
Citation: He, Y.; Lv, J.; Liu, H.; Tang,

T. Toward the Trajectory Predictor for

Automatic Train Operation System

Using CNN–LSTM Network.

Actuators 2022, 11, 247. https://

doi.org/10.3390/act11090247

Academic Editor: André Preumont

Received: 5 August 2022

Accepted: 28 August 2022

Published: 31 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

actuators

Article

Toward the Trajectory Predictor for Automatic Train Operation
System Using CNN–LSTM Network
Yijuan He 1 , Jidong Lv 1,* , Hongjie Liu 1 and Tao Tang 2

1 National Engineering Research Center of Rail Transportation Operation and Control System, Beijing Jiaotong
University, Beijing 100044, China

2 State Key Lab of Rail Traffic Control & Safety, Beijing Jiaotong University, Beijing 100044, China
* Correspondence: jdlv@bjtu.edu.cn

Abstract: The accurate trajectory of the train ahead with more dynamic behaviour, such as train
position, speed, acceleration, etc., is the critical issue of virtual coupling for future railways, which
can drastically reduce their headways and increase line capacity. This paper presents an integrated
convolutional neural network (CNN) and long short-term memory (LSTM) hybrid model for the
task of trajectory prediction. A CNN–LSTM hybrid algorithm has been proposed. The model
employs CNN and LSTM to extract the spatial dimension feature of the trajectory and the long-term
dependencies of train trajectory data, respectively. The proposed CNN–LSTM model has superiority
in achieving collaborative data mining on spatiotemporal measurement data to simultaneously learn
spatial and temporal features from phasor measurement unit data. Therefore, the high-precision
prediction of the train trajectory prediction is achieved based on the sufficient fusion of the above
features. We use real automatic train operation (ATO) collected data for experiments and compare the
proposed method with recurrent neural networks (RNN), recurrent neural networks (GRU), LSTM,
and stateful-LSTM models on the same data sets. Experimental results show that the prediction
performance of long-term trajectories is satisfyingly accurate. The root mean square error (RMSE)
error can be reduced to less than 0.21 m, and the hit rate achieves 93% when the time horizon increases
to 4S, respectively.

Keywords: deep learning; CNN–LSTM model; virtual coupling; spatiotemporal data mining

1. Introduction

The increasing urban traffic congestion problem necessitates more rigorous require-
ments for train operation effectiveness. Railway transport is believed to have the potential
to improve the efficiency of passenger and cargo transportation and alleviate traffic conges-
tion. One efficient measure to improve the train operation capacity is to reduce the distance
of train separation, allowing more trains to be configured under a fixed railway network
structure.

The current principle, established in about 1870, is that the following train must
always be able to stop within the distance known to be clear ahead, assuming that the train
ahead might be stationary in its last know position. Therefore, the minimum headway
during train operation is designed as the emergency braking distance, which limits the
train operation density. The separation could be reduced on the assumption that the
leading train is unlikely to stop dead. The concept of virtual coupling is thus gaining
popularity because it builds on the principle that trains are separated by a relative braking
distance. This concept requires trains to maintain train-to-train communication and keep
the speed of the leading train and the following train synchronized and controlled within
the safety margin, as shown in Figure 1a, in which the V2I means vehicle-to-infrastructure
communication and V2V means comm vehicle-to-vehicle communication. Sm is the safety
margin to be maintained between two trains. For example, in the case of two trains with

Actuators 2022, 11, 247. https://doi.org/10.3390/act11090247 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act11090247
https://doi.org/10.3390/act11090247
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-2703-0608
https://orcid.org/0000-0001-8404-6820
https://orcid.org/0000-0001-8268-4618
https://doi.org/10.3390/act11090247
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act11090247?type=check_update&version=1


Actuators 2022, 11, 247 2 of 14

different characteristics, Sm is the safety distance to be maintained under the difference of
braking performance. Therefore, in the train operation scenario under this concept, it is
necessary to refer to the future state of train A at the time the follower train B has crossed
the entire coordination distance, as shown in Figure 1b. During the coupling operations,
the train shall therefore consider such a trajectory prediction and not the current position
and speed of the leading train [1].

In the past few decades, most of the research on trajectory prediction has been based
on traditional physical model-based and machine learning methods. In the first category,
the researchers focus on developing the moving object patterns and dynamic models [2–4].

(a)

(b)

Figure 1. virtual coupling train-following model. (a) Schematic system architecture for virtual
coupling. (b) virtual coupling with the prediction of position and speed of the leading train A.

Most of these methods are based on Newtonian mechanics models for squared mea-
surements, so their control performance depends on the accuracy of the models. However,
the actual train dynamics are pretty complex. For example, describing a conventional
seven-body train car requires a complete set of 84 differential equations in addition to
various uncertainties and disturbances in train operation [5]. These unmodeled dynamics
are challenging to obtain an accurate model of train dynamics, and the application of
model-based methods may lead to many unsafe severe events or other unsatisfactory situa-
tions [6–8]. Therefore, it is necessary and practical to design data-driven train trajectory
predictive methods that use only the input and output measurements of the system rather
than the physical model.

