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Abstract: This paper deals with the motion trajectory tracking control problem based on output
feedback and artificial neural networks for anthropomorphic manipulator robots under disturbed
operating scenarios. This class of manipulator robots constitutes nonlinear dynamic systems subjected
to disturbance torques induced mainly by work payload. Parametric uncertainty and possible
dynamic modeling errors stand for other kind of disturbances that can deteriorate the efficiency and
robustness of the tracking of controlled nonlinear robotic system trajectories. In fact, the presence of
unknown dynamic disturbances is unavoidable in industrial robotic engineering systems. Therefore,
for high-precision applications, such as laser cutting, marking, or welding, effective control schemes
should be designed to guarantee adequate motion profile tracking planned on this class of disturbed
nonlinear robotic system. In this context, a new adaptive robust motion trajectory tracking control
scheme based on output feedback and artificial neural networks of anthropomorphic manipulator
robots is presented. Three-layer B-spline artificial neural networks and time-series modeling are
properly exploited in the design of novel adaptive robust motion tracking controllers for robotic
applications of laser manufacturing. In this way, dependency on detailed nonlinear mathematical
modeling of robotic systems is considerably reduced, and real-time estimation of uncertain dynamic
disturbances is not required. Furthermore, several cases studies to demonstrate the motion planning
tracking control robustness for a class of MIMO nonlinear robotic systems are described. blue Insights
for the extension of the introduced output-feedback adaptive neural control design approach for
other architecture of nonlinear robotic systems are depicted.

Keywords: active disturbance rejection; artificial neural networks; laser manufacturing; manipulator
robot; trajectory tracking control

1. Introduction

The study and application of intelligent control techniques, such as fuzzy logic and
neural networks, have gained widespread recognition in recent years. The basis of these
techniques consists of learning in a prescribed manner the input–output behavior of a
system to subsequently be controlled [1]. The importance of these types of techniques
is found in nonlinear systems, variants in time, and those that are subjected to different
types of disturbances [2]. Manipulator robots have complex nonlinear dynamics that
can make accurate and robust control difficult. In today’s manufacturing environments,
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velocity and accuracy requirements increase when compared to earlier generations of
robots. However, the efficiency of fixed-gain PID controllers often is limited for providing
adequate performance in real-time operations of robot motion [3].

Since there are no adaptive or learning capabilities, control accuracy is significantly
affected when a variation due to unknown frictions and disturbing torques is presented
during motion control in laser manufacturing applications, such as cutting, welding, mark-
ing, and additive 3D printing [4]. The main purpose of controlling a manipulator robot is
to accomplish a specific task, such as payload transport [5], and motion profile tracking for
material processing [6], among others. To perform the required tasks, the manipulator is
commanded for reaching the desired position, velocity, acceleration, or force at a specific
time [7]. The nonlinear nature of manipulator robots makes it difficult to obtain an adequate
control law to perform different programmed tasks. There are computational methods
that improve the control laws efficiency, such as the artificial neural networks [8] that
are used to online update the control parameters value to improve the robotic system’s
closed-loop response. The exhibited adaptive behavior learns from the nonlinear nature
of the robot intelligently. So using neural networks for the tuning of the parameters of a
controller applied to a nonlinear and strongly coupled system represents a great advantage.
The recent renewed interest in neural networks can be attributed to different factors, one of
them is that different learning techniques have been developed for sophisticated artificial
neural network architectures, which are capable of eliminating the limitations of the past
associated with simple neural networks [9]. Neural networks are parallel computer models
that mimic a human’s learning process. The networks process information by adapting
their connections and nodes, based on the information they are given [10]. One important
feature is the intrinsic parallel architecture that allows fast computation of the solution.
This is achieved when the networks are implemented on digital computers or in specialized
hardware [11].

