review of fault detection in point machines for research and development
personnel, scholars, and engineers, covering the latest data-driven algorithms with
comments as well as evaluation metrics.

2. We conduct a comprehensive analysis of point machines, including their requirements,
inherent features, and external influences.

3. We describe the anticipated requirements for an intelligent point machine fault detec-
tion system.

4. We propose eight urgent issues and possible solutions for future point machine fault
detection research which can be of genuine use to infrastructure maintainers and
owners, and present a blueprint for intelligent point machine fault detection.

In brief, we try to answer the following questions in this review:

1. Which types of data-driven algorithms are employed for point machine fault detection,
what are their pros and cons, and what are their specific application scenarios?

2. What metrics are appropriate for evaluating the task of fault detection in point machines?
3. What are the requirements for an intelligent point machine condition monitoring and

fault detection system?
4. What future directions can be identified for the advancement of intelligent point

machine fault detection?

The rest of this paper is organized as follows. Section 2 introduces the fundamentals
of turnouts and point machines. Section 3 summarizes common faults associated with
point machines, describes the current condition monitoring parameters, and discusses data-
driven algorithms and evaluation metrics for point machine fault detection. In Section 4,
we conduct a comprehensive analysis of point machines in terms of their requirements,
inherent features, and external influences, then discuss the anticipated requirements for
an intelligent point machine fault detection system. Combining the previously described
current research progress and system requirements, Section 5 highlights urgent challenges
and future directions along with with potential solutions. Section 6 outlines a blueprint for
intelligent point machine fault detection. Finally, Section 7 concludes the paper.

2. Fundamentals of Turnouts and Point Machines

Turnouts (sometimes known as switches and crossings [4]) connect different tracks
into a multi-line network, allowing a train to switch from one line to another. A simple
turnout structure diagram is shown in Figure 1. It comprises two switch rails, two stock
rails, one point frog, two wing rails, and two guard rails. A point machine pushes or pulls
the moving parts in its closed position, which is simultaneously locked adjacent to its stock
rail, while the other switch rail is locked in the open position to allow the wheel to pass over
the rail on the open side [2]. Train wheels move along the rails guided only by the small
area of the wheel that sits on the rail head. The wheel rim or flange does not usually touch
the rail; the flanges are only a last resort to prevent the wheels from becoming derailed
(wheel–rail interaction, shown in Figure 2). Thus, trains can run in different directions,
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either to the normal position (called “normal” movement or the normal route) or to the
opposite “reverse” lie (termed “reverse” movement or the reverse route) via wheel–rail
interaction [5,6]. Additionally, wing rails and guard rails ensure safe passage for rolling
stock, and the stretcher bars connecting two switch rails are used to maintain the distance
between the blades for free wheel passage.

Various types of point machines have been developed and invented, most of which are
grouped into three categories (electro-mechanical, electro-hydraulic, and electro-pneumatic).
Figure 3 shows a general structural diagram of a point machine installed on a simple
turnout, and exhibits several examples from manufacturers around the world. These exam-
ples vary in terms of their transmission mechanism components and specific principles;
nevertheless, on the whole, a point machine works as shown below.
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Figure 1. The schematic diagram for a simple turnout layout.
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Figure 2. The schematic diagram for wheel–rail interaction.
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Figure 3. Above, the general point machine structure installed on a simple turnout; below, examples
of different types of point machines.

The motive power (i.e., electrical and mechanical energy) is transmitted to the longi-
tudinal motion of the operating bar via the transmission mechanisms (e.g., the gearbox,
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hydraulic cylinder, and pneumatic cylinder), thereby moving the switch rails or even
movable point frogs and movable wing frogs (point frogs and wing frogs may be movable
in certain situations involving high speed requirements). The detection rods linked to
the switch rails via detection slides indicate whether the switch rails have reached the
end position. The switch circuit controller monitors the position of rail switch points and
provides corresponding electrical signals. The contacts of the switch circuit controller
indicate positional information, including whether the switch rail is in the closed position
and whether the moving parts are being moved.

Although a wide portfolio of point machines is offered by many railway signaling
suppliers for compatibility with high-speed lines, conventional lines, heavy haul lines, mass
transit railways, light-rail, rapid transit lines, suburban (metro/suburban), and tramway
ballasted lines, the general technical characteristics of point machines are summarized in
Table 1.

Table 1. Technical characteristics of point machines.

Designation Description

Power supply DC and AC electric motor, hand (rarely), etc.

Transmission mechanism Mechanical, hydraulic, and pneumatic drives.

Throwing/reversing force A broad range, typically up to 9 kN.

Retaining force A wide variety.

Throwing time Slow action: over 6 s; medium: 3 s to 6 s; fast action: not more
than 0.8 s.

Stroke Approximately ranging from 30 mm to 300 mm.

Product lifetime Normally over one million throwing movements.

Locking system External lock, internal lock.

Installation configuration Track center and beside the tracks (right-hand or left-hand
layouts); stock rail fixation and sleeper fixation (in-tie or on-tie).

Trailability Trailable and non-trailable.

Environmental conditions Operating temperature: −40 °C to +80 °C; humidity: up to 95%.

Degree of protection Resistance to sand, dust, dirt, snow, meltwater, humidity, and
flood water.

Weight & profile Diversity.

Electrical interface Various interlocking systems, e.g., single-drive (four wires, five
wires) and multi-drive technology.

Turnout interface No limitation on the types of turnouts.