With the development of information technology, machine learning technologies such
as artificial intelligence have been used in time series data prediction, such as stock market
prediction [9], data mining [10], trajectory prediction [11], and spatial data mining [12].
Trajectory data also belongs to time series data, so deep learning methods are often used for
the trajectory prediction of robots and autonomous driving. In recent years, some scholars
have focused on the research of trajectory prediction algorithms based on data driving [13].
This paper deals with the trajectory prediction problem using classification and regression
algorithms. The most direct method is to use a three-layer feedforward neural network,
also known as multi-layer perceptron (MLP) [14]. The recurrent neural network (RNN)



Actuators 2022, 11, 247 3 of 14

is also often used in trajectory prediction tasks [15,16]. Recurrent neural networks are
commonly used to process sequence data and have been applied to a wide range of fields,
such as speech recognition [17], text generation [18], and video subtitle [19]. The trajectory
data also belongs to the time series data, so it can be processed by the recurrent neural
network.

In this paper, inspired by the neural network in nonlinear model processing, we
introduce the deep learning model to the train trajectory prediction problem. Deep learning
has achieved remarkable results in trajectory prediction, but it usually requires a large
amount of CPU power or GPUs, which may be costly. We introduce CNN into the prediction
model to reduce the training time and computational overhead. We design five kinds of
deep neural networks: recurrent neural network (RNN), gated recurrent units (GRU),
LSTM, stateful-LSTM, and CNN–LSTM, to predict the trajectories of the train ahead. These
methods have been proved to be effective in time-series prediction [20–23].

The key contributions of this article are summarized as follows:

1. We focus on learning hidden patterns from the normal operation process characterized
by high repetition schedules. Therefore, we introduce the convolution layer used to
extract local interactions in our previous method [24].

2. We implement a modified version of the LSTM trajectory prediction model, which
combines the CNN algorithm to train and learn large numbers of trajectories accu-
rately and efficiently when the time horizon rised to 4 s, which means the proposed
model performs better in long-term prediction.

3. We compared our proposed algorithm with four trajectory prediction algorithms:
RNN, GRU, LSTM, and stateful-LSTM-based. Our experiments used seven real-life
train trajectory datasets from Chengdu Metro Line 6. To the best of our knowledge,
this is the first time such a comprehensive deep learning model has been tested and
compared on many real-life railway network trajectories.

The organizational structure of this paper is as follows. Section 2 summarizes two
kinds of trajectory prediction methods and mainly introduces the data-driven methods.
Section 3 introduces our CNN–LSTM hybrid model. Section 4 introduces the details and
results of our experiment in detail. Finally, in Section 5, we summarize our research results
and discuss the future direction.

2. Related Work

The moving objects in trajectory prediction research are divided into three categories
according to the spatial distribution characteristics: (1) the moving path is not limited,
such as aircraft, ships, etc; (2) the moving track is restricted, such as vehicles running on
roads; (3) the trajectory of the moving path is scattered, such as with mobile users. Location
prediction is mainly divided into the recurrence of the past trajectory and the prediction of
the current and future trajectory. The main research objects of this paper are the train with
the limited moving track and solving the problem of the future track-prediction of the train
simultaneously.

The core of data-driven trajectory prediction is to mine the trajectory characteristics of
moving objects, match the trajectory of moving objects with the historical trajectory, find
the most similar trajectory path, and predict the future trajectory.

2.1. Statistical Method-Based Trajectory Prediction

This kind of method regards the trajectory data as the sequence data that conforms to
the specific distribution and fits the trajectory data based on statistical methods to mine the
hidden trajectory patterns. The autoregressive integrated moving average (ARIMA) model
predicts the future trajectory of time series through the linear combination of historical
data values, data errors, and historical and current values of other time series. Yan et al.
extended the ARIMA model with a spatial dimension and applied it to trajectory data
constrained by network [25]. ARIMA is a time series analysis algorithm that can control the
difference order to deal with a nonlinear trajectory. However, its disadvantage is that it has



Actuators 2022, 11, 247 4 of 14

a poor prediction effect for long-distance trajectory. The Kalman filter (KF) can estimate the
system’s state with uncertainties. The improved Kalman filter (IKF) algorithm proposed by
Wang et al. [26] can predict the 4D trajectory with high accuracy by estimating the system
noise in real-time. The KF model can accurately predict the short-term trajectory, but the
initial state and assumptions of the model are crucial for the prediction performance.

Gaussian process regression (GPR) is also an essential method of trajectory prediction.
The Gaussian mixture model is composed of several probability density functions based on
Gauss and takes the historical motion model as the input condition to predict the future
motion trajectory of the target [27,28]. Research [29] decomposes the ship motion into
transverse and longitudinal, uses the Gaussian process to model the motion uncertainty
in the transverse, estimates the longitudinal acceleration, and predicts the trajectory by
the evaluation mean and covariance matrix to describe the ship’s lateral position and its
uncertainty. Sean et al. [30] regard time and the trajectory as an independent variable
and a one-dimensional Gaussian process, respectively, and define a priori continuous time
through a nonlinear time-varying stochastic differential equation driven by white noise.
They use a dynamic model to smooth trajectory estimation. GPR has strong applicability
and is easy to understand, but the accuracy of prediction results will decline significantly
with the passage of prediction time. The hidden Markov model (HMM) can also model
time series data. In [31], HMM is used to describe the state transition between trajectory
points to predict the trajectory and dynamically change the speed of moving objects. In
this case, the model can automatically adjust important parameters to solve the problem of
the discontinuous hidden state chain and state retention.