Artificial neural networks (ANN) have been used for the control of manipulator
robots for different applications in recent years. In [12], a trajectory planning methodology
of a manipulator robot is proposed through the design of an adaptive robust controller
that uses a neural network activated with radial basis functions; this is done to solve
nonlinearity and uncertainty problems and improve the performance during trajectory
tracking. In [13], a fixed-time control algorithm for the trajectory tracking of manipulator
robots with uncertainty and input saturation is designed, which combines the non-singular
terminal sliding mode control with the reinforcement learning method. To compensate
for the saturation of the actuators due to the effect of joint torque overflow, a nonlinear
anti-windup compensator is designed. Authors in [14] introduce a multi-layer neural
network with iterative learning for controller design to compensate for the dynamics of an
articulated industrial manipulator robot for trajectory tracking tasks. The iterative learning
control commands the robot motion, which corresponds to a set of desired joint trajectories.
Additionally, the torques of the input/output trajectories are used for training the inner
control loop through inverse dynamics. In this scheme, the trajectory is used as the input
desired joint of the robot, and the output is related to the commanded robot motion. In [15],
a modified artificial neural network algorithm is suggested to be applied as an adaptive
adjustment algorithm. A mathematical modulation is introduced to promote the scanning
form, and no initial parameters are set. The suggested algorithm is tested to select the gains,
and an appropriate configuration is selected. This algorithm is applied for improving a
PID-like joint motion controller for a manipulator robot. In [16], the output error constraints
and input saturation of robot manipulators are considered and presented with a trajectory
tracking controller to attend to these requirements simultaneously through an artificial
neural network structure with radial basis functions that can approximate the pooled
uncertainties. In [17], a deep convolutional neural network is designed to implement a
fractional order sliding mode control strategy for trajectory tracking control in manipulator
robots. The neural network compensates for system uncertainty without the need to
know the upper bounds, thus the controller switching gain is greatly reduced. The main
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advantage of the controller used lies in the elimination of chattering, so continuous control
signals can be obtained and applied in practical applications. In [18], a control scheme is
proposed to handle the unknown dynamics and the external disturbances in a manipulator
robot by combining a self-tuning PID structure with an artificial neural network using radial
basis activation functions to handle the different uncertainties. In [19], to track the trajectory
of a robot and supply constant force during contact working conditions, a PID fuzzy neural
network controller is developed. For manufacturing applications, changing the contact
force during machining operations will affect the quality, so it is crucial to maintain them
constantly throughout the process. For the parameters of the PID controller to be adjusted
quickly and effectively, a fuzzy algorithm is proposed that includes neural networks in
such a way that the controller has two functions: path following and bounded shifting
online whilst maintaining the contact force constant. In [20], an adaptive neural control
scheme for manipulator robots that includes actuator dynamics under model uncertainty is
proposed based on prescribed performance without measuring input current, acceleration,
or velocity. A neural adaptive second-order PID controller is combined with an acceleration
velocity observer. The proposed method demonstrates that semi-global bounds are found
for tracking and state observation errors, and they eventually converge in a small circle
about the origin.

With the B-spline artificial neural networks (Bs-ANN), adaptive control and modeling
of systems are possible both online and with nonlinearities taken into account [21]. In the
literature, the estimation of harmonics and DC offset component of multi-frequency oscil-
lating electric signals [22], control of electric power systems [23], different types of electric
motors, such as DC shunt [24], induction [25] and permanent magnet synchronous [9] as
well as unmanned aerial vehicles [26] are some examples of the successful implementation
of B-spline neural networks. Nevertheless, there is no evidence of the previous implemen-
tation in anthropomorphic manipulator robots. The main advantage of the B-spline neural
network is that it can limit the input to a set of values defined in the base function. This
reduces computational effort and time because there are only a limited number of basis
functions involved in the output; not all weights need to be calculated every time iterations
are performed [26]. The proposal allows calculating and updating the values of the param-
eters of the proposed controller through the neural network for each operating condition
of the robot. A proper design requires prior information: the maximum and minimum
values for the input signal and defining the shape of the basis functions. This information
allows for limiting the input space of the B-spline neural networks, which improves their
convergence and stability in adaptation. Additionally, this information is used to determine
the optimal weights for the neural network [27]. The B-spline neural networks used in
this work are created by third-order uni-variable basis functions considering that the input
signal is bounded.

The main contribution of this work is a new neural adaptive robust motion trajectory
tracking control technique based on output feedback for a very important class of nonlinear
robotic manipulator systems used in applications of laser manufacturing. In this context,
advantages and differences with respect to other relevant contributions reported in the
literature are as follows. Position measurements are only required. Time derivatives of mea-
sured output signals are not requested. Accurate real-time estimation of different types of
disturbances is unnecessary. B-spline artificial neural networks are used correctly to prevent
high-gain control actions to suppress unknown time-varying disturbances. The number of
control parameters that need to be adaptively adjusted is lessened. Dependency on detailed
nonlinear mathematical modeling of the manipulator robot system is reduced. Robustness
against external disturbances, such as external vibrating torques, is also obtained. Moreover,
the introduced output feedback adaptive neural control design approach can be extended
for other architectures of complex nonlinear robotic systems.

A summary of the contents of the manuscript is as follows. The robotic system model
is described in Section 2. The robot motion control approach is presented in Section 3.
In Section 4, the artificial neural networks-based robot motion control is described. Subse-
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quently, some numeric simulation experiments are presented in Section 5 to highlight the
performance of the introduced methodology. Finally, some conclusions and remarks are
mentioned in the conclusions section.

2. 3-DOF Robot Mathematical Modeling
2.1. System Description

The geometry of interest in this work is anthropomorphic as shown in Figure 1.
The robotic system configuration is composed of three rotational joints. This configuration
represents the most dexterous structure, which can be adapted to almost any type of task.

Figure 1. Architecture of the anthropomorphic robotic system.

