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Abstract: Heating, Ventilating, and Air Conditioning (HVAC) systems often suffer from unscheduled
maintenance or abnormal shutdown due to the fault of their interior sensor system. Traditional fault
diagnosis methods for HVAC sensor systems primarily focus on sensor fault diagnosis and isolation,
lacking fault accommodation. Therefore, to realize effective sensor fault detection, identification, and
accommodation (SFDIA), a method for HVAC SFDIA based on the soft sensor is proposed. First, a
diagnosis soft sensor with multi-variable input is constructed to estimate the output of the physical
sensor being diagnosed. The residual between the estimated value of the diagnosis soft sensor and
the measurement of the physical sensor is used as an indicator of the sensor’s condition. If the
residual exceeds the fault threshold, the sensor is diagnosed to be faulty. In order to maintain valid
sensor output, an accommodation soft sensor is constructed using the historical normal value. The
erroneous output of the faulty sensor is substituted by the estimated value from the accommodation
soft sensor, thereby realizing sensor fault tolerance control. Experimental results demonstrate that
the average false alarm rate for sensor fault diagnosis is 1.57% and the average fault diagnosis rate
is 96.51%. The predictive mean absolute error (MAE) and root-mean-square error (RMSE) of the
recovered soft sensors are 0.0525 and 0.0738, respectively. Thus, the soft sensors developed in this
paper exhibit satisfying ability in HVAC SFDIA.

Keywords: soft sensor; heating, ventilating, and air conditioning; sensor fault detection, identification,
and accommodation

1. Introduction

Sensors serve as “the eyes and ears” of the HVAC control system, monitoring critical
variables and providing data support for the control system actuator to make decisions
and optimize control. The malfunctioning of sensors can have a negative impact on the
system’s functionality, leading to a decrease in overall performance. A reliable sensor
system plays a crucial role in risk management strategies to enhance safety and reliabil-
ity. Specifically, sensor fault detection involves three aspects: (1) detection (determining
whether any sensors have experienced faults); (2) isolation (identifying the faulty sensors);
and (3) accommodation (replacing faulty data with approximate correct data transmitted to
downstream systems) [1]. Therefore, establishing an effective HVAC sensor fault detection,
identification, and accommodation (SFDIA) scheme is of significant importance for the
long-term stable operation of sensors.

Currently, there is limited research on HVAC SFDIA. Most of the existing research
focuses on sensor fault diagnosis and isolation, with a lack of fault compensation. With
the advancement of data processing technologies [2], data-driven fault diagnosis methods
have gained widespread application. Among them, statistical analysis methods [3–5] and
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artificial intelligence (AI) methods [6–8] are highly favored. Principal Component Anal-
ysis (PCA) is commonly employed in statistical analysis, yet it struggles with non-linear
issues. Its variant, Kernel PCA (KPCA) [9,10], can address non-linear problems, but its
computations are complex and unsuitable for large-scale industrial processes [11]. Artificial
intelligence methods [12,13] can automatically extract and integrate crucial information
from complex data, which is more suitable for nonlinear systems, so it is applied in the
field of sensor fault diagnosis [14–16]. The above research focuses on fault diagnosis and
isolation. Moreover, AI-based classification models require significant amounts of labeled
historical fault data, which are often lacking in industrial databases [17,18]. AI-based
prediction models often utilize the maximum prediction residual as the fault threshold,
without quantitatively evaluating the performance of the fault threshold. Therefore, there
is a need for an approach that can realize SFDIA using fault-free data, as well as a quantifi-
able metric to evaluate fault thresholds. As a combination of mathematical models, data
processing, and software technology methods, the soft sensor employs fault-free data to
generate a virtual measurement to replace a real sensor measurement realizing SFDIA.