2.2. Deep Learning-Based Trajectory Prediction

The concept of deep learning originates from the artificial neural network. A large
number of simulated neurons are combined into a complex system, and the self-learning
and adaptive abilities of the neural network are realized by training the weights between
neurons. In [32], an artificial neural network is constructed to predict the future trajectory
of vehicles. This model inputs the longitudinal and transverse relative speed of the target
vehicle and the vehicle position under different road conditions to realize the trajectory
prediction of vehicles. Chen et al. [33] use the BP neural network to model the driver’s
intention, identify the steering wheel angle corresponding to the driver’s intention, use the
obtained steering angle as the control matrix of the Kalman filter model, and predict the
vehicle trajectory through this matrix. The recurrent neural network (RNN) is a deep-seated
neural network model in which the directional cycle has a specific memory function for
input data. Min et al. [34] analyze sequential sensor data using RNN and predict short-term
and long-term paths. Lee et al. [35] proposed a future trajectory prediction framework
based on RNN, which combines the static and dynamic scene context with the deep inverse
optimal control framework to effectively solve the uncertainty in the prediction task and
realize the future prediction of multiple objects in complex scenes. RNN has a good effect on
the fitting processing and short-term prediction of sequence data, but due to its structural
characteristics, RNN has the problem of rapid memory decay. The growth of the input
sequence will cause gradient explosion or disappearance.

Long short-term memory (LSTM) has improved RNN to overcome the disadvantage of
rapid memory decay. Research [15,36] used an LSTM-based structure with time serial states
of the target and ego vehicles. Jinet al. proposed a novel prediction model based on plane
stream and a variational self encoder to process time series data [37]. Berenguer et al. [38]
extends the social-LSTM model with a context-pooling layer. Altche et al.predict the future
longitudinal and lateral trajectories of vehicles on the expressway by introducing long-
term and short-term memory (LSTM) neural networks [16]. Alexandre et al. [39] use the
LSTM model to predict the trajectory of pedestrians, which is outstanding in sequence
prediction. The model adds a “social” pool layer between each step of the LSTM. The
pooling layer integrates the hidden states of other pedestrians and passes them on as a
part of the hidden states, finally forming the model social LSTM. The gate recurrent unit



Actuators 2022, 11, 247 5 of 14

(GRU) is a simplification of LSTM. The GRU network includes an update gate and resets
gate, which can also solve the ordinary RNN gradient disappearance or explosion problem.
The algorithm proposed by Duives [40] uses the derivation of the cell sequence to express
the discrete cell sequence as a spatial continuous GPS trajectory and then uses GRU to
train it to predict the future position of pedestrians. Adege et al. [41] proposed a hybrid
of the principal component analysis (PCA) and gated recurrent unit (GRU) algorithms for
mobility predictions in a wireless urban area.

Inspired by these papers, which focus on using convolutional LSTM to learn spa-
tiotemporal sequences, we proposed a spatial information representation for trains and a
CNN–LSTM hybrid model to generate a long-term prediction trajectory with high accuracy.

3. Methodology

This section combines CNN and LSTM to propose a hybrid model for train-trajectory
prediction, called hybrid CNN–LSTM. Before that, we give a brief overview of the fun-
damental theories of the LSTM and CNN model; these theories contain the essential
fundamental theory of data modelling .

3.1. Problem Formulation

We formulate train trajectory prediction as a temporal regression task. Unlike the
vehicle, the position on the track of the train is recorded by the odometer, transponder,
and other equipment, so the position will continue to increase. At the end of the data
sequence, the recorded train position is tens of thousands of times the initial position. In
the experiment, we found that the vast data difference hinders the learning of the model
and makes the learning effect poor. Therefore, we convert the original train trajectory data
into the distance travelled by train in the sampling time.

xi
t = oi

t − oi−1
t (1)

where oi
t is the raw trajectory data. A brief description of the symbols we use is given below.

At moment t, the i th train on the track is represented by an odometer as a one-dimensional
coordinate xi

t. The state of the train is expressed as
(

xi
t, vi

t, ui
t
)
, where v and u are the velocity

and control instruction, respectively. We observe the positions of all vehicles from t = 1
to t = Tobs, and our goal is to predict their positions from t = Tobs + 1 to t = Tobs + Tpred.
Thus, train trajectory prediction can be defined as a sequence generation problem:

Given:
Lobs

i = [
(

xi
t, vi

t, ui
t

)
, . . . ,

(
xi

Tobs
, vi

Tobs
, ui

Tobs

)
]∀i (2)

Objective:
Xpred

i = [xi
Tobs+1, . . . , xi

Tobs+Tpred
]∀i (3)

Considering the train characteristics of rail trains running strictly according to the
plan, we simplify the xi

t as xt, which is the coordinate of the first neighboring train ahead
on the same track as our train.

In actual applications, the input for one prediction is only the input of the selected
historical step length instead of all the input in the model training process. Therefore, the
equation is expressed as

Input:
Lobs =[

(
xTobs−M, vTobs−M, uTobs−M

)
, . . . ,(

xTobs , vTobs , uTobs

)
]

(4)

Output:
Xpred = [xTobs+1, . . . , xTobs+Tpred ] (5)



Actuators 2022, 11, 247 6 of 14

3.2. CNN Network

The standard CNN network has four components: the data input layer, the pooling
layer, the convolution layer, and the full connection layer, as shown in Figure 2. The locally
connected convolutional layers enable CNNs to deal with spatial correlation problems [42]
efficiently. The pooling layer makes the CNN generalizable to large-scale problems.