Figure 2 depicts projections of the anthropomorphic manipulator robot on XY and
XZ planes for the derivation of a nonlinear dynamic model. Generalized coordinates of
the configuration space are denoted by qi, i = 1, . . . , 3. Here, q1 is the rotation angle of
link 1 about the Z axis. q2 and q3 are the rotation angles of links 2 and 3 about the Y axis.
d1 is the distance between point O of the fixed inertial coordinate reference frame XYZ and
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the rotation axis of q2. l2 corresponds to the distance between the rotation axis of q2 and the
rotation axis of q3. lc2 is the distance from the rotation axis of q2 to the center of mass of
link 2. l3 is the distance between the rotation axis of q3 and the center of the end effector. lc3

is the distance from the rotation axis of q3 to the center of mass of link 3. m1 is the mass of
link 1. m2 corresponds to the mass of link 2. m3 is the mass of link 3, which also includes
the mass of the end effector.

Figure 2. Projections on XY and XZ planes for mathematical modeling purposes.
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2.2. Kinematic Modeling

The direct kinematic model of a 3-DOF anthropomorphic manipulator robot [28,29] is
expressed as

x = cos(q1)[l2 cos(q2) + l3 cos(q2 + q3)]

y = sin(q1)[l2 cos(q2) + l3 cos(q2 + q3)] (1)

z = d1 + l2 sin(q2) + l3 sin(q2 + q3)

The inverse kinematic model of the 3-DOF anthropomorphic manipulator robot [28,29]
is then described as

q1 = tan−1
( y

x

)

q2 = tan−1

(
z− d1√
x2 + y2

)
− tan−1


l3

√√√√1−
(

x2 + y2 + (z− d1)
2 − l2

2
− l2

3

2l2 l3

)2

l2 + l3

(
x2 + y2 + (z− d1)

2 − l2
2
− l2

3

2l2 l3

)
 (2)

q3 = tan−1


±

√√√√1−
(

x2 + y2 + (z− d1)
2 − l2

2
− l2

3

2l2 l3

)2

(
x2 + y2 + (z− d1)

2 − l2
2
− l2

3

2l2 l3

)


2.3. Dynamic Modeling

The analysis of a manipulator robot requires the use of differential equations to under-
stand the relationship between the elements that compose it. By modeling the dynamic
behavior of a manipulator robot, all physical phenomena found in its mechanical structure
are explained, including inertial effects, centripetal and Coriolis forces, gravitational torque,
and friction, which are physical phenomena resulting from the robot’s dynamic nature [30].
The development of the dynamic model of an anthropomorphic manipulator robot through
the Euler–Lagrange methodology was widely studied in [28–30].

The nonlinear behavior of a manipulator robot can be thus modeled by the Euler–
Lagrange equations

d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Qi i = 1, . . . , n (3)

with

L = K−V (4)

where L is the Lagrangian, K and V are the kinetic and potential energy. n denotes the
number of degrees of freedom, q = (q1, q2, . . . , qn) represents the generalized coordinates
of the robotic system, and Qi stands for components of the generalized force.

The kinetic energy of the robotic system depicted in Figures 1 and 2 is given by

K = K1 + K2 + K3 (5)
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with

K1 =
1
2

Iz1 q̇2
1

K2 =
1
2

m2l2
c2
[(1− sin(q2)

2)q̇2
1 + q̇2

2] +
1
2

Iz2 q̇2
1 +

1
2

Iy2 q̇2
2

K3 =
1
2

m3[(l2
2 + l2

2 cos(2q2) + 2l2lc3 cos(2q2 + q3) + 2l2lc3 cos(q3) + l2
c3

cos(2q2 + 2q3)

+ l2
c3
)

q̇2
1

2
+ (l2

2 + 2l2lc3 cos(q3) + l2
c3
)q̇2

2 + (2l2lc3 cos(q3) + 2l2
c3
)q̇2q̇3 + l2

c3
q̇2

3] +
1
2

Iz3 q̇2
1

+
1
2

Iy3(q̇2 + q̇3)
2

The potential energy is obtained as

V = V1 + V2 + V3 (6)

with

V1 = m1gd1

V2 = m2g[d1 + lc2 sin(q2)]

V3 = m3g[d1 + l2 sin(q2) + lc3 sin(q2 + q3)]

From Equations (3) and (4), nonlinear dynamics of the robotic system can be then
described by the vector differentialequation

D(q)q̈ + C(q, q̇)q̇ + G(q) = τ − τd (7)

where D(q) ∈ Rn×n stands for the inertia matrix, C(q, q̇) ∈ Rn×n represents the Coriolis
and centripetal matrix and G(q) ∈ Rn denotes the torque vector due to gravity [28]. More-
over, τ and τd ∈ Rn are the joint driving torque and the external load torque, respectively.