Table 1 shows a number of technical characteristics of point machines, which need to
meet the requirements of different turnout specifications, line standards, and locations. It is
important to note that components such as the motor, retarder, throw slide, and detection
slide need to be configured with specific parameters in order to meet the switching require-
ments and reliability demands of different turnouts. More accurately, the throwing force is
affected by the turnout weight and the number of drives, the stroke of the switching point
determines the length of the throw slide and detection slide, the selection of protection per-
formance depends on the working environment, and the reliability requirements influence
on the locking mode. Moreover, high-speed lines requiring more than one machine per
turnout (“multiple drive” solutions) are common.
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3. Condition Monitoring and Fault Detection
3.1. Common Failure Modes

The common failure modes along with their effects, and safety impacts are summarized
in Table 2. Specifically, the table lists various parts, including the actuator, drive mechanism,
switch circuit controller, throw slide, detection or locking slide, and housing. Each part
is associated with potential failure modes such as short circuits, aging, wear and tear,
mechanical fracture, deformation, and jams. The table describes the effects of these failure
modes on the railway system, including reduced operational efficiency, inability to move
the turnout, and potential train derailment. Safety impacts are evaluated for each failure
mode, with ratings such as “No” (indicating no significant safety impact), “Possible”
(suggesting a potential safety impact that needs monitoring), “Hardly” (implying minimal
safety impact), and “Yes” (indicating a significant safety impact).

Table 2. Common failure modes of point machines and their effects.

No. Part Failure Mode Effect Safety
Impact

1 Actuator

Short circuit or open circuit Unable to move the turnout No

Aging Reducing operational
efficiency No

2 Drive
mechanism

Wear and tear, slight deformation
& jam (increased resistance)

Reducing operational
efficiency No

Mechanical fracture, significant
deformation & complete jam Unable to move the turnout No

3
Switch
circuit
controller

Wear and tear, slight deformation
& jam (increased resistance)

Reducing operational
efficiency No

Mechanical fracture, significant
deformation & complete jam

Unable to move the
turnout/train derailment Possible

Short circuit or open circuit Unable to move the turnout Hardly

4 Throw
slide

Wear and tear, slight deformation
& jam (increased resistance)

Reducing operational
efficiency No

Mechanical fracture, significant
deformation & complete jam

Unable to move the
turnout/train derailment Possible

5
Detection
or locking
slide

Wear and tear, slight deformation
& jam (increased resistance)

Reducing operational
efficiency No

Mechanical fracture, significant
deformation & complete jam Train derailment Yes

6 Housing housing damage
Reducing operational
efficiency/unable to
move/train derailment

Low

It is crucial to detect all types of faults, as fault detection is instrumental in improving
the level of intelligence of railway operations and optimizing their efficiency. However, in
practical railway operations, different railway companies may adopt varying maintenance
strategies based on their financial resources, tolerance for fault-related risks, and the
potential risks associated with specific faults. For instance, on busy urban transit lines,
faults that impact operational efficiency may require immediate attention, while those with
minimal operational impact may be addressed based on established maintenance schedules.
On less busy rail lines, even faults with operational impact may not necessarily require
immediate action, and can be managed based on the prevailing circumstances.
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3.2. Monitored Parameters

Parameters monitoring is a foremost requisite for fault detection in point machines.
Over the years, railway signaling scholars and engineers have identified a set of signals
to inspect their condition [7]. Table 3 summarizes the vast majority of these monitored
devices and parameters. The highest-priority variables are the electric motor, the gap, and
the parameters relating to the whole machine. Other monitoring devices can be added
depending on extra needs. Oil pressure and level and pneumatic pressure need to be
measured on electro-hydraulic and electro-pneumatic point machines.

Table 3. Currently popular parameters for condition monitoring of point machines and their compo-
nents.

Monitored Devices Monitored Parameters Type of Point Machines

Motor Current, voltage, power, speed,
torque

All motor-driven point
machines

Gap size All

Throw rod Throwing force, displacement,
position, speed All

Indication/detection rod Displacement, position, speed All

Locking rod Gap size, locking depth, locking
force

point machines equipped
with internal locking devices

External locking devices Gap size, locking force point machines armed with
external locking devices

The whole machine

Switching resistance, sound,
vibration, temperature humidity,
throwing time, change of movement
direction

All

Switch circuit controller

Contact depth, rotation angle,
contact pressure, contact resistance,
opening thickness of stationary
contact, thickness of movable
contact ring, angular
displacement/real-time angle/
angular velocity of movable contact

Most of point machines
made and used in China
(ZD6, ZD(J)9, ZYJ7, ZK4)

Hydraulic device Oil pressure, oil level, electro valve Hydraulic transmission type
point machines

Pneumatic device Pneumatic pressure, electro valve Pneumatic transmission type
point machines

1. Motor-related parameters. Studies have revealed that the switching resistance best
reflects the condition of the point machine [2,3,8]. However, real-time and reliable
switching resistance measurement is not easy to achieve; motor-related parameters
are an alternative, as the energy provided by the motor overcomes the resistance
between movable parts and the track bed during the switching process. In other
words, whether the motor operating parameters are normal or not when there are no
faults with the motor is consistent with whether the switching resistance is normal
or not. Therefore, the motor current, voltage, and power are extensively monitored
in actual condition monitoring. In contrast, the motor output speed and torque
are rarely employed in actual railway operation due to the difficulties involved in
sensor installation.

2. Gap-related parameters. The gap between the lock/detection slide notch and the
edge of the lock/detection hammer notch in a point machine is considered an indirect
measurement of the gap between a switch point and its adjacent stock rail in the closed
position, which is a crucial safety parameter for monitoring the condition of a turnout.
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Too large a gap may cause disastrous consequences, such as train derailment, human
injury, and severe damage to both infrastructure and the environment [9,10]. Because
the sensor is installed beside the rails at a point where the train wheel sets often pass
through, the direct measurement method results in low reliability. At present, alarms
based on a threshold gap are widely used in the railway field [11].

3. Whole-machine-related parameters. Recently, sound and vibration signals during
point machine operation have gained attention for fault detection [12,13]. While the
throwing time and in-machine temperature have been monitored traditionally, they
are less commonly considered for fault detection.

4. Other parameters. Fault detection based on other parameters is largely absent, as it is
not easy to deploy real-time online monitoring sensors, particularly the switch circuit
controller. Nonetheless, these parameters can be beneficial for on-site operations
and maintenance.