Figure 2. Typical structure of CNN network.

Calculate the value w in the pathj dot product between and the value in kernel
matrix p:

cj = f
(
wj � p + b

)
(6)

where � denotes the eigenvectors multiplied element by element, b ∈ R is deviation, and f
is a nonlinear mapping function that can be set to RELU activation function as follows:

f (x) = max(0, x) (7)

In this paper, a one-dimensional convolution CNN is added to extract the local feature
of the trajectory data. Meanwhile, the convolutional layer can accelerate the training speed
of the network.

3.3. LSTM Network

The LSTM model was originally proposed by Hochreiter and Schemidhuber in 1997 in
the literature [43], which is a variant of the RNN model for addressing long-term dependent
information that RNNs cannot handle.

The structure of the LSTM model is shown in Figure 3. The key to LSTM is the state of
the cells, where there are only a few linear interaction processes between cells throughout
the processing link, and the flow of information can easily remain constant along the
processing link. In order to solve the problem of gradient explosion, the LSTM model
adds a gate structure to decide which data to remember or forget to change the current
unit’s output.

Figure 3. Standard structure of LSTM unit.



Actuators 2022, 11, 247 7 of 14

The processing of the data in LSTM model consists of four parts:

3.3.1. Forget

In this part, the LSTM model decides which information to discard using the forget
gate layer. The gate structure reads the input ht−1 generated by the previous cell and the
input Xt at the current moment and outputs the result ft ∈ [0, 1], which represents the
degree of reception of the current input(1 means fully retained and 0 means fully discarded).
The result represents the degree of reception of the current input data.

ft = σ
(

W f · [ht−1, xt] + b f

)
(8)

3.3.2. Remember

The second step determines which new information will be stored in the current cell’s
state information. The sigmoid layer, called the input gate layer, determines the updates
and outputs.

it = σ(Wi · [ht−1, xt] + bi) (9)

Then, the tanh function creates a vector of candidate values for the message:

C̃t = tanh(WC · [ht−1, xt] + bC) (10)

3.3.3. Update

This part updates the cell state information from Ct−1 to Ct state, and this step is
related to the output of the two previous steps

Ct = ft ∗ Ct−1 + it ∗ C̃t (11)

3.3.4. Output

Ultimately, determine which information will be output, which is based on the cell
state and also is a filtered version. Another sigmoid layer determines which part of the cell
state will be output and multiplies it by the output of the tanh function, that is, between
[0, 1]. Finally, the cell will only output the part that is determined to be output.

ot = σ(Wo[ht−1, xt] + bo) (12)

ht = ot ∗ tanh(Ct) (13)

where ∗ denotes the Hadamard product; σ denotes the standard logistics sigmoid function;
ft, it, ot are the output of different gates; Ct is the new state of memory cell; C̃t is the final
state of memory cell; and ht is the final output of the memory unit. W f , Wi, Wc, Wo denote
the weight matrices in each layer.

3.4. Hybrid CNN–LSTM Model

As mentioned above, CNN is a lightweight model that captures local features, while
LSTM is good at dealing with the long memory of time series data. Therefore, we propose a
hybrid neural network model integrating CNN and LSTM to solve the trajectory prediction
problem. Therefore, a novel idea combines the merits of these two models for better
accuracy and shorter time. The overall structure of this hybrid model is shown in Figure 4.



Actuators 2022, 11, 247 8 of 14

Velocity

Control 

instruction

Coordinate 

conversion

Time dimension

F
ea

tu
re d

im
en

sio
n

Raw data

Sliding window processing

Cov1

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

D
en

se
(2

0
)

Cov2
Cov3

Cov4
Cov5

Cov6
Cov7

Cov8
Cov9

Figure 4. The proposed hybrid model.

The model shows the process of train trajectory prediction: train historical trajectory
data input, data processing, model training, and final predicted trajectory output. We
need to perform preprocessing, such as data-anomaly detection and missing trapping, and
normalize it before the input. The input data of a traditional neural network constitute a
vector, while the input data of CNN and LSTM constitute a time series containing tensors.
Hence, we need to add a time step dimension.

We set the historical time steps as 50, and the future time steps Tpred are 20, which
means 50 consecutive train trajectory data are used to predict the following 20 trajectory
data. So, each of our samples is a 50 × 3 matrix. Data processing will be covered in detail in
the next section.

These 2n-dimensional input data composed of a series of trajectory points are first fed
to the CNN model. We use one-dimensional convolution to extract the spatial feature of
the trajectory. The process is shown in the Algorithm 1.