From Equation (7) and without loss of generality, the dynamic model for a 3-DOF
anthropomorphic manipulator robot is given byd11 d12 d13

d21 d22 d23
d31 d32 d33

q̈1
q̈2
q̈3

+

c11 c12 c13
c21 c22 c23
c31 c32 c33

q̇1
q̇2
q̇3

+

g11
g21
g31

g =

τ1

τ2

τ3

−
τd1

τd2
τd3

 (8)

Grouping terms according to the joint accelerations of the robot (q̈1, q̈2, q̈3), the inertia
matrix is expressed as

D(q) =

d11 0 0
0 d22 d23

031 d32 d33

q̈1
q̈2
q̈3

 (9)

with

d11 = Iz1 + Iz2 + Iz3 +
(m2

2

)
[l2

c2
(1 + cos(2q2))]

+
(m3

2

)
[2l2lc3(cos(2q2 + q3) + cos(q3)) + l2

2(1 + cos(2q2)) + l2
c3
(1 + cos(2q2 + 2q3))]

d22 = Iy2 + Iy3 + m2l2
c2
+ 2m3l2lc3 cos(q3) + m3

(
l2
2 + l2

c3

)
d23 = Iy3 + m3l2lc3 cos(q3) + m3l2

c3

d32 = Iy3 + m3l2lc3 cos(q3) + m3l2
c3

d33 = Iy3 + m3l2
c3
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Similarly, by grouping terms according to the joint velocities of the robot (q̇1, q̇2, q̇3),
the matrix of centripetal and Coriolis forces is expressed as

C(q, q̇) =

 0 c12 c13
c21 c22 c23
c31 c32 0

q̇1
q̇2
q̇3

 (10)

with

c12 = −
(

m2l2
c2

sin(2q2) + m3

(
l2
2 sin(2q2) + 2l2lc3 sin(2q2 + q3) + l2

c3
sin(2q2 + 2q3)

))
q̇1

c13 = −(m3lc3(l2(sin(2q2 + q3) + sin(q3)) + lc3 sin(2q2 + 2q3)))q̇1

c21 =
((m2

2

)
l2
c2

sin(2q2) +
(m3

2

)(
l2
2 sin(2q2) + 2l2lc3 sin(2q2 + q3) + l2

c3
sin(2q2 + 2q3)

))
q̇1

c22 = −2m3l2lc3 sin(q3)q̇3

c23 = −m3l2lc3 sin(q3)q̇3

c31 =
(m3

2

)(
l2
c3

sin(2q2 + 2q3) + l2lc3(sin(2q2 + q3) + sin(q3))
)

q̇1

c32 = m3l2lc3 sin(q3)q̇2

The gravitational torque vector of the manipulator robot is finally expressed as

G(q) =

 0
(m2lc2 + m3l2) cos(q2) + m3lc3 cos(q2 + q3)

m3lc3 cos(q2 + q3)

g (11)

3. Robot Motion Control Synthesis

The mathematical model (7) has been widely used to describe the controlled dynamics
of several architectures of complex nonlinear robotic systems [28,29].From Equation (7),
the tracking error dynamics on controlled nonlinear robotic system trajectories can be
expressed as follows:

ëq = v + ξ (12)

with

ξ = −q̈? −D−1(q)G(q)−D−1(q)C(q, q̇)q̇−D−1(q)τd (13)

where v = D−1(q)τ denotes an auxiliary (virtual) control input vector.
The trajectory tracking error vector is eq =

[
eq1 eq2 eq3

]T with eqi
= qi − q?

i
for

i = 1, 2, 3. Here, q?i (t) stands for angular position reference trajectories planned for the
operation of the robotic system.

In the present study, the integral reconstruction approach of velocity state variables is
suitably exploited [31]. In this fashion measurements of velocity signals are unnecessary.
Dependence on disturbed nonlinear dynamic system models is also reduced. Furthermore,
differentiation of generalized coordinates with respect to time is not requested, avoiding
the possible generation of undesirable corrupting noise during the measurement signal
processing. Thus, from Equation (12), the integral reconstructor of the reference trajectory
tracking error velocity vector is proposed as follows:

̂̇eq =
∫ t

t0

v dt (14)
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For robust control design purposes, ξ = [ξ1 ξ2 ξ3]
T is considered a completely un-

known time-varying disturbance vector to be actively rejected, which can be approximated
into a self-adjusting, very small window of time by the Taylor series polynomial expansion

ξ = p0 + p1t (15)

Moreover, parameter vectors of the disturbance signal model (15), p0 =
[
p01 p02 p03

]T
and p1 =

[
p11 p12 p13

]T, are assumed to be unknown as well. Small uncertainties in
components of the matrix D(q) and dynamic modeling errors could be also considered into
the disturbance vector ξ. In contrast to other active disturbance rejection control approaches,
the real-time estimation of disturbances and time derivatives of position output signals is
not required in the present contribution.

Then, the real and reconstructed tracking error velocity vectors holds the following
relationship:

ėq = ̂̇eq + a0t + a1t2 (16)

where vector parameters a0 =
[
a01 a02 a03

]T and a1 =
[
a11 a12 a13

]T are also assumed to be
unknown, which depend on initial conditions of the nonlinear robotic system and parame-
ters of the polynomial signal model (15). The interested reader on integral reconstructors as
an alternative to bypass time derivatives of measurement signals and design of asymptotic
state observers is referred to the contribution [31].

