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Abstract: There are uncertainties and disturbances in the DC-DC buck converters system; in terms of
actual working conditions, they are often very complex, exhibiting a polynomial form of time series.
Therefore, a single controller and an observer that can only estimate slowly varying disturbances
will lose their effectiveness. The generalized proportional integral observer can generally be used to
estimate the disturbances in the polynomial form of time series, but it is usually necessary to select a
high gain to achieve the fast convergence of the observer, which makes it sensitive to measurement
noise. Therefore, before designing the controller that needs to estimate information, it is necessary
to design a new structure that combines an observer and a Kalman filter. The filter is used for noise
filtering, and the observer is used for the online reconstruction of disturbances. This can solve the above
problems. Then, the whole control strategy is designed based on backstepping control. Theoretical
analysis and experimental verification can effectively illustrate the feasibility and superiority of
this strategy.

Keywords: DC-DC buck converter; generalized proportional integral observer (GPIO); Kalman
filter (KF)

1. Introduction

With the rapid development of renewable energy and smart grids, DC-DC buck
converters have been widely used due to their low power consumption and high efficiency.
DC-DC buck converters transform a fixed DC voltage into a variable DC voltage. On the
basis of DC-DC converters, many kinds of power-system-related research can be carried
out, such as the control of electric vehicle (EV) systems [1] and distributed generation (DG)
systems [2]. At the same time, the systems can accelerate stable and fast responses and can
benefit from energy saving.

As is known, in actual working conditions, the converter systems are affected by
numerous kinds of disturbances and uncertainties, including voltage fluctuations, circuit
parameter perturbations, and load-resistance variations [3–5]. It is difficult to achieve the
perfect control performance of the DC-DC converter systems due to these factors. The
improvement of the control performance of the DC-DC converter system has attracted
the concern of many scholars. Considering the disturbances and uncertainties, this is an
inevitable path to develop a precise controller with perfect dynamic characteristics and
static performance. As we all know, the proportional-integral (PI) control method has been
widely used in DC-DC buck converter systems because it is easy to understand and realize.
However, it is difficult to achieve the high-precision-control requirements of the DC-DC
buck converter systems by using conventional linear control methods. Therefore, with the
progress of modern nonlinear control, the effective control method has been applied to
buck converter systems, e.g., backstepping control [6], sliding mode control [7–9], robust
control [10,11], and model predictive control [12].
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Due to the existence and inaccurate measurement of the disturbances and uncertainties
in the DC-DC buck converter systems, the high gain of the controller is required to achieve
the desired control performance. Moreover, it is proven that lumping the disturbances
and uncertainties together and then estimating them for feedforward compensation is an
effective solution to improve the control performance of the DC-DC buck converter. Several
effective approaches have been developed to observe disturbances and uncertainties in
the DC-DC buck converter system. It is well known that many common approaches have
been proposed to estimate disturbances and uncertainties in the DC-DC buck converter
systems, including disturbance observer (DOB) [13,14], nonlinear disturbance observer
(NDOB) [15], and extended state observer (ESO) [7,16]. ESO is also considered to be an
effective method to estimate both matched and mismatched disturbances. This method
regards the lumped disturbance as a new system state, and the disturbance of the system
can be observed by a simple calculation [17]. These observers described above can only
estimate the slow time-varying disturbances; advanced results are difficult for them to
achieve in estimating the disturbances with time-series polynomial forms. In reality, the
disturbances and uncertainties in the DC-DC buck converter systems are more difficult to
analyze. Additionally, their form is generally a time-varying polynomial. Worse still, in
the actual system, the presence of noise also needs to be considered. For such observers,
a higher observer gain will make the observer more sensitive to noise, thus reducing the
control performance and even causing the instability of the DC-DC buck converter systems.
Therefore, the observer design is very meaningful if it can solve the problem of expanding
the application range to observe different forms of disturbance and reduce the observer’s
sensitivity to noise. In this way, the feedback controller can be designed on this basis to
achieve accurate control of the system, which is the motivation of this paper.