Algorithm 1 CNN–LSTM model

Input: observed trajectory data of trains: Lobs =
[
(

xTobs−M, vTobs−M, uTobs−M
)
, . . . ,

(
xTobs , vTobs , uTobs

)
], where M is the historical time

steps.
Output: A set of predicted trajectories Xpred = [xTobs+1, . . . , xTobs+Tpred ]

1: Initialization: Set the state the previous time steps M and future time steps Tpred

2: for i ≤ Len(Lobs)−M do // Len is the function to get the length of the input
3: Vi = {(xi, vi, ui), . . . , (xi+M, vi+M, ui+M)}
4: for i ≤ Len(V) do
5: Ci = ReLU(Vi � p + b)
6: Calculate the Ĉ = max(C)// MaxPooling operation
7: for i ≤ Len(Ĉ) do
8: Yi = LSTM(Ĉi) by (8), (9), (10), (11)
9: for i ≤ Len(Y) do

10: Oi = sigmod(Yi)// Dense layer with sigmoid function
11: return XM

In the convolution layer, the number of 1 × 3 kernels is 64. The data are sent to the
max-pooling layer with a pool size of 2. After a series of repeated convolution pooling
work, all of these data will be input to the LSTM model, which consists of three hidden
layers with 128 cells in each layer, and a dropout layer is added between the hidden layers.
Different activation functions and dropout layers are tested in this structure to get the best
results. Finally, the data processed by the CNN and LSTM models will be input to the full
connection layer that outputs 20 consecutive train trajectory data at future moments.



Actuators 2022, 11, 247 9 of 14

4. Experiment and Discussions

In this section, we conduct a comprehensive experimental and comparative study
of the baseline and hybrid models proposed in Section 3. First, we introduce the train
trajectory data set used in the experiment and the evaluation index used to evaluate the
prediction effect. The second is the prediction effect of the RNN, GRU, LSTM, stateful-
LSTM, and CNN–LSTM models on different prediction time steps.

4.1. Datasets

We use seven datasets from Chengdu Metro Line 6 to examine whether the prediction
models can capture the embedded motion patterns. There are a total of 63,676 trajectories
points sampled every 200 ms, with an average speed of 9.00871659 m/s. Since these datasets
are sampled at different rates, we apply the existing data interpolation technique to fill the
missing data by the proximity data. Then, we perform abnormal data detection based on
the Z-score on the data. The Z-score is the standard score, and the distance between the data
point and the average value is measured. If the data point is two standard deviations from
the average value, the Z-score is 2. When Z-score = 3 is used as the threshold to eliminate
abnormal issues, it is equivalent to 3 sigma. We normalized the data to reduce the impact
of numerically large data on model learning. The most typical one is the normalization of
data, that is, the unified mapping of data to the [0, 1] interval.

yi =
xi −min1≤i≤n

{
xj
}

max1≤i≤n
{

xj
}
−min1≤i≤n

{
xj
} (14)

where yi is the normalized data, min1≤i≤n
{

xj
}

denotes the minimum value of the feature
data, and max1≤i≤n

{
xj
}

denotes the maximum value of the feature data.
Our data include 12 different data sets with 187-dimensional features, and each data

set has an average of 9000 pieces of data. In the learning and testing of the model, we
use different data sets to ensure that the model has a strong generalization ability on the
unexpected data set of the training set.

4.2. Evaluation Metrics

We evalute the accurcy of trajectory prediction from two perspectives. The first one is
an RMSE that root mean square averages the Euclidean distance between the predicted
location and truth location:

RMSE(y, ŷ) =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (15)

where yi is the truth trajectory point and ŷi is the predited locations by the model.
Another performance metric is hit rate. Set the tolerable predition error σ, which

represents the prediction error acceptability we set. If the absolute error between yi and ŷi
is smaller than σ, we call the prediction is a hit.

HitRate =
hits
N

(16)

where hits represent the hit number in the total times and N is the total number of the raw
trajectory data.

4.3. Evaluation Setup

In our experimental parameter setting, we use the historical data information of
50 steps to predict the position in the next N time steps, where N changes from 1 to 20. We
set σ to 20 cm to measure the hit rate. All experiments were carried out under the same
experimental conditions.



Actuators 2022, 11, 247 10 of 14

4.4. Comparative Analysis of Experimental Results

The experimental results presented in Figures 5 and 6 are the predicted trajectory
comparison of these five models. Tables 1 and 2 are the RMSE and hit rate, respectively.
Given 50 historical points, we report the RMSE and hit rate for the future n steps. We
compare the performance of our model with state-of-art methods as well as multiple
control settings.

(a) (b)

Figure 5. Field data and predicted position. (a) Train position curve in the 0.2 s. (b) Train position
curve in the 2.0 s.

Table 1. The RMSE performance comparison of trajectory prediction.

Time Steps RNN GRU LSTM State-LSTM CNN–LSTM

1 4.18 4.53 6.07 8.85 5.37
2 4.29 4.86 6.46 8.68 5.67
3 5.55 5.72 5.55 10.12 5.27
4 6.60 6.25 6.81 9.92 6.51
5 7.42 7.00 7.64 9.95 7.39
6 8.49 7.38 9.05 10.92 8.26
7 8.79 9.12 9.86 11.26 8.64
8 9.94 10.02 10.47 12.38 9.72
9 11.54 11.65 12.35 13.08 11.12
10 12.80 11.98 11.76 13.47 11.53
11 13.34 13.54 13.36 14.59 13.08
12 14.73 14.14 13.86 15.61 13.58
13 15.45 16.11 15.13 16.53 15.48
14 16.24 16.89 16.73 17.02 15.69
15 18.36 18.00 17.51 18.61 15.93
16 18.80 18.43 17.64 19.01 17.94
17 20.50 20.02 18.54 20.10 19.33
18 20.61 20.75 20.40 21.07 19.71
19 23.21 22.20 21.02 22.39 20.79
20 24.17 23.63 21.81 23.28 21.33

Table 2. Hit rate of trajectory prediction (n is the time step).