3.3. Fault Detection in Point Machines

Fault detection is synonymous with anomaly or outlier detection in data science. It
serves as the initial step in determining the occurrence of a fault, leading to further fault
diagnosis and analysis. Broadly, fault detection for point machines involves identifying
abnormal behaviors, including functional failures and parameter deviations. Unlike fault
diagnosis, which aims to identify specific fault modes, fault detection focuses on detect-
ing unpredictable or uncertain events and distinguishing between normal and abnormal
conditions. Fault detection is crucial in compensating for the limitations of fault diagnosis,
particularly in data-driven methods during the training phase. This is because new and
unexpected events can occur as operating and environmental conditions change. In railway
scenarios, normal data are predominant, while abnormal data are scarce and diverse. Early
attempts to monitor point machine conditions using simple threshold techniques were
limited by false alarms and missed failures [3].

Therefore, fault detection plays a pivotal role in the intelligent operation and main-
tenance of point machines, especially considering the scarcity of model-based fault de-
tection studies [14,15] in this field. Thus, in this section we primarily review the data-
driven methodologies.

3.3.1. Statistical Analysis-Based Methods

Fault detection methods based on statistical analysis for point machines involve
creating Probability Density Functions (PDFs) for normal samples or their characteristics. By
applying a defined confidence interval, it identifies samples falling outside this population
as anomalies using the established PDF. These methods can be categorized into parametric
and nonparametric approaches.

Parametric approaches typically select a distribution model or create a statistical
variable based on experience. They then estimate unknown parameters of the PDF or the
statistic variable using randomly selected samples from the population [16]. For example,
Adachi et al. [17] employed a t-test and normal distribution for point machine fault detection
based on the power parameter. However, this method depends on distribution assumptions,
limiting its generalization.

Nonparametric methods, on the other hand, conduct statistical tests and judgment
analysis directly based on known category samples without assuming a specific distribution
or parameters. This allows the data to determine the shape of unknown functions [18].
For instance, Finket et al. [19] used Multivariate Kernel Density Estimation (MKDE) to
assess the PDF of resistance characteristics. While this approach is suitable for cases with
no information about the data distribution, it can be complex to optimize hyperparameters
and kernel functions, potentially impacting detection performance. Nonparametric tests
may require larger sample sizes for similar confidence levels compared to parametric tests.
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Overall, statistical analysis-based methods offer a strong theoretical foundation and
simplicity, although they may have limited generalization performance, as thresholds may
require adjustment in different operational environments.

3.3.2. Proximity-Based Methods

Proximity, often referred to as similarity, measures the closeness between a test sample
x = (x1, . . . , xi, . . . , xn)T and several examples of the normal conditionT. Figure 4 illustrates
how proximity-based approaches to point machine fault detection function. By computing
the proximity St between x and Tt (t = 1, . . . , N), with N being the number of normal
templates, the sample x is classified as normal if the lowest St (represented by St∗ ) surpasses
a predefined threshold.

 Test Data

Data Base 

Proximity

Metrics
exceeds the 

threshold

x is anomalous condition

Y

N

x is 

normal 

condition
x

tS * min( )tt
S S=

1={ }N

t t=T

Figure 4. Process of proximity-based methods of point machine fault detection.

For parameters with unequal lengths, such as throwing force, current curves, and
power profiles, Dynamic Time Warping (DTW) [20] and its variants [21,22] are the go-to
metrics for aligning time series data. Additionally, distribution similarity methods are
gaining popularity, including the Mahalanobis distance, mutual information, cross-entropy,
Kullback–Leibler divergence, Hellinger distance, and earth mover’s distance (Wasserstein
distance), as they can model monitored signals as PDFs.

García et al. [23] and Pedregalet et al. [24] used harmonic regression to predict the
next movement current curve of an M63 type point machine, then compared it with the
actual sensor data to identify anomalies. Mistry et al. [25] applied the fast Fourier transform
to extract frequency domain features from current signals and detect anomalies based
on linear correlations. Li et al. [26] introduced a density-based approach using the Local
Outlier Factor (LOF) to quantify abnormality degrees, while the iForest technique [27]
considers anomalies as sparse points far from dense clusters. Guzman et al. [27] created a
temperature-based anomaly detection binary tree forest, identifying points with shorter
path lengths as outliers, which is suitable for small datasets. Li et al. [26] explored angle-
based outlier detection, which is suitable for high-latitude data.

In summary, proximity-based methods in point machine fault detection do not necessi-
tate a plethora of fault samples or complex feature extraction from raw data. However, they
require manual threshold adjustments and can be computationally intensive as data dimen-
sionality increases. Furthermore, their accuracy and robustness are somewhat limited due
to their reliance on predefined thresholds.

3.3.3. Supervised Learning-Based Methods

Supervised learning approaches for point machine fault detection involve training a
detector or classifier based on available data and using it for inference. These methodologies
can be categorized into One-Class Classification (OCC) and Binary Classification (BC).

OCC addresses scenarios where negative class (abnormality) data are absent, poorly
sampled, or poorly defined [28]. OCC algorithms aim to classify positive cases without
well-characterized negative cases [29]. Common models include Support Vector Data
Description (SVDD) and One-Class Support Vector Machine (OCSVM). For instance, SVDD
creates a hyper-sphere around normal samples in pattern space to distinguish normal
and abnormal observations [30,31]. SVDD-based fault detection for point machines has
a good effect on the unbalanced data set of normality and abnormality; however, the
hyperparameters and the nonlinear mapping function must be determined manually.
OCSVM seeks a hyperplane farthest from the origin (or points close to the origin) in the
feature space, treating the origin (or points close to the origin) as abnormal [32]. These
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studies have proven that OCC methods are superior to alarm threshold-based techniques,
particularly on unbalanced datasets.

BC involves training a classifier to predict the class label (fault or fault-free) based
on the provided dataset. Support Vector Machine (SVM) [33–36], Gaussian Naive Bayes
(GNB) [37], and Convolutional Neural Networks (CNNs) [37,38] are among the models
used for BC-based fault detection in point machines. SVMs create hyperplanes to separate
data classes, while GNB and CNNs leverage various features such as current curves and
audio signals to classify normal and abnormal conditions.