In terms of expanding the application scope of the observers, the generalized propor-
tional integral observer (GPIO) could not only provide an accurate estimation of slow time-
varying disturbances but also of the disturbances with time-series polynomial forms [18]. Its
design idea is similar to ESO. Because of its advantages, this method has been successfully
applied to the DC-DC buck converter systems [19].

In terms of solving the problem of observer gain selection in noisy systems, when
these observers mentioned above are designed to estimate disturbances and uncertainties,
high observer gain is needed to achieve fast convergence of the estimation to ensure the
rapidity of the estimation. On the other hand, once the gain of the observer is too high, the
observer will be very sensitive to the measurement noise and even allow the high-frequency
component of the noise passing through the observer, so that the estimator can further
amplify the noise and make the final result more seriously affected. Therefore, we need to
find a tradeoff between the speed/accuracy of state reconstruction and the sensitivity of
measurement noise in practical application conditions.

There are probably two main ideas to solve the above problems. In the first method,
the tradeoff is simply recognized and the corresponding observer tuning technique is
designed to force the tradeoff [20]. Another way to deal with the tradeoff is to modify the
design of observer. Regarding the second way of thinking, many experts and scholars are
concerned about it and have also conducted relevant research; they have mainly proposed
nonlinear gains [17,21], and adaptive techniques [22], as a solution. It is worth mentioning
that one can combine the observer with a Kalman filter (KF) to optimize the gain of the
observer [23,24]. Although the architecture of the above method may be applicable to
some practical application scenarios, it cannot ensure a fast response and steady filtering
performance of the observer at the same time. Moreover, unlike [23,24], a new combination
of observer with KF is proposed [25], where the KF is used as a filtering prediction, and
its processing is used to measure the necessary signals in the noise to be used in the
observer. All of the methods mentioned above have been applied in ESO and have achieved
certain results.

As a kind of observer, GPIO also needs to achieve a trade off between speed and
accuracy. However, there are few studies on how to obtain the parameters of GPIO such
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that the estimation error is reduced little as possible if the output is contaminated by noise.
This paper is inspired by the special combination of ESO with KF [25] and extends it to the
combination of GPIO and KF. Once there are disturbances and uncertainties in the system,
the Kalman filter cannot achieve satisfactory results. Based on this, the lumped disturbances
in the mathematical model used to design the Kalman filter are obtained from the real-time
observation results of the GPIO. In order to further improve the estimation effect of GPIO,
the state estimation from KF is used to replace the measurement signal commonly used in
GPIO. Through the design of the above methods, the impact of noise on the estimates of
lumped disturbance and the unmeasurable state variables will be reduced, which is of great
benefit to the improvement of the control performance of the system.

This paper proposes a backstepping control method based on the generalized propor-
tional integral observer and the Kalman filter (BSC + GPIO + KF), which are used to regulate
the output voltage in DC-DC buck power converter systems with both interference and
noise. First, the composite structure of GPIO and KF is used to estimate the interference
using reasonable observer gain. Then, on this basis, the disturbance estimation of the ob-
server is introduced and compensated. Using the backstepping control strategy, a composite
controller is further designed.

Several important contributions of this article are stated as follows:

(1) As far as the author is concerned, this is the first opportunity to combine GPIO and
KF, and solve the problem of time polynomial interference in a noisy system and
successfully apply it to the system.

(2) The stability of the designed controller and observer is analyzed and proven.

The rest of the article is further organized in the following order. The establishment,
description, and analysis of the system model and the proposal of problems are described
in Section 2. GPIO with KF and control-strategy design are constructed in the later section.
The stability analysis for GPIO + KF and the control system is also presented in this section.
In Section 4, many experimental examples have proven the effectiveness of the proposed
method and its superiority over similar methods. The research conclusions are summarized
in Section 5.

2. Modeling, Analysis, and Processing of Model
2.1. Modeling of DC-DC Buck Converter System

Generally, the DC-DC buck converter system consists of a switch tube, a rectifier diode,
a low-pass filter network composed of inductance and capacitor, and a load resistance.
The function of the switch tube is equivalent to a switch that is turned on and off under
the control of the driving signal. A DC-DC buck converter circuit is shown in Figure 1,
and the actual meanings of the parameters in the figure are as follows: DC voltage supply
source Vin, PWM-driven switch device VT, diode VD, capacitor C, filter inductor L, and load
resistance R.