A soft sensor [19,20] is an estimation method based on available physical sensors and
process parameters to derive the interested physical variables [21,22]. There are primarily
three types of soft sensor models: mechanism-based, knowledge-based, and data-driven
methods [23]. However, due to the increasing complexity of industrial processes, soft sen-
sor models based on data-driven approaches are gaining popularity, especially when the
necessary prior knowledge is lacking or modeling processes are complex. Chun et al. [24]
proposed a data-driven dynamic soft measurement method based on Supervised Bidirec-
tional Long Short-Term Memory to extract and utilize nonlinear dynamic latent information.
Ding et al. [25] introduced a deep learning-based modeling framework to develop soft
sensor models that are robust to sensor faults, which exhibit a strong resilience to sensor
faults and high recovery capability for sensor fault signals. Darvishi et al. [26] established a
series of neural network estimators and classifiers, where estimators correspond to virtual
sensors for all unreliable sensors, used to replace isolated faulty sensors within the system.
Classifiers are employed for detection and isolation tasks, utilizing estimators to recon-
struct faulty sensor data. Giovanni et al. [27] developed three kinds of soft sensors such
as temperature, airflow, and fan speed by employing linear regression models, statistical
models, and non-linear regression models. And a sensor fault diagnosis method using
three sensors to mutually corroborate each other is proposed, which has high reliability.
Hence, utilizing soft sensors to estimate the faulty physical sensor can not only realize
sensor fault diagnosis but also reconstruct the fault data.

The soft-sensor-based HVAC SFDIA framework, which considers only one sensor
fault at a time, consists of three parts. The first part is fault diagnosis. A soft sensor model
combining the convolutional neural network, long-short-term memory neural network, and
attention mechanism (CNN-BILTM-ATTENTION) is constructed using multidimensional
sensor data excluding the diagnosed sensor to estimate the output of the diagnosed sensor.
The residual between the estimated and measured value of the diagnosed sensor is calcu-
lated. If the residual exceeds the fault threshold, it is considered that the diagnosed sensor is
faulty or the input sensor is faulty. The method for determining the fault threshold involves
three steps. Firstly, several appropriate fault threshold combinations are identified based
on the maximum residual. Subsequently, fault diagnosis test experiments are performed
on data containing faults. Finally, the combination with the largest difference between
FDR and FAR is chosen as the optimal fault threshold. The second part is fault isolation.
Assuming the diagnosed sensor fault, the estimated value of the diagnosed sensor is used
instead of the faulty value to estimate and diagnose the second sensor. If the second sensor
is normal, it indicates that the diagnosed sensor is faulty. If the second sensor is faulty,
the estimated value of the second sensor is used instead of it. The method is repeated
to diagnose all input sensors. The third part is fault compensation. A univariate input
BILSTM soft sensor model is built using normal data and historical data from before the
sensor failure to estimate the sensor’s output and realize the recovery of fault data.
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In summary, to realize HVAC sensor fault diagnosis, isolation, and accommodation, a
soft-sensor-based method is proposed. The main contributions are as follows:

(1) Establishing an HVAC SFDIA scheme based on the soft sensor, which can realize
fault sensor diagnosis, isolation, and fault data recovery.

(2) By utilizing the soft sensor to estimate the diagnosed sensor, the residual between
the estimated and sensor measured value is computed and compared with a predetermined
threshold. If the residual surpasses the threshold, the estimated value is used to replace the
faulty sensor’s measurement, thus realizing the goals of sensor fault diagnosis, isolation,
and accommodation.

(3) An evaluation metric for determining the fault threshold is proposed, avoiding the
influence of subjective factors and enabling enhanced fault diagnosis effectiveness.

2. Basis of Soft-Sensor-Based HVAC SFDIA

A typical HVAC SFDIA procedure involves three parts.
(1) Diagnosis: utilize historical data to determine whether there has been a sensor

malfunction at the current moment.
(2) Isolation: if there is a malfunctioning sensor, identify the faulty sensor’s location.
(3) Accommodation: Determine the first fault data point of the faulty sensor, which is

the starting point for data recovery. Use historical normal data before the point to evaluate
the correct output value of faulty sensor, ensuring the short-term normal operation of the
HVAC system.