While BC models can perform fault detection in point machines, they often under-
perform compared to OCC approaches due to the heterogeneity of fault patterns and
imbalanced data sets. Effective BC models require ample fault data for training, which can
be time-consuming to acquire. Additionally, these models may lack interpretability.

3.3.4. Unsupervised Learning-Based Methods

Railway operators have collected vast amounts of data from point machines over the
years. While supervised learning has been useful, it has limitations when dealing with
large amounts of unlabeled data. Unsupervised learning methods such as Generative
Adversarial Networks (GANs) and Autoencoders (AEs) have emerged as powerful tools
for anomaly detection [39,40] in such scenarios.

GAN-based approaches create two models, a generator and a discriminator; the
generator produces realistic normal examples, while the discriminator distinguishes real
from fake data. These models achieve equilibrium through a competitive training process,
with the generator creating plausible examples and the discriminator verifying whether or
not a sample is normal. For example, Xue and Gao [41] used a 1D-CNN GAN model to
detect point machine faults even with limited abnormal data.

An AE is a neural network that learns efficient representations of data. It consists
of an encoder and a decoder along with a bottleneck layer that compresses data. AEs
minimize the reconstruction error between the input and output, thereby serving as an
anomaly score. In point machine fault detection, AEs are typically trained solely on
normal observations; they excel at reconstructing normal data, while they struggle with
anomalies. Fault detection hinges on measurement of the reconstruction error, which acts
as an indicator for spotting anomalies or failures [42]. For instance, Guo et al. [43] proposed
an AE-based scheme for point machine fault detection, achieving better performance than
other methods. Subsequently, Guo et al. [44] introduced a Deep AE (DAE) algorithm that
combines normal and faulty data to improve detection. Zhuang et al. [45] used Deep
Denoising AE (DDAE) for feature extraction and DBSCAN for clustering. This approach
achieved an accuracy of 98.67% with 0% missed alarms and a low false detection rate
(1.33%) on a dataset with 300 test samples.

Guo et al. [46] proposed a multi-stage anomaly detection approach to address the
three challenges of large amounts of labeled data, multiple unknown modes of normal
current curves due to the individual difference, and the small number of samples available
for certain modes. Their approach involved clustering, threshold estimation, and transfer
learning, and demonstrated superior fault detection accuracy. An experiment conducted
on a test set containing 350 normal three-phase curves and 150 faulty three-phase curves
indicated a 0% missed detection rate and false alarm only rate of 2.37% on the part of the
proposed model.

In addition to GANs and AEs, other methods have been explored for fault detection,
including Growing Neural Gas (GNG) and combinations of AE, Self-Organizing Maps
(SOMs), and K-means clustering [19,47].

In brief, these unsupervised learning methods are particularly suitable for scenarios
where abnormal data are scarce, making them valuable tools in the railway industry.
However, their performance may not match supervised learning methods with ample
anomalous observations.
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3.3.5. Semi-Supervised Learning-Based Methods

In the context of point machine fault detection, both supervised and unsupervised
learning methods have limitations. Supervised learning relies on labeled data, which
can be expensive and time-consuming to acquire. Unsupervised learning methods might
not perform optimally in certain situations. Semi-supervised learning [48] is a solution
that combines the strengths of both approaches by utilizing both labeled and unlabeled
data. Semi-supervised learning allows all available data to be leveraged, including cases
with abundant unlabeled samples and a small amount of labeled data, without the need
for extensive manual annotation or sacrificing accuracy. The key idea is to treat samples
differently based on whether or not they have labels. Labeled data are used for traditional
supervised learning and to update the model weights. Unlabeled data, on the other hand,
help to minimize prediction differences between similar training examples.

For example, Ham and Han [49] applied a semi-supervised SVM to enhance point
machine fault detection. Their S3VM model leverages both both labeled and unlabeled
samples, resulting in higher accuracy. Shi et al. [50] introduced Positive and Unlabeled
(PU) learning, a subfield of semi-supervised learning, to improve point machine fault
detection based on current signals. They developed a novel biased SVM detector that
uses the Chebyshev distance to minimize the farthest distance between the samples and
the hyperplane.

Semi-supervised learning methods blend labeled and unlabeled data to enhance
fault detection performance. However, their effectiveness relies on certain assumptions
about the data distribution, and they may not perform well if the labeled samples do not
adequately represent the entire distribution. Additionally, they lack reliable ways to choose
the hyperparameters.

3.3.6. Evaluation Metrics

Evaluation metrics are designed to assess the performance of a fault detection model
on the test set, and include the Accuracy (Acc), Precision (P), Recall (R)/True Positive Rate
(TPR), Fβ − score, False Alarm Rate (FAR)/False Positive Rate (FPR), Missed Detection
Rate (MDR)/False Negative Rate (FNR), Precision–Recall (PR) curve, Receiver Operating
Characteristic (ROC) curve, and Area Under the ROC Curve (AUC) [51,52].

(a) The Acc is generally not the most efficient metric for point machine fault detection
due to the presence imbalanced data where normal instances greatly outnumber faulty
instances. High Acc can be achieved by simply predicting the majority class (normal
instances) without effectively detecting faults.

(b) P is quite important for point machine fault detection. It ensures that when the
model predicts a fault, it is more likely to be correct. In the context of railway operation
and maintenance, high P helps to reduce unnecessary interventions and maintenance.

(c) R is crucial for point machine fault detection. It indicates the ability of the model to
capture actual faults among all the true faulty instances. In railway systems, high R means
that the model is effective at identifying faults, thereby minimizing the risk of missing
genuine problems that could impact railway safety. The R value should ideally verge on or
even reach 100%.

(d) The Fβ metric balances P and R, making it particularly useful when the class
distribution is imbalanced. In point machine fault detection, maintaining a balance between
correctly identifying faults and minimizing false alarms is essential; Fβ helps to achieve
this balance. β (β > 0) measures the relative importance of R to P. When β = 1, then Fβ

degenerates into the harmonic mean F1. If β > 1, then R has a larger influence. If β < 1,
then P dominates. In the field of point machine fault detection, it is typical to pay more
attention to R.