The auxiliary control vector v is proposed as follows

v = −B4̂̇eq − B3eq − B2

∫
eq − B1

∫ (2)
eq − B0

∫ (3)
eq (17)

where

Bi =

βi1 0 0
0 βi2 0
0 0 βi3

 (18)

for i = 0, 1, . . . , 3, and
∫ (n)

stands for the nth integral respect to time. Here, integral error

action is properly embedded into auxiliary control to actively compensate disturbances
ξ as well as differences between real and reconstructed velocity vectors as described by
Equation (16).

By considering the torque controllers defined by

τ = D(q)v (19)

the closed-loop tracking error dynamics results in

e(5)q + B4e(4)q + B3e(3)q + B2ëq + B1ėq + B0eq = 0 (20)

Then, the gain matrices are suitably selected as matching the following Hurwitz stable
characteristic polynomials:

PH(s) = s5I3×3 + BH4 s4 + BH3 s3 + BH2 s2 + BH1 s + BH0 (21)

4. Artificial Neural Networks-Based Robot Motion Control

In the robust control approach introduced above, the control gains vector can be
selected as a constant. However, this vector can be dynamically updated to improve the
dynamic response of the system. Artificial neural networks are intelligent agents capable
of learning from experiences. These artificial entities employ a massive interconnection
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of neurons, referred to in the literature as simple computing or processing cell units [1].
In this research, the role of the B-spline artificial neural networks is to provide adaptation
capabilities to the introduced robot motion control strategy by updating online the controller
gains, as shown in scheme of Figure 3. With the online training of the Bs-ANN, the control
law is constantly updated based on the tracking error information. In contrast with other
conventional multilayer networks, used in identification and control applications, B-spline
networks are based on a defined three-layer structure which decreases its complexity,
consequently making them a powerful alternative in real-time implementations.

Neuron

Output
Weight

 vector

Basis 

functions

Input

 vector

Input layer Hidden layer Output layer

Figure 3. Proposed architecture for the B-spline artificial neural network (Bs-ANN).

Adaptive Outline for Control Purposes

Without high-gain feedback or high-frequency switching, adaptive control schemes
have successfully handled parametric uncertainties and achieved asymptotic stability [32].
Using a linear combination of mono-variable and multi-variable basis functions, a B-spline
function is a polynomial function defined by its extremes. In this work, an adaptive robust
control scheme was dynamically tuned using B-spline artificial neural networks. Each
Bs-ANN updates its synaptic weights based on different learning indexes and inputs. By
continually learning the variables associated with the physical system, this type of network
can cope with the system’s nonlinearities and uncertainties [27].

In Figure 3, an implementation of Bs-ANN is shown as a set of associative networks
with synaptic weights that can be adjusted to reproduce a specific function. The author
in [33] proposes the following output

yn = aw, w =
[
w1 w2 . . . wj

]T , a =
[
a1 a2 . . . aj

]
(22)

where wj and aj are the j-th weight and the j-th basis function input, respectively, and j
is the number of synaptic weights. Here, the B-spline functions are used to calculate the
gains of the controllers, with the input of each neural network defined as the tracking error
and the error derivatives, and with the output yn(t) defined as the control parameters.
To determine the initial weight values and input thresholds, it is common to perform
offline training of the network by studying the system in different and relevant operational
conditions, which can be easily done by using bio-inspired optimization algorithms [26].
The minimization error, i.e., the difference between the actual output vector and its desired
value, is a key element of the learning process. For this development, the following instant
learning rule was adopted [34]:

wn(t) = wn(t− 1) +
`en(t)
‖ a(t) ‖2

2
a(t) (23)
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here, ‖ · ‖2 is the vector 2-norm or Euclidean norm; ` is the learning rate, and en(t) is
the instantaneous output error. Through this method, training is performed online and
continuously, with weight values updated in response to tracking error and derivative
error feedback. With the boundaries properly set by choosing the correct knot vector
and basis function form, this single-inner-layer structure becomes an extremely powerful
mechanism. For the proposed adaptive control scheme, four third-order base functions are
used: two related to the tracking error and two for the error derivative.

5. Numeric Simulation Results

The proposed motion control scheme was evaluated through several numeric sim-
ulations. During the first scenario, the proposal is implemented for motion control in
joint-space mode. Secondly, the approach is used in motion control in the operative space,
where the independence of a precise robot dynamical model is exhibited, and control
gains are suitably updated online. Finally, the proposed control scheme is compared with
a PID-like control scheme when the system is subjected to external disturbance torques.
It is important to note that in the different laser manufacturing applications, the precise
motion of the robot is required, even in the presence of disturbances, as addressed in the
numeric experiments.