2.1. SFDIA Scheme Process Based on Soft Sensor

The soft-sensor-based HVAC SFDIA process is divided into 6 steps, as shown in
Figure 1.
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Figure 1. HAVC SFDIA scheme.

Step 1: Data preprocessing. The experimental data contain unstable data during the
startup phase and a few missing data points. A one-dimensional interpolation method is
used to fill in missing data. And the unstable data are removed. Subsequently, the data
are normalized to eliminate the interference caused by different units of measurement.
The data input and time series transformation are illustrated in Figure 2. The training
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set is used to construct the diagnosis soft sensor for fault diagnosis, the test set is used to
determine the optimal combination of fault thresholds, and the validation set is used for
fault diagnosis experiments.
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Figure 2. Data input and time serialization.

Step 2: Constructing a diagnosis soft sensor. Utilize the diagnosed sensor as the label
and the other sensors as model inputs. The model uses RMSE as the loss function and Adam
optimizer. Additionally, early stopping is added to prevent overfitting of the network.

Step 3: Determining the fault threshold. Calculate the residual sequences between the
soft sensor and the physical sensor outputs on the test set to determine the range of fault
thresholds. Utilize the score metric from Section 3.2 to select the optimal combination of
fault thresholds within the determined range.

Step 4: Fault diagnosis. The trained soft sensor is used to predict the diagnosed sensor.
The residual between the predicted value and the measurement is calculated and compared
with the fault threshold to determine whether the diagnosed sensor has a fault. When
the residuals of five consecutive soft sensor data points exceed the fault threshold, it is
considered that a fault has occurred at that data position. In addition, the initial fault data
point can be identified. Fault accommodation will start from the point.

Step 5: Fault isolation. To identify the location of the faulty sensor, repeat steps 2–4
for each sensor individually. Figure 3 shows a subgraph of the fault isolation portion of
Figure 1, illustrating the process of clearly identifying faulty sensors. More specifically, first,
the T1 sensor is taken as the diagnostic target. Input T2~T7 measurement yphysics2~yphysics7
into the T1 soft sensor to predict the output of T1. If the residual ε1 between the predicted
data and the measurement is less than the fault threshold, all sensors are considered normal.
Otherwise, it is considered possible that there may be a failure of the T1 sensor or the
input sensor. Assuming a fault in the T1 sensor, replace the T1 measurement yphysics1 with
the predicted data yprediction1. Input yprediction1 and yphysics3~yphysics7 into the T2 soft sensor
to calculate the residual ε2. If ε2 is less than the fault threshold, the assumption is true,
which indicates a fault in the T1 sensor while others are normal. Otherwise, if ε2 exceeds
the threshold, the assumption is false, which indicates that the T1 sensor is normal while
a faulty sensor exists in T2~T7. Assuming a fault in the T2 sensor, replace yphysics2 with
yprediction2. Continue diagnosing T3. Repeat this process to isolate a fault in T1~T7 sensors.
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Step 6: Fault accommodation. Utilizing the normal data from the faulty sensor as input
to train the soft sensor data recovery model, the output values are used as reconstructed
data to recover the faulty data.

2.2. Soft Sensor Construction

Soft sensors, as a core component within the SFDIA scheme, plays a crucial role in
estimating sensor data. The estimated value is employed to accomplish diagnosis, isolation,
and accommodation processes.

The main difference between diagnosis and accommodation soft sensors lies in the
external input. Therefore, the design of their internal core models also differs. Considering
the time-varying nature of sensor data, both soft sensors need to effectively store the
temporal information of input signals. Additionally, diagnosis soft sensors deal with
complex multidimensional data that exhibit strong coupling, requiring feature extraction
of input information. To help the network capture crucial information while handling
complex data, an attention mechanism is introduced to use weighted operation to enable
the network to focus on information highly relevant to the task.