Hit Rate n = 1 n = 5 n = 10 n = 15 n = 20

RNN 0.98 0.97 0.96 0.93 0.91
GRU 0.98 0.98 0.96 0.94 0.89
LSTM 0.97 0.92 0.91 0.9 0.87

state-LSTM 0.9 0.88 0.88 0.88 0.83
CNN–LSTM 0.96 0.96 0.96 0.95 0.93



Actuators 2022, 11, 247 11 of 14

(a) (b)

Figure 6. Field data and predicted position. (a) Train position curve in the 4.0 s. (b) Train position
curve between 1200 and 1450 units in the 4.0 s.

While the performance differences between these models are not significant, it is worth
noting that all of our model errors are already low, so some improvement is worthwhile.
From the results, we derive the following observations:

The results show that stateful-LSTM produces the highest error in the n = 1 time steps
for the root mean square error. RNN and GRU produce better predictions; especially, the
RNN model produces the lowest error in prediction shorter than n = 3. In the case of
prediction, the horizon is more extended than n = 10; the CNN–LSTM, GRU, and LSTM
produce a lower error. As the future time steps n increase from 1 to 10, CNN–LSTM
performs better than the other methods.

For the hit rate, in the case of a prediction horizon longer than 2.0 s, the RNN, GRU, and
CNN–LSTM models produce a much higher rate. We note that the GRU model produces
better predictions than the LSTM model. However, when n increases to 20, the CNN–LSTM
model produces the highest rate.

In all experimental models, the change of RMSE shows the same trend; that is, RMSE
increases with the increase in prediction steps n. At the same time, the hit rate also shows a
similar pattern; that is, the accuracy decreases with the increase in N, which proves that the
accurate prediction of long-term trajectory is more challenging than short-term prediction.

Simple-RNN obtains the worst performance in terms of RMSE. The curve may be
over-fitting at some points. However, it is interesting that its hit rate is much higher than
the stateful-LSTM and LSTM models. One of the possible reasons is that it performs
better where the train trajectory is linear, and the prediction effect is poor in the nonlinear
trajectory.

GRU also performs poorly in RMSE while performing better in the hit rate. As
an improvement of the RNN network, the prediction performance of the LSTM model
is predictably better than that of the RNN. The simplified model GRU based on LSTM
presents the same performance as LSTM. This can be explained as the improvement of GRU
and LSTM models on the gradient problem on the cyclic neural network. Simple-RNN
obtains the highest hit rate when n = 1, as well as the GRU model. Moreover, its hit rate
decreases more slowly than GRU as the time step increases.

We use CNN–LSTM as a hybrid model baseline. We can see that CNN-LTSM achieves
the best performance in terms of RMSE when time steps N > 6 and the highest hit rate
when time steps N > 10. In order to better show the prediction effect and the details in
Figure 6, we show the loss of CNN–LSTM and LSTM on the verification set in Figure 7.
In addition, the training time of CNN–LSTM is shorter than that of other models. In the
experiment, we recorded the time spent on training each model. The average time spent on
CNN–LSTM was 1061.56 s, while the average time spent on LSTM was 3377.05 s (almost
three times that of CNN–LSTM). Therefore, it can be verified that the CNN–LSTM model
converges faster than other models (such as LSTM) in the training process. This helps us
reduce the model training time and find the most suitable parameters faster. Moreover,
we can observe a mountain-like structure; this is possible for the trajectory prediction



Actuators 2022, 11, 247 12 of 14

with a sliding time window. The model is not the most accurate short-term forecasting
but produces reliable prediction and control errors within a specific bound. This implies
that, with a combination of CNN and LSTM, the hybrid model can handle the long-term
prediction of the train trajectory data.

(a) (b)

(c) (d)

Figure 7. The prediction loss at each step in 3d and 2d perspective. (a) The validation loss of CNN–
LSTM. (b) The validation loss of LSTM. (c) The validation loss of CNN–LSTM. (d) The validation
loss of LSTM.

5. Conclusions

Train trajectory prediction is essential for intelligent transportation system (ITS) appli-
cations. The importance of this task is emphasized with the emergence of virtual coupling
as it requires a future trajectory to plan the control of the following train. We propose
to integrate the neural networks of CNN and LSTM as a hybrid model for the task of
trajectory prediction.

We conduct detailed analyses of the characteristics of train trajectory in detail and
explain how they differ from vehicle and pedestrian trajectory prediction. In addition,
we compared RNN, GRU, LSTM, stateful-LSTM, and CNN–LSTM models in terms of
predicted position, validation loss, prediction error RMSE, and hit rate. These models are
learned and evaluated using the field data, which contains real-world train trajectories
from Chengdu Metro Line 6. Our experiment results indicate that CNN–LSTM performs
better than the state-of-art techniques. We find that the evolution of the proposed model
shows the best prediction accuracy when the time rises to 4 s, while the RNN model shows
smaller RMSE when the time horizon is shorter than 1.4 s (n = 7). Moreover, the hybrid
CNN–LSTM model obtains the highest hit rate when the time horizon is more extended
than 2.0 s (n = 10).