Through the Kirchhoff voltage and current equation, the system model of on case and
off case can be obtained, and the average model can be further obtained:{

v̇o =
iL
C −

vo
RC ,

i̇L = Vinµ
L −

vo
L ,

(1)

where vo and iL are the values of the capacitor output voltage and inductor current, re-
spectively. The duty ratio µ ∈ [0, 1] represents a control signal that is compared with a
triangular wave to generate a drive signal. As we all know, the converter system inevitably
has uncertainties and disturbances. Taking these factors into full consideration, defining
x1 = v0 and x2 = iL, the model in (1) can be presented in the following form: equation{

ẋ1 = − x1
C0R0

+ x2
C0

+ d1,

ẋ2 = − x1
L0

+ Vin0µ
L0

+ d2.
(2)
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where C0, R0, L0, and Vin0 denote the nominal values of capacitance, resistance, inductance,
and input voltage, respectively. The disturbances are expressed as d1 = ( 1

C −
1

C0
)iL +

( 1
R0C0
− 1

RC )vo and d2 = ( 1
L0
− 1

L )vo + (Vin
L −

Vin0
L0

)µ.

(a)

+

-

o
v

Li
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Figure 1. Circuit diagram of buck converter. (a) An average case. (b) A switch ON case. (c) A switch
OFF case.

2.2. Analysis of Mathematical Model

The purpose of this section is to analyze the specific composition and source of distur-
bances d1 and d2 in system (2).

It is worth noting that disturbances and uncertainties are imposed on the DC-DC
system through two different channels, thus affecting various performance indicators of
the system. Here, the disturbance d2 is on the same channel as the control input µ, while
the disturbance d1 acts on the system through voltage and is on a different channel to the
control input µ, which is called a mismatched disturbance. When matched and mismatched
disturbances exist at the same time, it is not a simple task to make the output voltage
accurately track the desired trajectory, which also puts forward higher requirements for the
design of observers and controllers.

2.3. Discretized Model

The following discretized model of the system (2) can be obtained as x1(k) = x1(k− 1) + h
[
− 1

C0R0
x1(k− 1) + 1

C0
x2(k− 1) + d1(k− 1)

]
,

x2(k) = x2(k− 1) + h
[
− 1

L0
x1(k− 1) + Vin0

L0
µ(k− 1) + d2(k− 1)

]
,

(3)

where h is the sampling period, and its value is 0.001 s.
Combine system (3) and consider the following class of systems:{

xk = Fxk−1 + Guµk−1 + Gddk−1,
yk = Hxk + vk,

(4)
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where yk is the measurement output and vk is the measurement noise,

F =

[
1− h

C0R0
h

C0

− h
L0

1

]
, Gu =

[
0

Vin0h
L0

]
, Gd =

[
h 0
0 h

]
, H =

[
1 0
0 1

]
. (5)

To begin with, the following assumption is given:

Assumption 1. Rk is the measurement variance of noise, which can be obtained by the following
equation:

E
{

vivT
j

}
=

{
0, i 6= j,
Rk, i = j.

(6)

3. Design of the New Control Strategy (BSC + GPIO + KF) for DC-DC Buck
Converter Systems
3.1. Proposed Disturbance Observer (GPIO + KF) Design

In order to improve the anti-disturbance performance of the system, a new observer is
designed. The following is the design process of new method.

Assumption 2. The n+1 derivative of d1 tends to zero.

Assumption 3. The n+1 derivative of d2 tends to zero.

Assumption 4. Covariance terms of x̃+k−1 and d̃k−1 can be ignored.

Remark 1. Because of the above assumptions, the Kalman filter gain becomes a suboptimal solution.