The structure of the CNN-BILSTM-ATTENTION diagnosis soft sensor is depicted in
Figure 4, primarily composed of the input layer, CNN layer, BILSTM layer, attention layer,
and output layer. Each layer is described as follows:
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Figure 4. CNN-BILSTM-ATTENTION soft sensor.

Input layer: The input layer receives the time-serialized data and feeds them into
the convolutional layer, defining the input size. A single data point is represented as
Equations (1) and (2):

X1 =


x1

1 x1
2 · · · xt

n · · · x1
6

x2
1 x2

2 · · · xt
n · · · x2

6
...

... · · · xt
n · · · · · ·

x5
1 x5

2 · · · xt
n · · · x5

6

 (1)

Y1 =
[

x5
7

]
(2)
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where xt
n represents the nth sensor sampled at time t.

CNN layer: This mainly consists of the convolutional layer and pooling layer. The
convolutional layer performs sliding convolutions of the multidimensional input signals
along the time sequence to achieve feature extraction. The calculation process is shown in
(3) and (4).

xl
j = f

(
N

∑
i=1

xl−1
i ∗ kl

ij + bl
j

)
(3)

A[l] = max
{

0, xl
j

}
(4)

where xl
j represents the jth feature output of the lth layer, f (·) is the activation function, N

is the number of input signals, * denotes the convolution operator, kl
ij is the convolution

kernel, bl
j is the bias term, and A[l] is the output of the activation function. The ReLU

activation function is used to perform a non-linear transformation on the output.
The pooling layer utilizes downsampling to merge highly similar features, reducing

spatial dimensions, lowering computational complexity, while preserving feature invari-
ance and locality. The max-pooling operation is adopted, and the calculation formula is
shown as (5).

Pl[l] = max
{

A[l]
}

(5)

where Pl[l] represents the output of the pooling layer.
BILSTM layer: Adjacent sensor data often exhibit strong correlations. Data at any time

point are highly correlated with the data at its neighboring time points. The BILSTM net-
work consists of two LSTM networks in opposite directions, providing more comprehensive
information for each time point. The calculation formula is as follows:
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(6)

where Ht represents the total output of the hidden layer at time t,
→
ht is the forward output

of the LSTM hidden layer at time t,
←
ht is the backward output of the LSTM hidden layer at

time t, ht is the output of the hidden layer at time t, Ct is the state value of the LSTM hidden
layer’s state unit, and xt is the input of the model at time t.

Attention layer: The attention mechanism is employed to weight the output vectors of
the BILSTM network and perform a weighted sum. The softmax function is used to assign
different weights to the outputs at different time steps, aiming to maximize the extraction
of temporal feature information and achieve better evaluation results.

Attention(Q, K, V) = Softmax
(

QKT
√

dk

)
V (7)


Q = WQX
K = WKX
V = WV X

(8)

where Q, K, and V represent the query matrix, key matrix, and value matrix, respectively.
WQ, WK, and WV are weight matrices, and dk represents the vector dimension of Q.

Output layer: a fully connected layer is used with the ReLU activation function to
generate a single evaluated value.

Since accommodation soft sensors utilize data directly sourced from the historical data
of the faulty sensor, which exhibits a more direct and tighter correlation with the sensor
values to be predicted, this allows for the attainment of more accurate prediction results.
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The structure of the BILSTM accommodation soft sensor is shown in Figure 5, consisting
of the input layer, BILSTM layer, and output layer. The input variable is one-dimensional
sensor data, as shown in Equation (9). The BILSTM layer and output layer are the same as
in the diagnosis soft sensor and is not further elaborated.

x =


x1

1
x2

1
...

x5
1

 (9)
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3. Experiment

In order to verify the feasibility of the proposed method, an HVAC sensor system
data collection experiment was designed. Seven types of sensors were installed on the
experimental platform. By diagnosing their bias faults and reconstructing faulty data, the
proposed soft-sensor-based HVAC SFDIA scheme was validated. All experiments were
conducted under refrigeration conditions in a standard enthalpy-difference laboratory.