During the simulations, the anthropomorphic manipulator robot with three degrees of
freedom previously described is considered, which is characterized by the set of parameters
presented in Table 1.

Table 1. System parameters used during simulation scenarios.

Parameter Quantity Units Description

m1 0.73 Kg Link 1 mass
m2 0.85 Kg Link 2 mass
m3 0.51 Kg Link 3 mass
d1 0.14 m Link 1 length
lc2 0.10 m Link 2 length to the center of mass
l2 0.20 m Link 2 length
lc3 0.20 m Link 3 length to the center of mass
l3 0.30 m Link 3 length
Iz1 0.0015 Kg m2 Inertia of link 1 in the Z axis
Iy2 0.0054 Kg m2 Inertia of link 2 in the Y axis
Iz2 0.0013 Kg m2 Inertia of link 2 in the Z axis
Iy3 0.0031 Kg m2 Inertia of link 3 in the Y axis
Iz3 0.0032 Kg m2 Inertia of link 3 in the Z axis
g 9.81 m/s 2 Gravitational acceleration constant

5.1. Scenario 1: Joint Space Control

In Figure 4, it is presented the proposed control scheme for the first scenario. It is
evident from this figure that only measurements of the angular positions are required for
the adaptive robust controller.

Controller

Figure 4. Motion robot control in the joint space.
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On the other hand, it is relevant to mention that in order to tune a reduced number of
control parameters, the following Hurwitz stable polynomial is considered for each degree
of freedom:

Pd(s) = (s2 + 2ζcωcs + ω2
c )

2(s + Pc) (24)

here ωc, ζc, Pc > 0, are the tuning parameters.
Therefore, to ensure closed-loop stability and proper tracking of the planned trajectory,

control gains can be selected as follows:

β4i = 4ζcωc + Pc

β3i = 2ω2
c + 4ζ2

c ω2
c + 4Pcζcωc

β2i = 4ω3
c ζc + 2Pω2

c + 4Pcζ2
c ω2

c

β1i = 4Pcω3ζc + ω4
c

β0i = Pcω4
c (25)

As a result, only three tuning parameters are required instead of six.
During the first simulation scenario, the robot performs motion regulation in the

articular space. For smooth transitions between initial and final angular positions, let us
introduce the position reference profile in (26), which is implemented in order to avoid
abrupt motion:

Π? =


Π0 0 ≤ t < T1 [s]

Π0 +
(

Π f −Π0

)
Bz(t, T1, T2) T1 ≤ t ≤ T2 [s]

Π f t > T2 [s]
(26)

where Π0 and Π f stand for desired initial and final values of angular motion trajectories
planned for the manipulator robot. Meantime, Bz is a Bézier polynomial defined as

Bz(t, T1, T2) =
n

∑
k=0

δk

(
t− T1

T2 − T1

)k
(27)

with n = 6, and δ1 = 252, δ2 = 1050, δ3 = 1800, δ4 = 1575, δ5 = 700, δ6 = 126 [35].
In Figure 5, it is portrayed the results for the first scenario, where several changes

in the trajectory references are commanded for each joint by using the expression in (27).
From the figure, it is evident a suitable tracking of the Bézier motion profiles. The computed
driving torques for each joint are soft and reachable. A very common problem in the design
of controllers is the saturation of the actuators due to the high magnitude of the required
torque signals, something that in this case is solved satisfactorily.
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Figure 5. Cont.
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Figure 5. Controlled robot motion in the joint-space for the first scenario. (a) Controlled angular
position q1. (b) Computed driving torque τ1. (c) Controlled angular position q2. (d) Computed
driving torque τ2. (e) Controlled angular position q3. (f) Computed driving torque τ3.

Notwithstanding, the gain values are based on the computation of the ωc, ζc, Pc pa-
rameters, as shown in Figures 6 and 7. In this case of joint movement control, the evolution
of the control parameters in the first joint is presented. This is because it is the joint that
bears the full weight of the robot, so it would be expected to require a greater magnitude of
torque to perform the required movements. However, due to the proposed control scheme,
it should be noted that the demanded torque has a very small magnitude, and an excellent
follow-up of the programmed joint trajectory is obtained.
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Figure 6. Computed dynamic control parameters for the first joint motion (a) Adaptive ωn1 control
parameter. (b) Adaptive ζn1 control parameter. (c) Adaptive Pn1 control parameter.
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Figure 7. Computed control gains for the first joint motion. (a) β01 . (b) β11 . (c) β21 . (d) β31 . (e) β41 .

Notice from figures that the control gains are dynamic, updated online by the adaptive
scheme based on the information of the tracking error dynamics, as shown in Figure 3.