According to system (4), the prior estimation formula is as follows:

x̂−k = Fx̂+k−1 + Guµk−1 + Gdd̂k−1, (7)

where x̂−k is the prior estimation and d̂k−1 is the disturbance estimation.
Similarly, the posterior estimation formula is as follows:

x̂+k = x̂−k + Kk
(
yk − Hx̂−k

)
, (8)

where x̂+k is the posterior estimation and Kk is the Kalman Filter gain.
Design of generalized proportional integral observer of d1:

z1(k) = z1(k− 1) + h
[
− 1

C0R0
z1(k− 1) + 1

C0
x̂+2 (k− 1) + z2(k− 1)

]
+ ha1

[
x̂+1 (k− 1)− z1(k− 1)

]
,

z2(k) = z2(k− 1) + hz3(k− 1) + ha2
[
x̂+1 (k− 1)− z1(k− 1)

]
,

. . . ,
zn+1(k) = zn+1(k− 1) + han+1

[
x̂+1 (k− 1)− z1(k− 1)

]
.

(9)

Design of generalized proportional integral observer of d2:

ξ1(k) = ξ1(k− 1) + h
[
− 1

L0
x̂+1 (k− 1) + Vin0

L0
µ(k− 1) + ξ2(k− 1)

]
+ hb1

[
x̂+2 (k− 1)− ξ1(k− 1)

]
,

ξ2(k) = ξ2(k− 1) + hξ3(k− 1) + hb2
[
x̂+2 (k− 1)− ξ1(k− 1)

]
,

. . . ,
ξn+1(k) = ξn+1(k− 1) + hbn+1

[
x̂+2 (k− 1)− ξ1(k− 1)

]
.

(10)

The following contents will introduce solution of the Kalman Filter gain.
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The prior estimation error is solved as follows:

xk − x̂−k = Fxk−1 + Guµk−1 + Gddk−1 − Fx̂+k−1 − Guµk−1 − Gdd̂k−1

= F
(

xk−1 − x̂+k−1

)
+ Gd

(
dk−1 − d̂k−1

)
.

(11)

After calculating the prior estimation error, calculate the covariance matrix of the prior
estimation:

P−k = E
{(

xk − x̂−k
)(

xk − x̂−k
)T
}

= E
{

Fx̃+k−1 x̃+k−1
T FT

}
− E

{
Fx̃+k−1d̃T

k−1GT
d

}
− E

{
Gdd̃k−1 x̃+k−1

T FT
}
+ E

{
Gdd̃k−1d̃T

k−1GT
d

}
= E

{
Fx̃+k−1 x̃+k−1

T FT
}
+ E

{
Gdd̃k−1d̃T

k−1GT
d

}
= FP+

k−1FT + GdQdGT
d ,

(12)

where Qd is the disturbance estimation error covariance. Obviously, we can obtain the
following initial values:

P−0 = E
{

x̃−0 x̃−0
T
}

. (13)

The posteriori estimation error is solved as follows:

xk − x̂+k = xk − x̂−k − Kk
(

Hxk + vk − Hx̂−k
)

= (I − Kk H)
(
xk − x̂−k

)
− Kkvk.

(14)

After calculating the posteriori estimation error, calculate the covariance matrix of the
posteriori estimation:

P+
k = E

{(
xk − x̂+k

)(
xk − x̂+k

)T
}

= E
{
(I − Kk H)x̃−k x̃−k

T
(I − Kk H)T

}
+ E

{
(I − Kk H)x̃−k vT

k KT
k
}

+ E
{

Kkvk x̃−k
T
(I − Kk H)T

}
+ E

{
KkvkvT

k KT
k
}

= (I − Kk H)P−k (I − Kk H)T + KkRkKT
k .

(15)

In order to determine the gain Kk, we minimize the trace of P+
k , which is equivalent to

minimizing the length of the estimation error vector:

J(Kk) = Tr
(

P+
k
)
. (16)

The necessary condition of minimizing J(Kk) is

∂J
∂Kk

= −2(I − Kk H)P−k HT + 2KkRk = 0 (17)

Solving (17) for Kk gives:

Kk = P−k HT
(

HP−k HT + Rk

)−1
. (18)

Then, substituting (18) into (15), one obtains

P+
k = P−k − Kk HP−k − P−k HTKT

k + Kk
[
HP−k HT + Rk

]
KT

k
= P−k − Kk HP−k .