3.1. Experimental Design
3.1.1. Experimental System

The HVAC system experimental platform consisted of a compressor, condenser, evap-
orator, bidirectional flow expansion valve, evaporator fan, condenser fan, control cabinet,
and supervisory computer, as shown in Figure 6. Seven types of sensors were installed
for the experiments, and their detailed descriptions are provided in Table 1. During the
experiment, the system was turned on to ensure its normal operation. By adjusting the
indoor and outdoor dry bulb temperatures, typical summer operating conditions were
simulated. The indoor temperature was controlled within the range of 20 ◦C to 28 ◦C, while
the outdoor temperature was adjusted between 28 ◦C and 38 ◦C.
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Table 1. Description of experimental sensors.

No. Measure Location Symbol Unit

1 Outdoor inlet dry bulb temperature T1
◦C

2 Indoor outlet dry bulb temperature T2
◦C

3 Expansion valve inlet temperature T3
◦C

4 Expansion valve outlet temperature T4
◦C

5 Evaporator outlet temperature T5
◦C

6 Compressor discharge temperature T6
◦C

7 Condenser inlet temperature T7
◦C

3.1.2. Experiment Data Acquisition

The experimental data were collected at a frequency of 5 s. After removing outliers, a
total of 5982 datasets were obtained, with 4982 sets used for the training dataset, 600 for
the testing dataset, and 400 for the validation dataset. The sensor measurements consist of
three components, as shown in Equation (10). In this equation, ft represents the system error
mainly caused by sensor faults. The focus of this study is primarily on bias faults in sensors,
where a constant difference exists between the measured values from physical sensors and
the true values. The mathematical model is given by Equations (11) and (12). Considering
the sensor’s measurement precision, permissible error range, and the residual between
the soft sensor and the physical sensor, the magnitude of bias faults is comprehensively
taken into account. The testing dataset introduces faults into the diagnosed sensor from
the 200th dataset, while the validation dataset introduces faults starting from the 100th
dataset. The simulated scenarios of bias faults are presented in Table 2. Given the low
probability of multiple sensors failing simultaneously, this paper addresses the situation of
single-sensor faults.

xt = x∗t + ft + vx (10)

where xt represents the measured value at time t, x∗t represents the true value at that
moment, ft stands for the system error, and vx denotes the random error.

ft = c (11)

xt = x∗t + c + vx (12)

where c represents a constant.
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Table 2. Simulated scenarios of sensor bias faults.

Faulty
Sensors

Fault Level 1 Fault Level 2

Positive Bias Fault Negative Bias Fault Positive Bias Fault Negative Bias Fault

T1 0.6 −1 0.5 −0.9
T2 0.6 −0.3 0.5 −0.2
T3 1.8 −1.3 1.7 −1.2
T4 0.5 −0.6 0.4 −0.5
T5 0.7 −0.7 0.6 −0.6
T6 0.5 −0.5 0.4 −0.4
T7 0.6 −0.6 0.5 −0.5

3.2. Experiment Evaluation Metrics

The root-mean-square error (RMSE) and mean absolute error (MAE) are chosen as
performance evaluation metrics to quantify the predictive performance of the proposed
method against other models, as shown in Equations (13) and (14). The RMSE indicates the
dispersion of samples. The MAE measures the absolute error between predicted values
and observed values.

MAE =
1
m

m

∑
i=1
|( fi − yi)| (13)

RMSE =

√
1
m

m

∑
i=1

( fi − yi)
2 (14)

where fi represents the predicted value, yi represents the true value, and m is the sam-
ple count.

To quantitatively assess the diagnostic performance of sensor faults, the false alarm
rate (FAR) is introduced to evaluate cases where normal sensor samples are incorrectly
diagnosed as faulty samples, and the fault detection rate (FDR) is used to evaluate the
detection of faulty sensor samples. The formulas are provided by Equations (15) and (16),
respectively.