(e) FAR reflects the rate of false alarms among all predictions. It is important to keep
FAR low in order to avoid unnecessary maintenance actions and ensure efficient railway
operations. In point machine fault detection, the value of FAR should ideally be kept very
low and controlled within an acceptable range.
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(f) MDR represents the rate of missed detections. Reducing MDR helps to ensure
that real faults are not overlooked, thereby minimizing safety risks. In point machine fault
detection, MDR should be low within an acceptable value or even reach zero; to achieve
the latter case, the model has to detect all the abnormal conditions, particularly those fault
modes with harmful repercussions.

(g) The PR and ROC curves both provide insight into the performance of a model
across different operating points. They can help to find the optimal balance between
between P and R. In point machine fault detection, if a detector’s PR curve wholly covers
another PR curve, then the enclosed one is inferior. If two PR curves intersect, the Fβ index
could be an alternative. It should be noted that the PR curve is more likely to fit balanced
observations between each class and that ROC curves are sensitive to balanced datasets.

(h) The AUC reflects the model’s ability to distinguish between faulty and non-faulty
instances. In point machine fault detection, a higher AUC indicates better overall perfor-
mance in identifying true faults while maintaining a low false alarm rate.

In point machine fault detection, Fβ, FAR, MDR, PR curves, ROC curves, and AUC
are efficient metrics to focus on. Overall, the relationships among these metrics helps in
making informed decisions to ensure the safety and efficiency of point machines. It should
be noted that these evaluation metrics indicate the performance on the test set, meaning that
they cannot be used to verify the performance of models in actual industrial applications
unless the distribution of the test samples is consistent with that of observations from the
real application scenario.

4. Analysis of Point Machines and Monitoring Systems

While there is a considerable body of research on point machine fault detection, the
majority of previous studies focused solely on implementing data-driven models on col-
lected data and have often neglected to consider the requirements of condition monitoring
and fault detection system of point machines, particularly data-driven algorithms.

In order to describe the requirements for a point machine fault detection system, we
start with the requirements, inherent features, and external impacts of point machines.

4.1. Requirements for Point Machines

1. High safety and reliability . Because point machines drive the turnout, which is the
crucial section of railway track, they involves the operational safety of trains. Any hard-
ware device or software installed in point machines should be reliable and trustworthy,
including the sensors, supporting signal processing, and monitoring procedures.

2. Long service life. Point machines are designed and manufactured with a focus on a
lengthy service life, as replacing the entire machine that works along the trackside
requires time and money. Therefore, providers can guarantee high quality, with
suppliers typically claiming more than one million throwing movements before
machine overhaul.

4.2. Inherent Features for Point Machines

1. Electro-mechanical. A point machine is a typical mechanical or electro-mechanical
device; it is often driven by an AC or DC motor, and outputs the displacement of the
throw slide with the aid of mechanical drive mechanisms. In addition, its structure is
non-redundant, that is to say, each component is indispensable to realization of the
point machine’s required functions.

2. Limited space. The majority of point machines are tailored products. Limited space
is a basic attribute, as they need to be convenient for transportation and maintenance.
This advantage, however, means that there is limited remaining space inside the point
machine, making it challenging to fix and to a certain extent relying on sensing units
to determine maintenance needs.

3. Complexity. The electro-mechanical components make a point machine’s structure
complex, comprising many mechanical, electrical and even hydraulic or pneumatic
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items that can potentially cause diverse fault modes. The include single faults, com-
pound faults, intermittent faults, and NFF (no fault found) failures. Furthermore, the
constituent parts can vary quite considerably in terms of their failure probability, and
these failure probabilities are normally very low. As a result, gathering all possible
fault data is extremely difficult.

4. Variety. Point machines come in three main types: electro-mechanical, electro-
hydraulic, and electro-pneumatic [53,54]. Each type has unique parameters. For
example, electro-mechanical point machines focus on throwing force and motor
power, while electro-hydraulic ones mainly consider the hydraulic system pressure.
Second, these three types have different failure mode distributions. Electro-mechanical
point machines commonly experience wear and transmission component fractures,
electro-hydraulic ones are prone to oil leakage, and electro-pneumatic ones often face
pneumatic subsystem-related issues.
Furthermore, various subtypes exist within each type to meet specific turnout re-
quirements. These subtypes can vary in their motor type, output force, length and
displacement distance of the throw slide detection slide, locking mode, etc. For in-
stance, the China Railway Signal and Communication Corporation produces over
forty specific subtypes of the ZDJ9 electro-mechanical point machine; among these,
the throwing force range is between 2.5 kN and 4.5 kN, the displacement distance of
the throw slide ranges from 80 mm to 220 mm, and the same figure for the detection
slide varies from 75 mm to 170 mm. It should be noted that these slight discrepancies
need to be taken very seriously.

5. Individual differences. Even within a subclass, there may be non-negligible differ-
ences in point machines due to production errors. More significantly, differences may
result from external factors such as action frequency, ambient temperature and humid-
ity, electromagnetic interference, and train impacts with varying speeds. As a result,
the switching resistance between individual machines can very. This variation in the
duration of point machine movements exists within a specific range. It is important to
recognize that every individual point machine has its own unique behavior due to
slight individual differences and diverse external impacts.

4.3. External Impacts for Point Machines

1. Rolling stock and operational planning. The complete structure and compliant
dimensional parameters of the turnout determine the safe and reliable passage of
trains. Deviation of the geometry or component damage of a turnout may make the
point machine unable to work normally, e.g., rail creeping, alignment of switch rails,
and rail wear. Train passage through turnouts can generate significant impact loads,
especially during wheel–rail transitions in the switch and crossing zones, resulting
in high vertical and horizontal loads [55]. In [56], a numerical investigation reported
maximum lateral displacements of up to 5 mm and variations of up to 8 mm in
high-speed rail. Table 4 shows the vertical displacement of CRH2 EMU after passing
through the turnout at a speed of 250 km/h. In fact, the extent of displacement
depends on the condition of the point machine, track, and traffic characteristics such
as the speed, axle load, and train formation. Operation plans, including train passing
frequencies, influence geometric parameters and turnout frame integrity. Train-related
events, encompassing rolling stock and operation plans, provide essential insights
into the mechanical system’s stability.