(19)

3.2. Stability Analysis of the Proposed Disturbance Observer

Definition 1 ([26]). Consider a discrete-time nonlinear system (20) of the general form :

x(k + 1) = f (x(k), u(k)), (20)



Actuators 2023, 12, 20 7 of 15

where states x(k) are in Rn, and control values u(k) in Rm, for some n and m, and for each time
instant k ∈ Z+. Assume that f : Rn × Rm → Rn is continuous and f (0, 0) = 0. System (26) is
(globally) input-to-state stable (ISS) if a KL function β : R≥0 × R≥0 → R≥0 and a K function γ
exist such that, for each input u ∈ lm

∞ and each ζ ∈ Rn, for every k ∈ Z+\{0}, it holds that:

|x(k, ζ, u)| ≤ β(|ζ|, k) + γ
(∥∥∥u[k−1]

∥∥∥), (21)

where term u[k−1] denotes the truncation of u at k− 1.

Definition 2. A continuous function V : Rn → R≥0 is called an ISS-Lyapunov function for
system (1) if the following holds:

(1)K∞ function α1, α2 exists such that

α1(|ζ|) ≤ V(ζ) ≤ α2(|ζ|), ∀ζ ∈ Rn. (22)

(2)K∞ function α3 and a K function σ, for all ζ ∈ Rn, and for all u ∈ Rm exist such that:

V( f (ζ, u))−V(ζ) ≤ −α3(|ζ|) + σ(|u|). (23)

Lemma 1 ([26]). If system (20) admits an ISS-Lyapunov function, then it is ISS.

Theorem 1. On the basis of the steady-state Kalman filter gain, and when Ao is a Schur matrix,
then we can find an ISS Lyapunov function V. According to Lemma 1, the observer is ISS.

Proof of Theorem 1. The state estimation errors of the DC-DC converter system are defined as

eo(k− 1) =



e1(k− 1)
ex1(k− 1)
ed1(k− 1)

...
e

d(n−1)
1

(k− 1)

e2(k− 1)
ex2(k− 1)
ed2(k− 1)

...
e

d(n−1)
2

(k− 1)



=



x1(k− 1)− x̂+1 (k− 1)
x1(k− 1)− z1(k− 1)
d1(k− 1)− z2(k− 1)

...
d(n−1)

1 (k− 1)− zn(k− 1)
x2(k− 1)− x̂+2 (k− 1)
x2(k− 1)− ξ1(k− 1)
d2(k− 1)− ξ2(k− 1)

...
d(n−1)

2 (k− 1)− ξn(k− 1)



. (24)

The observer error dynamics can be expressed as

eo(k) = Aoeo(k− 1) + ḋ(k− 1). (25)

We can obtain the relevant parameters in the above formula:

ḋ(k− 1) =
[

D1 0 0 · · · d(n)1 (k− 1) D2 0 0 · · · d(n)2 (k− 1)
]T

, (26)
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where D1 = −K11s v1(k− 1)− K12s v2(k− 1) and D2 = −K21s v1(k− 1)− K22s v2(k− 1).

Ao =



B1 0 B2 · · · 0 B3 0 −hK12s · · · 0
ha1 B4 h · · · 0 h

C 0 0 · · · 0

ha2 −ha2 1
. . . 0 0 0 0

. . . 0
...

...
...

. . .
...

...
...

...
. . . 0

han+1 −han+1 0 · · · 1 0 0 0 · · · 0
B5 0 −hK21s · · · 0 B6 0 B7 · · · 0
− h

L0
0 0 · · · 0 hb1 1− hb1 h · · · 0

0 0 0
. . . 0 hb2 −hb2 1

. . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 0 hbn+1 −hbn+1 0 · · · 1



, (27)

where, B1 = (1− K11s)
(

1− h
R0C0

)
+

hK12s
L , B2 = h(1− K11s), B3 = (1− K11s)

h
C0
− K12s ,

B4 = 1− h
R0C0
− ha1, B5 = −K21s

(
1− h

R0C0

)
− h

L (1− K22s), B6 = − hK21s
C0

+ (1− K22s), and
B7 = h(1− K22s).

The gains of the generalized proportional integral observer are appropriately selected
by pole placement so that A0 is a Schur matrix. According to Lemma 1, the observer is ISS.
This completes the proof.