FAR =
Number of normal samples reported as faults

Total number of normal samples
=

FP
FP + TN

(15)

FDR =
Number of fault samples reported as normal

Total number of fault samples
=

TP
TP + FN

(16)

where TP represents True Positive samples; FP represents False Positive samples; FN
represents False Negatives; and TN represents True Negatives.

The fault diagnosis results are directly linked to the fault threshold. In order to achieve
better fault diagnosis performance, characterized by higher fault detection rates and lower
false alarm rates, the difference between the fault detection rate and the false alarm rate is
defined as the fault threshold performance evaluation metric, as presented in Equation (17).
The range of the score is [−1, 1]. When the score is close to 1, it indicates that the method
has a higher fault detection rate and lower false alarm rate.

score = FDR− FAR (17)

The data recovery performance is evaluated using the RMSE and the coefficient of
determination (R2), as shown in Equations (14) and (18), respectively. The RMSE is used to
measure the distance between reconstructed data and true value. R2 is used to measure
the similarity between two signals, where R2 closer to 1 indicates a higher similarity
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between the two signals, implying that the reconstructed sensor data effectively represent
the true value.

R2 = 1−

n
∑

t=1
(yt − yt)

2

n
∑

t=1

(
yt −

.
y
)2

(18)

4. Results Analysis
4.1. Analysis of Fault Diagnosis Results Based on Soft Sensor

A CNN-BILSTM-ATTENTION-based soft sensor is constructed using the training
dataset of six sensors, excluding the diagnosed sensor. Different models’ predictive perfor-
mances are compared on the test set to identify the model with the best predictive results.
The optimal fault threshold is determined using the testing set. Finally, the feasibility of the
approach is validated by conducting fault diagnosis on the validation set.

4.1.1. Analysis of Prediction Results

On the testing dataset, diagnosis soft sensors are employed to predict the values of
seven sensors. The comparison chart of predicted results for the T1 sensor is presented
in Figure 7. The soft sensor built with CNN-BILSTM-ATTENTION exhibits a better rep-
resentation of the changing trends of the true values. Table 3 presents a comparative
analysis of prediction evaluation metrics for soft sensors built using different models. The
CNN-BILSTM-ATTENTION model consistently achieves the best results across all metrics,
with average MAE and RMSE reductions of 30.51% and 25.03%, respectively, compared
to other optimal results. As a result, CNN-BILSTM-ATTENTION stands as the optimal
diagnosis soft sensor prediction model.
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T1 0.1772 0.2167 0.2397 0.2896 0.1446 0.1872
T2 0.1647 0.1822 0.1687 0.1845 0.1223 0.1370
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4.1.2. Analysis of Fault Threshold and Diagnosis Results

To maximize the fault diagnosis performance, the score is used to determine the
optimal fault threshold. Firstly, the residual between the output of the soft sensor and
the measurement of the physical sensor is calculated, as in Equation (19), to determine
the difference caused by the predictive model. Figure 8 illustrates the residuals of the
T1 sensor. Currently, many diagnostic methods use the maximum residual value as the
fault threshold. Although using the maximum value as the fault threshold can achieve a
lower false alarm rate, it also decreases the fault detection rate, thus failing to achieve the
best diagnostic outcome. Therefore, to select a more suitable fault threshold, the range of
the fault threshold can be preliminarily determined based on the distribution of residuals.
For instance, the positive threshold range for the T1 sensor is [0.4~0.6], and the negative
threshold range is [−0.2~−0.4]. Introducing faults into the test set, a test is conducted
to determine the optimal fault threshold. By adjusting the thresholds within the defined
positive and negative threshold ranges, false alarm rates and fault detection rates are
computed for different threshold combinations. The fault threshold yielding the best score
is chosen. Figures 9–15 present a comparison of the score results for different threshold
combinations. When the score metric is equal, the threshold combination with the narrower
range is selected to achieve more precise fault diagnosis. Using the optimal threshold,
fault diagnosis is performed on the validation set to validate the performance of the best
threshold combination and the effectiveness of the fault diagnosis method proposed. The
validation set’s fault diagnosis results are depicted in Figures 16–18.