2. Service environment. Point machines operate in diverse service environments influ-
enced by geographical factors such as location, latitude, longitude, and ocean currents.
These environments can range from extreme heat during the day to sharp temperature
drops at night. For instance, Chinese railway regulations require point machines to
function in temperatures ranging from −40 °C to +70 °C. A prime example are the
CTS2 point machines installed on the Qinghai–Tibet Railway, which operate in cold
high-altitude areas.
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In certain cases, railways traverse challenging environments, such as the Saudi Ara-
bian Railway across desert terrain known for its harsh climate and abrasive sand
and wind. Polar regions with heavy snowfall pose challenges for point machines
as well. Despite implementing protective measures, extreme climates can accelerate
performance degradation. Additionally, point machine adjustments made at night
may become inaccurate during the day due to changing conditions.

Table 4. Vertical displacement after CRH2 EMU passing through the turnout at a speed of 250 km/h [57].

China Technical Turnout
in Wuhan-Guangzhou

Test Section

German Technical Turnout
in Wuhan-Guangzhou

Test Section

French Technical Turnout
in Hefei-Nanjing Railway

Sleeper
No.

Vertical
Displacement

Sleeper
No.

Vertical
Displacement

Sleeper
No.

Vertical
Displacement

10 0.62 mm −3 0.84 mm −3 0.33 mm
28 0.76 mm 10 0.46 mm 13 0.37 mm
37 0.65 mm 27 0.99 mm 27 0.1 mm
47 0.44 mm 44 0.96 mm 50 0.56 mm

4.4. Requirements for Point Machines Condition Monitoring & Fault Detection System

Considering the Requirements (Req.), Inherent Features (IF), and External Impacts (EI)
of point machines and the characteristics of data-driven algorithms, we have identified
eight requirements for point machine fault detection algorithms. These requirements are
essential for the development of an intelligent point machine fault detection system as
outlined in Table 5.

1. Req. 1: Trustworthiness. Any software and hardware equipped with point machines
should be trustworthy. Data-driven models, while achieving impressive results, pose
difficulties in terms of understanding their internal mechanisms, as most data-driven
models function as “black box” models. However, commercialization necessitates
clear explanations about how the models learn, what knowledge they acquire, their
decision-making rationale, and the level of trustworthiness they offer. Hence, it
is highly recommended that point machine fault detection systems be built on a
trustworthy foundation, including both software and hardware. The most important
thing is to ensure the interpretability of AI models and the trustworthiness of their
outcomes.

2. Req. 2: Handling multi-source data. Because a single modality provides incomplete
insights into the overall condition of point machines [7], even though the force and
the current and power signals can best reflect the point machine’s states [2,3], it is
highly suggested that point machine fault detection systems effectively integrate data
from various sensors in order to comprehensively monitor the state of point machines
in terms of Req. 1 and IF 1 of point machines. In addition, certain special scenarios
such as sensor failure and parameter offset need to be considered.

3. Req. 3: Designing and deploying sensors. Due to the Req. 1, IF 2, and EI 2, re-
liable, high-accuracy, compact, and interference-free sensors should be favored in
point machines, particularly non-intrusive and “plug and play” (easily and quickly
interchangeable) types. Thus, it is highly recommended to design suitable sensors
and to use a reasonable layout.

4. Req. 4: Handling imbalanced data. In light of IFs 3 and 4, practical point machine
fault detection problems face extremely imbalanced datasets (i.e., with over 99%
normal samples and less than 1% abnormal). Furthermore, abnormal data contain a
variety of fault types. Because imbalanced datasets are detrimental to model training
for data-driven methods [58,59], leading to bad performance on fault detection, this is
an urgent and critical requirement.
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5. Req. 5: Handling unseen and complex fault modes. Rethinking IFs 3 and 4 of point
machines, there are theoretically a number of different fault types for point machines.
It is almost impossible to gather all the fault data, as not all faults occur during
real operations, especially for new railway lines without historical data. Despite this,
unrecorded or unseen faults can affect the determination of the classification boundary
between normal and abnormal data. As a result, it is suggested that the system be
able to handle both unseen and complex fault modes, even though this is a difficult
task.

6. Req. 6: Handling part-level fault modes. Considering IF 4 of point machines in
combination with the literature survey, electro-pneumatic point machines, which
are commonly used in turnout areas and marshaling yards, have received limited
attention from researchers. Moreover, scholars have overlooked fault detection for
specific parts, such as the retarder, throw rod, and switch circuit controller [60]. How-
ever, every part within a point machine is crucial, as all lack redundancy. Previously,
researchers have mistakenly taken the current, power, or other condition monitoring
parameters as an overall performance indicator for point machines. To enhance preci-
sion, there is a need to shift focus towards detecting faults at the part level, such as
hydraulic cylinders [61] and bearings [62] under daily loads.

7. Req. 7: Universality, generalization, and robustness. Based on IFs 4 and 5 and EIs
1 and 2, developing a model with high universality, generalization, and robustness
is recommended. More precisely, a highly universal model can operate on different
types and models of point machines without the need for individual model training
in each case, which reduces the costs of system deployment and maintenance while
allowing the model to be used across a wider railway network. Strong generalization
capabilities imply that the model performs well even when facing new and previously
unseen fault patterns or environmental conditions. In addition, a robust model
maintains stable performance when dealing with noise, interference, sensor failures,
and changes in environmental conditions. This means that the model can reliably
perform fault detection even in complex real-world operating environments, thereby
reducing the FAR and MDR.

8. Req. 8: Maintaining fault detection performance over time. Considering Req. 2,
IFs 4 and 5, and EIs 1 and 2, more and more observations (e.g., unanticipated fault
modes, numerical accumulations) need to be collected throughout the whole life
cycle of a point machine while accounting for the changing service environment and
imposed time-dependent operation plans. Hence, it is of great importance to ensure
that the fault detection model remains effective over time until it can be replaced with
a new one.

Table 5. Requirements for condition monitoring and fault detection systems.