3.3. Composite Controller Design and Analysis

The objective of the controller is to make the output voltage track the reference voltage.
When the general framework of backstepping control is applied to the design , a two-step
design is adopted because the inverter system is a second-order system. In addition, the
reference voltage is constant in the system, so its first derivative and second derivative
need not be considered in the two-step design.

Theorem 2. Under Assumptions 2 and 3, if the controller is designed for the buck converter (2) as

µ =
L0C0

Vin0

{
1

L0C0
x1 −

1
C0

d̂2 +

(
1

C0R0
+ k1 − k2

)
z2 −

[(
1

C0R0
+ k1

)
k1 + k3

]
z1 +

˙̂d1

}
(28)

where the controller gains k1 annd k2 are properly selected such that A in (34) is Hurwitz matrix,
then the output voltage v0 tracks the reference voltage vr.

Proof of Theorem 2. The proof includes two steps.
Step 1: Denote z1 = x1 − x1re f , and differentiate z1 with respect to time along (2),

which implies:

ż1 = − 1
C0R0

z1 +
1

C0
x2 + d1. (29)

The virtual control law can be shown as follows:

x∗2 = C0

(
1

C0R0
z1 − k1z1 − d̂1

)
. (30)

Step 2: Denote z2 = 1
C0
(x2 − x∗2). So, ż1 can be rewritten as follows:

ż1 = − 1
C0R0

z1 +

(
z2 +

1
C0

x∗2

)
+ d1 = z2 − k1z1 + ed1 , (31)

where ed1 = d1 − d̂1.
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Differentiating z2 with respect to time along (2), we have

ż2 = − 1
L0C0

x1 +
Vin0

L0C0
µ +

1
C0

d2 −
(

1
C0R0

+ k1

)(
z2 − k1z1 + ed1

)
− ˙̂d1. (32)

The control law is designed as (28). Combining (28) and (31), we can obtain:

ż2 =

{
1

L0C0
x1 −

1
C0

d̂2 +

(
1

C0R0
+ k1 − k2

)
z2 −

[(
1

C0R0
+ k1

)
k1 + k3

]
z1 +

˙̂d1

}
− 1

L0C0
x1 +

1
C0

d2 −
(

1
C0R0

+ k1

)(
z2 − k1z1 + ed1

)
− ˙̂d1.

(33)

ż2 = −z1 − k2z2 −
(

1
C0R0

+ k1

)
ed1 +

1
C0

ed2 , (34)

where ed2 = d2 − d̂2.
Ulteriorly, the system can be expressed as

ż1 = z2 − k1z1 + ed1

ż2 = −z1 − k2z2 +
1

C0
ed2 −

(
1

C0R0
+ k1

)
ed1

(35)

The system can be rewritten as follows:

ż = Az + Bed, (36)

where A =

[
−k1 1
−1 −k2

]
and B =

[
1 0

−
(

1
C0R0

+ k1

)
1

C0

]
.

Select the proper parameters to make A a Hurwitz matrix, the system ż = Az is
globally uniformly asymptotically stable. Based on this, it is easy to verity that system (36)
is ISS with the input ed. According to Theorem 1, lim

t→∞
ed = 0, it follows from Lemma 1 that

lim
t→∞

z = 0.

This completes the proof.

Remark 2. Take the form of the reference signal again and emphasize that the first and second
derivatives of the reference signal have no influence on the controller design and stability analysis.

4. Experimental Tests
4.1. Experimental Tests Setup

In order to verify the effectiveness of the proposed control method, the experiment
was carried out on a self-developed experiment platform. The experiment platform is
mainly composed of computer (Host PC), integrated controller (dSPACE1103), a DC-DC
buck converter, a DC power supply, a digital oscilloscope, voltage, and current sensors,
as shown in Figure 2. The sampling period is 0.001 s. The measured output voltage is
converted by the 16 bit A/D converter of the real-time controller. The output waveforms
are recorded by digital oscilloscope and dSPACE 1103.

The reference voltage of the buck converter is 9 V (constant signal). The structural
parameters of the DC-DC buck converter are shown in Table 1.
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Table 1. Parameter values of the buck converter circuit.