ε = yprediction − yphysics (19)

where yprediction represents the output of the soft sensor and yphysics represents the measure-
ment of the physical sensor.
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Therefore, soft sensors can effectively predict sensor data, which enable the implemen-
tation of fault diagnosis and realize good performance.

4.2. Analysis of Fault Accommodation Results Based on Soft Sensor

Faulty sensor data can impact the operational performance of the HVAC system. Thus,
accurate identification of sensor fault points is essential. Data recovery is initiated from this
point. Figures 19 and 20 illustrate the results of identifying fault locations for the T1 and T2
sensors. In the validation dataset, faults are introduced from the 100th data point, and the
first five continuous data points exceeding the fault threshold should correspond to the
102nd data point, as shown in the T2 sensor identification result. Taking the T1 sensor as an
example, some sensors identify normal states as faults. In such cases, recovery is performed
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on normal data (normal data are falsely identified as faulty data). However, this case occurs
rarely, and the recovered data remain within the fault threshold, making it viable to treat
as normal data. The recovered data from each sensor fall within the fault threshold range.
The data recovery results for the T1 and T2 sensors are shown in Figures 21 and 22. The
reconstructed data represent the output of the soft sensor and closely resemble the true
data. Figure 22 indicates that the reconstructed data fall within the fault threshold range
and are considered normal data. This implies that the reconstructed data can effectively
recover faulty data. Table 4 provides the evaluation results of using the soft sensor for
data recovery.
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Table 4. Evaluation results of fault sensor accommodation.

Sensor T1 T2 T3 T4 T5 T6 T7

MAE 0.0685 0.0181 0.0746 0.0278 0.0336 0.0806 0.0641
RMSE 0.0968 0.0247 0.1026 0.0433 0.0472 0.1135 0.0886

The results indicate that when sensors experience faults, compared with diagnosis
soft sensors, accommodation soft sensors exhibit smaller predictive evaluation metrics. In
other words, its predictive performance is better, and its predictions are closer to true data.
It can effectively substitute true data, thereby achieving the reconstruction and recovery of
faulty data.

4.3. Discussion

Based on the experimental results of the aforementioned fault diagnosis and accom-
modation, the following conclusions can be drawn:

(1) The fault diagnosis method can achieve good diagnostic results for faults of differ-
ent levels. The larger the fault level, the more pronounced the fault manifestation, resulting
in better diagnostic outcomes. The diagnostic performance for fault level 1 is noticeably
superior to that of fault level 2.

(2) The utilization of the best fault thresholds selected using the score obtains better
fault diagnosis outcomes, with an average false alarm rate of 1.57%, an average positive
deviation fault detection rate of 96.88%, and an average negative deviation fault detection
rate of 96.13%.

(3) For faulty sensors, the method is capable of effectively identifying the fault location.
Utilizing single-variable input soft sensors, the faulty data can be successfully recovered.
The reconstructed data fall within the fault threshold range, enabling short-term data
recovery and maintaining the proper functioning of the HVAC systems.

5. Conclusions

In this article, a scheme for sensor diagnosis, isolation, and accommodation in HVAC
systems using soft sensors is used to provide an accurate evaluated value of a physical
sensor based on available physical sensors. The scheme only requires fault-free training data
during normal operation, without needing a detailed understanding of the characteristics of
sensor fault signals. Additionally, by utilizing a defined score metric to quantitatively select
the most appropriate threshold, higher fault detection rates and lower false alarm rates are
achieved. Soft sensors provide a very effective and promising method for HVAC SFDIA.

Apart from sensor faults, actuator faults, control software programming faults, and
stationary part faults are also common occurrences in HVAC systems [28]. Future work
could further investigate how to decouple composite faults in soft sensor design. In
addition, using multi-source sensor data fusion and information mutual verification and
complementary technology to realize sensor fault diagnosis, it may be more advantageous
in complex systems requiring high reliability and comprehensiveness.
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