Point Machines Condition Monitoring & Fault Detection System

Req. IF EI Req. Difficulty Suggested
Priority Level

1 Trustworthy Hard High

1 1 Handling multi-source data Easy High

1 2 2 Designing and deploying sensors Moderate High

3, 4 Handling imbalanced data Moderate Critical

3, 4 Handling unseen and complex fault modes Hard Medium

4 Handling part-level fault modes Moderate Medium

4, 5 1, 2 Universality & generalization and robustness Moderate Medium

2 5 1, 2 Maintaining fault detection performance
over time Hard Medium



Actuators 2023, 12, 391 15 of 21

5. Urgent Problems and Challenges

The introduction of sensor and computer technologies has undeniably propelled the
field of point machine fault detection forward. However, it is noteworthy that the majority
of research efforts have primarily fixated on enhancing accuracy by employing increasingly
complex models. To achieve a trustworthy and robust point machine fault detection system
with high generalization and transferability, it is imperative to delve deeper into key
performance metrics such as Fβ, FAR, and MDR, along with the detailed requirements
outlined for intelligent point machine condition monitoring and fault detection systems in
Section 4.4.

In essence, the goal is to develop an intelligent and dependable fault detection algo-
rithm for point machines that possesses the capacity to identify faults across diverse point
machine types throughout their entire life cycle and under various operational conditions.
It is important to acknowledge that significant strides are required before these advance-
ments can find practical applications within the railway industry. To this end, we present a
set of urgent problems and challenges for consideration.

Challenge One: Ensuring Trustworthiness of Point Machine Fault Detection Algo-
rithms. Considering Req. 1, in most cases it is necessary to evaluate the reliability of
data-driven point machine fault detection algorithms, as most data-driven models function
as "black box" models. In certain specific railway signaling control systems, point machine
fault detection algorithms must be independently certified to a SIL2∼4 safety integrity
level by a third-party safety assessment of globally renowned organizations, such as TüV
Rheinland and CRCC, because the status of the point machine requires feedback to the
control system, thereby affecting the release of train routes. Therefore, the issue becomes
more pronounced when transitioning from research into practical applications. Conse-
quently, an exciting and rapidly changing research direction called trustworthy artificial
intelligence [63–65] has sprung up. Keeping abreast of the latest developments [66,67] in
this field is paramount in endeavoring to enhance the trustworthiness of point machine
fault detection algorithms.

Challenge Two: Integrating Diverse Sensor Data for Point Machine Fault Detection.
Regarding Req. 2, an array of sensors including current, force, voltage, power, motor
speed, motor torque, temperature, resistance of contacts, displacement of the operating
rod and indication rod, vibration, strain, audio, tension and 2D/3D measurement sensors
has been contemplated [2,52,68,69]. Obviously, reasonably deploying these transducers
and fusing the mass signals becomes a problem. Moreover, point machine fault detection
research based on multi-source data fusion has not yet provided solutions, especially in
cases of incomplete data (i.e., sensor failures). Hence, there exists a promising path for
researchers to explore multisensor data fusion technology [70,71] for more reliable and
precise fault detection.

Challenge Three: Designing and Deploying Sensors for Point Machine Monitoring.
Considering Req. 3, it is not easy to ensure continuous and online monitoring of specific
parameters (e.g., throwing force, operating resistance, contact resistance and contact wear)
in a narrow space in various environments (NF EN 50125-3). Thus, measurement sensing
and instrumentation scientists need to design and develop customized sensors for safe and
reliable point machine online condition monitoring via new technologies and materials.
The layout of the sensing units presents another challenge. This challenge can be effectively
tackled by utilizing optimization algorithms that consider trade-offs among cost, fault
detection accuracy, and fault detection performance.

Challenge Four: Building Precise Point Machine Fault Detection Models under Im-
balanced Datasets. In light of Req. 4, the issue of data imbalance urgently needs to be
addressed. The following solutions can be considered. (1) Data Expansion: expanding data
is the most effective; however, it is not simple, as fault occurrences are not frequent. It is
recommended that railway operators build a cloud platform for data sharing, with a leader
collecting comprehensive data and providing members with pretrained models [72,73]. In
this way, robust and precise fault detection for point machines be achievable after fine-
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tuning the pretrained models. If the data need to be kept secret, then Federal Learning
(FL) [74,75] is one way to handle the issue. FL allows all the participants (i.e., railway
operators) to jointly train a federal model without sharing data, which represents a good
choice under the data privacy mechanism. (2) Data Augmentation: a possible solution is to
adopt data augmentation techniques [76] such as undersampling, the Synthetic Minority
Over-sampling Technique (SMOTE), GANs, and meta-learning [77] to increase the number
of abnormal datasets or optimize neural networks to conduct neural augmentation [78,79].
(3) Weight Adjustment: reasonably adjusting the weights of rare samples is a prevalent
approach when using traditional deep learning approaches.

Challenge Five: Enhancing Fault Detection Models for Unseen and Complex Fault
Modes. With regard to Req. 5, in order to fulfill this difficult requirement, three possible
solutions are put forward: (1) Lab tests and computer simulations offer onee solution,
though they may not perfectly mimic real-world conditions, while Transfer Learning (TL)
techniques [80,81] can aid in adapting models from lab settings to real service environ-
ments; (2) Zero-Shot Learning (ZSL) [82] can help to identify previously unseen cases; and
(3) combining prior knowledge and mechanism models can significantly enhance fault
detection, particularly for compound faults, intermittent faults, and NFF failures, which
are extensively common during practical operation.

Challenge Six: Achieving Part-Level Point Machines Fault Detection. In view of
Req. 6, inspecting these parts of a point machine is not an easy task, as discussed in the
Challenge Three above. If Challenge Three can be resolved, this related challenge will be
easily overcome via learning.

Challenge Seven: Enhancing Universality, Generalization, and Robustness in Point
Machine Fault Detection Models. Considering Req. 7, to address this challenge, a fault
detection model for point machines can be trained on an extensive dataset encompassing
various types of point machines operating in different environmental conditions. Another
method is to use TL techniques for building transferable models. Furthermore, developing
algorithms that dynamically adjust fault detection thresholds based on external factors is
essential for practical operational success.