Our in-depth study of the hybrid deep learning methods for train trajectory prediction
can potentially benefit the development of many ITS applications, such as the controller
optimization of the ATO system and timetable optimization for train arrival time, which are
not limited to virtual coupling. Many future research directions can stem from this work.
First, we will continue to test the performance of CNN–LSTM over longer horizons. Second,
it would be interesting that instead of using CNN to model the relationship between the
local features, other types of hybrid models can be explored, such as Markov and MLP.



Actuators 2022, 11, 247 13 of 14

Author Contributions: Conceptualization, H.L. and T.T.; methodology, Y.H.; software, J.L.; validation,
Y.H. and J.L.; formal analysis, Y.H. and J.L.; investigation, Y.H. and J.L.; resources, Y.H. and J.L.;
data curation, J.L.; writing—original draft preparation, Y.H.; writing—review and editing, Y.H. and
J.L.; visualization, J.L.; supervision, Y.H. and J.L.; project administration, Y.H. and J.L.; and funding
acquisition, Y.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Fundamental Research Funds for the Central Universities
2022JBXT000.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Quaglietta, E.; Wang, M.; Goverde, R.M.P. A multi-state train-following model for the analysis of virtual coupling railway

operations. J. Rail Transp. Plan. Manag. 2020, 15, 100195. [CrossRef]
2. Helbing, D.; Molnár, P. Social force model for pedestrian dynamics. Phys. Rev. E 1995, 51, 4282. [CrossRef] [PubMed]
3. Morzy, M. Mining Frequent Trajectories of Moving Objects for Location Prediction. In Proceedings of the Machine Learning and Data

Mining in Pattern Recognition; Perner, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 667–680.
4. Qiao, S.; Han, N.; Wang, J.; Li, R.H.; Gutierrez, L.A.; Wu, X. Predicting Long-Term Trajectories of Connected Vehicles via the

Prefix-Projection Technique. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2305–2315. [CrossRef]
5. Kortüm, R. Mechatronic developments for railway vehicles of the future. Control Eng. Pract. 2002, 10, 887–898.
6. Wang, X.; Tang, T.; Su, S.; Yin, J.; Lv, N. An integrated energy-efficient train operation approach based on the space-time-speed

network methodology. Transp. Res. Part E Logist. Transp. Rev. 2021, 150, 102323. [CrossRef]
7. Shuai, S.A.; Xw, A.; Tao, T.A.; Gw, B.; Yuan, C. Energy-efficient operation by cooperative control among trains: A multi-agent

reinforcement learning approach. Control Eng. Pract. 2021, 116, 104901.
8. Sun, H.; Hou, Z.; Li, D. Coordinated Iterative Learning Control Schemes for Train Trajectory Tracking With Overspeed Protection.

IEEE Trans. Autom. Sci. Eng. 2013, 10, 323–333. [CrossRef]
9. Shahi, T.B.; Shrestha, A.; Neupane, A.; Guo, W. Stock Price Forecasting with Deep Learning: A Comparative Study. Mathematics

2020, 8, 1441. [CrossRef]
10. Kong, J.; Yang, C.; Wang, J.; Wang, X.; Zuo, M.; Jin, X.; Lin, S. Deep-Stacking Network Approach by Multisource Data Mining for

Hazardous Risk Identification in IoT-Based Intelligent Food Management Systems. Comput. Intell. Neurosci. 2021, 2021, 1194565.
[CrossRef]

11. Yin, J.; Ning, C.; Tang, T. Data-driven models for train control dynamics in high-speed railways: LAG-LSTM for train trajectory
prediction. Inf. Sci. 2022, 600, 377–400. [CrossRef]

12. Mishra, B.; Dahal, A.; Luintel, N.; Shahi, T.B.; Panthi, S.; Pariyar, S.; Ghimire, B.R. Methods in the spatial deep learning: Current
status and future direction. Spatial Inf. Res. 2022, 30, 215–232. [CrossRef]

13. Choi, D.; Yim, J.; Baek, M.; Lee, S. Machine learning-based vehicle trajectory prediction using v2v communications and on-board
sensors. Electronics 2021, 10, 420. [CrossRef]

14. Akiyama, T.; Inokuchi, H. Long term estimation of traffic demand on urban expressway by neural networks. In Proceedings of
the 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium
on Advanced Intelligent Systems (ISIS), Kita-Kyushu, Japan, 3–6 December 2014.

15. Kim, B.D.; Kang, C.M.; Lee, S.H.; Chae, H.; Kim, J.; Chung, C.C.; Choi, J.W. Probabilistic Vehicle Trajectory Prediction over
Occupancy Grid Map via Recurrent Neural Network. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017.

16. Altche, F.; Fortelle, A. An LSTM network for highway trajectory prediction. In Proceedings of the 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017.

17. Graves, A.; Jaitly, N. Towards end-to-end speech recognition with recurrent neural networks. In Proceedings of the International
Conference on Machine Learning, Beijing, China, 21–26 June 2014.

18. Sutskever, I.; Martens, J.; Hinton, G.E. Generating Text with Recurrent Neural Networks. In Proceedings of the International
Conference on Machine Learning, Bellevue, WA, USA, 29 June–1 July 2011.