5.2. Scenario 2: Cartesian Space Control

In the second scenario, the Cartesian space control is considered. Here, the inverse
kinematics of the robot is used for computing the joint tracking references. In this experi-
ment, a Cartesian reference trajectory is selected that is typically used in laser applications.
The Cartesian position references Λ? are as follows:

x? = 0.08 + 0.15(tk/4) [m]

y? = −0.15 + 0.05 cos(π + tk) sin(π + tk) [m] (28)

z? = 0.4− 0.1 cos(π + tk) cos(π + tk) [m]

where tk = (tk + ∆tk)/10 s, with initial values of tk and ∆tk are zero and updated each
iteration as ∆tk = ∆tk + 0.1× 10−3.
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In the same way as in the previous case, it is only necessary to know the desired
angular positions of the robot in order to carry out the trajectory tracking satisfactorily.
Figure 8 presents the block diagram of the proposed control scheme in the Cartesian space.

ControllerInverse

kinematics

Direct 

kinematics

Figure 8. Motion robot control in the Cartesian space.

Figure 9 presents the results of the robot motion control scheme in Cartesian space.
It is highlighted that the proposed scheme presents excellent tracking results without the
need to provide the speeds and accelerations of the reference to be followed.
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Figure 9. Motion robot control in the Cartesian space. (a) Trajectory tracking on the x axis. (b) Trajec-
tory tracking on the y axis. (c) Trajectory tracking on the z axis. (d) 3D trajectory tracking.

Finally, Figure 10 presents the tracking of the system in the joint space. It can be noted
that the system demands very small torque magnitudes to execute the movement of the
system. This is a very important aspect to prevent the actuators from saturation due to very
high magnitudes of torque.

In scenarios where non-modeled dynamics and/or disturbances occur, the proposed
control scheme can present excellent results, so it would be an excellent alternative to be
implemented in high-precision manufacturing systems, such as laser cutting and welding
robots. This aspect can be better appreciated in the following scenario.
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Figure 10. Properly controlled motion even in presence of unmodeled dynamics. (a) Controlled q1

joint motion. (b) Computed driving torque τ1. (c) Controlled q2 joint motion. (d) Computed driving
torque τ2. (e) Controlled q3 joint motion. (f) Computed driving torque τ3.

5.3. Scenario 3: Joint Space Robot Motion Subjected to External Vibrating Torques

To demonstrate the effectiveness of the proposed control strategy, the joint space
motion control of the manipulator robot subjected to disturbance torques τd =

[
τd1 τd2 τd3

]T
is presented. Here, the robotic system is intentionally suddenly perturbed with unknown
and undesired vibrating torques, portrayed in Figure 11, which are given as follows:

τd1 =

{
0 [Nm] 0 ≤ t < 10 [s]

0.7 cos(0.1t) [Nm] t ≥ 10 [s]
(29)

τd2 =

{
0 [Nm] 0 ≤ t < 15 [s]

0.3 cos(0.1t) + 0.2 sin(0.5t) [Nm] t ≥ 15 [s]
(30)

τd3 =

{
0 [Nm] 0 ≤ t < 20 [s]

0.2 sin(0.1t) + 0.1 sin(0.5t) [Nm] t ≥ 20 [s]
(31)
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Figure 11. Induced external vibrating torques.

On the other hand, the model-based PID-like plus a dynamic inversion controller
introduced in Equation (32) is presented for contrasting the capabilities of the introduced
motion controller.

τ = D(q)[q̈? − u] + C(q, q̇)q̇ + G(q) (32)

where u is a PID-like controller vector given by

u = Kpeq + Ki

∫ t

t0

eq dt + Kdėq (33)

and eq = q − q?. Notice from the equations that there exists a high dependence of
the mathematical model, which is not desirable in manufacturing applications due to the
parameter uncertainty of both the robot and the objects it must manipulate and the presence
of the non-modeled dynamics and unknown perturbations, which is the case of frictions
and vibrations that can occur during the operation of the system.

In Figure 12, the unperturbed responses are portrayed for both controllers. It is
evident that an acceptable performance is achieved. Notwithstanding, in the presence of
undesired and unknown vibration torques, the PID-like controller is unable to stabilize
the system or to track the reference, as observed in Figure 13. Here, it is observed that the
motion controller performance is significantly deteriorated when external disturbances
are present. Notice that in the proposed motion control scheme, the suitable integration of
the Bézier polynomials as the reference motion profiles allows to achieve a superior robot
motion performance.

Figure 12 shows the comparison in the robot motion control between a PID-like
controller dependent on the mathematical model of the system and the proposed robust
adaptive controller without considering external disturbances. In the trajectory tracking
with the PID-like controller, it is clearly observed that the system does not reach the desired
reference with the requirements that are being demanded, but instead presents a delay,
which is not desirable in high-precision manufacturing applications. In contrast, the pro-
posed control strategy reaches the references with smooth and controlled movements,
which allows to avoid collisions and damages in cases of application in real environments
both for the robot and also for what it is going to manipulate. A system with a PID-like
controller in most cases can only work under pre-established conditions.