Challenge Eight: Maintaining Fault Detection Performance Over Time. With regard
to Req. 8, the model should learn newly accumulating data in order to update and renovate
itself over time. One seemingly feasible way to achieve this is to retrain the model on a
combination of historical datasets and a newly acquired dataset whenever model updating
is required. This demands a large amount of hard disk space to store all historical data,
and can encounter the “catastrophic forgetting” problem, in which a retrained model
forgets knowledge learned from older data and its performance on old data is greatly
reduced. To handle this, it is possible to consider strategies such as Incremental Learning
(IL), Continuous Learning (CL), and Lifelong Learning (LL) [83,84], which allow models to
adapt to new data without forgetting valuable insights from the past.

6. Blueprint

The eight critical issues and challenges highlighted above are likely to shape future
research into intelligent point machine fault detection for railway applications. Addressing
these problems is essential for the successful implementation of this technology in the
railway industry. We urge scholars to share their datasets openly, and encourage railway
industry leaders to collect comprehensive observations and make them accessible to the
research community.

Below, we propose a blueprint for intelligent point machine fault detection, shown
in Figure 5. This architecture, referred to as “center–edge–terminal,” leverages cloud
computing, edge computing, and advanced AI algorithms [85] to create a distributed fault
detection system for point machines. This blueprint is versatile and suitable for various
railway scenarios, whether covering extensive regions or smaller areas. More precisely, a
good plan for China is to set up a cloud center under the China State Railway Group Co.,
Ltd. and edge clouds under its subsidiaries. Alternatively, the subsidiary could constructs
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the cloud center and its affiliated stations and sections could be equipped with edge cloud
servers. Similarly, the railway systems of EU countries can refer to this architecture to
develop a smart point machine fault detection system.

Location 2 Location n Location NLocation 1 Location n+1

SensorsSensors SensorsSensors SensorsSensors SensorsSensors SensorsSensors
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Figure 5. A blueprint for intelligent point machine fault detection.

In the terminal layer, multiple sensors and data fusion techniques are employed to
enhance system robustness even in cases of sensor malfunction. Ensemble learning and
group decision-making algorithms are utilized to boost performance. In situations where
data is scarce, prior knowledge is combined and TL is employed for newly-developed point
machines or newly-constructed railway lines. Meanwhile, IL, CL, and LL methodologies
can be used to update the models.

The cloud center serves as a hub for aggregating data from monitored point machines.
It facilitates the exchange of fault detection model parameters with edge clouds located
across different companies, regions, or countries. Data sharing is tailored to suit privacy
requirements, with condition monitoring data being transmitted explicitly or model pa-
rameters being shared. The regional or global fault detection model undergoes training
in the edge clouds or the central cloud center. When the local or global model parameters
have been shared and transmitted among terminals and edge clouds, the model can then
be customized and updated based on the data it has accumulated. This collaborative
pattern solves the problem of data islands and sample scarcity (unbalanced, small, and
zero samples) [86] and ensures precise and generalized model performance.

In addition, it is imperative that both the algorithms and hardware within this frame-
work are trustworthy and reliable and that communication channels are secured through
encryption. This distributed framework is not limited to point machine fault detection, and
can be applied to fault diagnosis for various types of rail transit equipment with similar
distributed characteristics.

7. Conclusions

In this article, we have provided a comprehensive review of existing data-driven
approaches and evaluation metrics for point machine fault detection. In addition, we
have outlined the challenges faced by the intelligent point machine condition monitoring
and fault detection system based on a thorough system requirement analysis, and have
presented a blueprint for intelligent point machine fault detection.

Several key insights can be concluded from this review:

1. Compared to traditional machine learning, deep learning-based algorithms exhibit
the capability to autonomously learn features from massive datasets and efficiently
detect faults. Notably, they have demonstrated remarkable potential for point ma-
chine fault detection. There is considerable room for further exploration of deep
learning in point machine fault detection direction. Moreover, the diverse nature
of the relevant datasets mandates flexibility in selecting appropriate fault detection
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algorithms. While supervised learning methods excel when abundant labeled data
are available, scenarios involving data scarcity or incompleteness can benefit from
the utilization of semi-supervised and weakly supervised learning approaches. These
techniques make efficient use of limited labeled data and abundant unlabeled data,
thereby enhancing model performance. This flexibility empowers practitioners to
choose the most suitable method based on the characteristics of the available data,
ultimately achieving enhanced fault detection outcomes.

2. Concerning evaluation metrics, the traditional accuracy metric is unsuitable for the
imbalanced datasets inherent to the point machine fault detection task. Instead, em-
phasis is placed on other vital metrics such as the precision, recall, F1 score, false
alarm rate, and missed detection rate. These metrics provide a more accurate assess-
ment of model performance, ensuring precise and reliable fault detection in practical
railway applications.

3. In the context of developing an intelligent point machine condition monitoring and fault
detection system, it is imperative that the system exhibit trustworthiness, robustness,
and a high degree of generalization and transferability. While there are eight essential
requirements that need to be addressed, they come with varying degrees of priority. The
core essence of most of these requirements is to effectively address the challenges posed
by limited training data in diverse and complex operational scenarios.

4. In terms of future directions, the field of point machine fault detection confronts
several urgent challenges and opportunities. These encompass the application of
trustworthy artificial intelligence methodologies to enhance model safety and reli-
ability as well as the exploration of multi-sensor data fusion techniques to elevate
detection precision. Moreover, imbalanced datasets, the presence of unseen and com-
plex fault modes, and the need for fault detection at the device level remain critical
challenges that researchers must tackle. Techniques such as data augmentation, trans-
fer learning, and zero-shot learning hold promise for addressing these challenges and
building robust models that can effectively detect various fault scenarios. In addition,
building fault detection models with high generalization ability is necessary. Models
must be capable of adapting to changing environments, accumulating data over time,
and maintaining their performance throughout the long service life of point machines.
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