Description Parameters Nominal Values

Input voltage Vin0 20 V
Reference voltage vr 9 V

Inductance L0 1× 10−2 H
Capacitance C0 7× 10−5 F

Load resistance R0 30 Ω

The controller parameters of BSC and GPIO, ESO + KF, and GPIO + KF are selected
and shown in Table 2:

Table 2. Control parameters for DC–DC buck converter.

Controllers Observers Experimental Parameters

BSC GPIO k1 = 150, k2 = 550, p = −200
BSC ESO + KF k1 = 150, k2 = 550, p = −300
BSC GPIO + KF k1 = 150, k2 = 550, p = −500

The selection criteria of KF parameters P0, Rk, and Qd and the calculation process of
the Kalman gain are consistent with the methods in [25] and will not be repeated here.

(a)

DC source Main circuit Scope
Electronic load

Voltage sensor

circuit

dSPACE controller PC

Measurement

circuit

PWM

External 

data bus

A/D A/D 

Digital I/O

(b)

Figure 2. Experimental test setup. (a) Configuration. (b) Photograph of Hardware.
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4.2. Experiment Results

Case I. The system is just started:
Figure 3a–c are the waveform curves of the output voltage, inductor current, and

duty ratio, respectively, when the system is just started. As shown in Figure 3a, in all
three control schemes, the output voltage can track the reference voltage, and the effect
is good. At the same time, the three schemes have some overshoot, especially when the
observer only uses GPIO. In Figure 3b,c, when the system is just started, the inductor
current-response curves and duty-ratio curves of the three control schemes are similar.

Figure 3. Waveform curves when the system is just started. (a) Output voltage. (b) Inductor current.
(c) Duty ratio.

Case II. Disturbance is form of step:
At t = 3.4 s, the sudden change of input voltage is taken as the step disturbance of

the system. Specifically, the input voltage is expected to change from its nominal value.
Figure 4a–c are the waveform curves of output voltage, inductor current, and duty ratio,
respectively, when disturbance is the form of step . As shown in Figure 4a, the proposed
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method has stronger anti-disturbance ability, but other methods have the same effect on
such disturbance, so it can only be said that it has a small advantage. In Figure 4b,c, when
disturbance is the form of step, the inductor current response curves and duty ratio curves
of the three control schemes are almost the same.
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Figure 4. Waveform curves when disturbance is form of step. (a) Output voltage. (b) Inductor current.
(c) Duty ratio.

Case III. Disturbance is the polynomial form of time series:
At t = 6 s, a sawtooth disturbance is added to the nominal value of the input voltage

as a polynomial disturbance of the time series. Figure 5a–c are the waveform curves
of the output voltage, inductor current, and duty ratio, respectively, when disturbance
is is the polynomial form of time series. As shown in Figure 5a,b, it is not difficult to
find that the advantages of the proposed method are particularly obvious. Two other
controllers cannot remove the effects caused by such disturbance. In general, ESO can only
suppress a slowly varying disturbance. Even if the Kalman filter structure is added, it
can only reduce its sensitivity to noise, and it cannot adequately observe and compensate
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for polynomial disturbance. However, GPIO can suppress polynomial disturbance in
essence. Even without the Kalman filter structure, GPIO is less sensitive to noise, but it is
effective to disturbance itself. Therefore, GPIO is better than ESO + KF.
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Figure 5. Waveform curves when disturbance is polynomial form of time series. (a) Output voltage.
(b) Inductor current. (c) Duty ratio.

5. Conclusions

A new control strategy is designed for the DC-DC buck converter system with un-
certainties, disturbances, and noise at the same time. This strategy uses the composite
form of the Kalman filter and generalized proportional integral observer to estimate the
disturbances, which makes a tradeoff between the speed/accuracy of the GPIO to observe
states and disturbances and its sensitivity to noise. This strategy introduces disturbance
estimation into the design of the virtual control law of the backstepping controk, which
further improves the tracking performance and anti-disturbance ability. The theoretical
design of the strategy has undergone strict stability analysis, and hardware experiments
have also verified its feasibility and effectiveness.
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