It is also true that the tuning of the PID controller gains could be improved, but this
does not make it less dependent on the model and due to the non-modeled dynamics
existing in the robot environment, it would still not work properly if subjected to external
disturbances. In addition, a greater number of control parameters than those calculated
with the proposed controller would have to be considered.
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Figure 12. Controlled motion without external disturbance inputs. (a) Controlled q1 joint motion with
PID controller. (b) Controlled q1 joint motion with proposed robust adaptive controller. (c) Controlled
q2 joint motion with PID controller. (d) Controlled q2 joint motion with proposed robust adaptive
controller. (e) Controlled q3 joint motion with PID controller. (f) Controlled q3 joint motion with
proposed robust adaptive controller.

Figure 13 shows that when the system with the PID controller is subjected to external
disturbances, it has a very low performance, so the robot does not have the ability to
perform the required trajectory tracking, unlike the proposed control scheme in which it
can be seen that no deviation is generated from the paths that the robot is required to follow
despite the disturbances that are being input.

Finally, it is considered a last experiment, where parametric uncertainty in matrix D(q)
is presented, which might affect considerably the system performance since the controllers
introduced in Equations (19) and (32) depend on the matrix values. In this fashion, let us
consider additional variations of ±20% in the matrix value used for control purposes under
the previous scenario conditions. A quantitative comparison of the controllers performance
is carried out by using the integral time absolute error (ITAE) and the integral squared
control input (ISCI) indexes, which are associated with the tracking error and control input
efforts for each joint as follows:

ITAE =
∫ t

0
t|e|dt (34)
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ISCI =
∫ t

0
u2dt (35)

where e and u stand for the tracking errors and control inputs for each degree of freedom.
From Table 2, it is corroborated a better performance of the proposed control scheme
for the robotic manipulator systems, even when less information is required from the
physical system in contrast with the PID-like controller. Moreover, in Tables 3 and 4, it
is summarized the performance indexes when there exist variations in the matrix values
used by the control schemes, which are ±20 of the nominal real matrix value. Furthermore,
from Equations (19) and (32), it is evident that when uncertainty is also considered in the
Coriolis and centripetal forces matrix C(q, q̇), the performance of the PID-like controller is
further deteriorated. On the other hand, the low system model information dependence of
the proposed adaptive robust motion tracking controller allows the system to portray a
better performance when the system is subjected to parametric uncertainty, non-modeled
dynamics and unknown disturbing vibrating load torques. Overall, the presented results
demonstrate that the proposal is a feasible and robust alternative to achieve an acceptable
performance in motion tracking control for robotic manipulator systems.
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Figure 13. Controlled motion subjected to external disturbance inputs. (a) Controlled q1 joint
motion with PID controller. (b) Controlled q1 joint motion with proposed robust adaptive controller.
(c) Controlled q2 joint motion with PID controller. (d) Controlled q2 joint motion with proposed
robust adaptive controller. (e) Controlled q3 joint motion with PID controller. (f) Controlled q3 joint
motion with proposed robust adaptive controller.
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Table 2. 0% variation from the real D(q) matrix in the controller implementation.

PID-Like Proposal

Joint ITAE ISCI ITAE ISCI

q1 37.08 8.75 0.05 8.02
q2 13.50 323.68 2.60× 10−3 322.76
q3 36.54 41.11 3.80× 10−4 39.51

Table 3. 20% variation from the real D(q) matrix in the controller implementation.

PID-Like Proposal

Joint ITAE ISCI ITAE ISCI

q1 45.85 8.64 0.04 8.02
q2 16.10 324.08 2.21× 10−3 322.67
q3 45.06 41.33 2.81× 10−4 39.77

Table 4. −20% variation from the real D(q) matrix in the controller implementation.

PID-Like Proposal

Joint ITAE ISCI ITAE ISCI

q1 31.22 8.84 3.01 35.53
q2 11.78 324.10 0.08 324.4972
q3 30.91 41.06 0.0014 39.77

6. Conclusions

In this paper, the anthropomorphic robot manipulation problem was addressed with
an adaptive robust motion control scheme, where B-spline artificial neural networks and
dynamic compensators are successfully integrated in motion controllers for regulation and
output tracking tasks, where just the angular position information is demanded. In this
contribution, it is neither required the use of a disturbance observer, angular velocity mea-
surements nor the feed-forward of the tracking references information. The performance of
the proposed controller is demonstrated in exhaustive simulation experiments where the
system is subjected to both external undesired forced torques and non-modeled dynamics.
Acceptable levels of the tracking error are corroborated when the proposed motion control
scheme is implemented in a three degree of freedom virtual robot system in the articular
and Cartesian space perspectives. It is worth mentioning that this novel proposal can be eas-
ily further extended to n-degrees of freedom robotic manipulator systems. Future research
work will deal with the synthesis of high-efficiency adaptive output-feedback planned
motion profile tracking control strategies based on artificial neural networks for MIMO
nonlinear robotic systems under operational scenarios where uncertainty on dimensional
specifications of mechanical design could be expected.
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