19. Gao, L.; Guo, Z.; Zhang, H.; Xu, X.; Shen, H.T. Video Captioning with Attention-based LSTM and Semantic Consistency. IEEE
Trans. Multimedia 2017, 19, 2045–2055. [CrossRef]

20. Xiong, X.; Bhujel, N.; Teoh, E.; Yau, W. Prediction of Pedestrian Trajectory in a Crowded Environment Using RNN Encoder-
Decoder. In Proceedings of the ICRAI ’19: 2019 5th International Conference on Robotics and Artificial Intelligence, Singapore,
22–24 November 2019.

http://doi.org/10.1016/j.jrtpm.2020.100195
http://dx.doi.org/10.1103/PhysRevE.51.4282
http://www.ncbi.nlm.nih.gov/pubmed/9963139
http://dx.doi.org/10.1109/TITS.2017.2750075
http://dx.doi.org/10.1016/j.tre.2021.102323
http://dx.doi.org/10.1109/TASE.2012.2216261
http://dx.doi.org/10.3390/math8091441
http://dx.doi.org/10.1155/2021/1194565
http://dx.doi.org/10.1016/j.ins.2022.04.004
http://dx.doi.org/10.1007/s41324-021-00425-2
http://dx.doi.org/10.3390/electronics10040420
http://dx.doi.org/10.1109/TMM.2017.2729019


Actuators 2022, 11, 247 14 of 14

21. Liu, H.; Wu, H.; Sun, W.; Lee, I. Spatio-Temporal GRU for Trajectory Classification. In Proceedings of the 2019 IEEE International
Conference on Data Mining (ICDM), Beijing, China, 8–11 November 2020.

22. Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Savarese, S. Social LSTM: Human Trajectory Prediction in Crowded Spaces.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30
June 2016.

23. Tba, B.; Adma, C.; Az, A.; Eo, A.; Ph, B. A graph CNN–LSTM neural network for short and long-term traffic forecasting based on
trajectory data. Transp. Res. Part C Emerg. Technol. 2020, 112, 62–77.

24. He, Y.; Lv, J.; Zhang, D.; Chai, M.; Liu, H.; Dong, H.; Tang, T. Trajectory Prediction of Urban Rail Transit Based on Long
Short-Term Memory Network. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference
(ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 3945–3950. [CrossRef]

25. Yan, Z. Traj-ARIMA: A Spatial-Time Series Model for Network-Constrained Trajectory. In Proceedings of the CTS 10;ACM
SIGSPATIAL International Workshop on Computational Transportation Science, Chicago, IL, USA, 1 November 2011.

26. Wang, T.; Huang, B. 4D flight trajectory prediction model based on improved Kalman filter. J. Comput. Appl. 2014, 34, 1812.
27. Wiest, J.; Hoffken, M.; Kresel, U.; Dietmayer, K. Probabilistic trajectory prediction with Gaussian mixture models. In Proceedings

of the 2012 IEEE Intelligent Vehicles Symposium (IV), Madrid, Spain, 3–7 June 2012.
28. Yoon, Y.; Kim, C.; Lee, J.; Yi, K. Interaction-Aware Probabilistic Trajectory Prediction of Cut-In Vehicles Using Gaussian Process

for Proactive Control of Autonomous Vehicles. IEEE Access 2021, 9, 63440–63455. [CrossRef]
29. Rong, H.; Teixeira, A.P.; Soares, C.G. Ship trajectory uncertainty prediction based on a Gaussian Process model. Ocean Eng. 2019,

182, 499–511. [CrossRef]
30. Anderson, S.; Barfoot, T.D.; Tong, C.H.; Särkkä, S. Batch nonlinear continuous-time trajectory estimation as exactly sparse

Gaussian process regression. Auton. Robots 2015, 39, 221–238. [CrossRef]
31. Qiao, S.; Shen, D.; Wang, X.; Han, N.; Zhu, W. A Self-Adaptive Parameter Selection Trajectory Prediction Approach via hidden

Markov Models. IEEE Trans. Intell. Transp. Syst. 2015, 16, 284–296. [CrossRef]
32. Sushmitha, T.V.; Deepika, C.P.; Uppara, R.; Sai, R.N. Vehicle Trajectory Prediction using Non-Linear Input-Output Time Series

Neural Network. In Proceedings of the International Conference on Power Electronics Applications and Technology in Present
Energy Scenario, Mangalore, India, 29–31 August 2019.

33. Chen, C.; Liu, L.; Qiu, T.; Ren, Z.; Hu, J.; Ti, F. Driver’s Intention Identification and Risk Evaluation at Intersections in the Internet
of Vehicles. IEEE Internet Things J. 2018, 5, 1575–1587. [CrossRef]

34. Min, K.; Kim, D.; Park, J.; Huh, K. RNN-Based Path Prediction of Obstacle Vehicles With Deep Ensemble. IEEE Trans. Veh. Technol.
2019, 68, 10252–10256. [CrossRef]

35. Lee, N.; Choi, W.; Vernaza, P.; Choy, C.B.; Torr, P.; Chandraker, M. DESIRE: Distant Future Prediction in Dynamic Scenes with
Interacting Agents. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017.

36. Park, S.H.; Kim, B.D.; Kang, C.M.; Chung, C.C.; Choi, J.W. Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM
Encoder-Decoder Architecture. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30
June 2018.

37. Jin, X.B.; Gong, W.T.; Kong, J.L.; Bai, Y.T.; Su, T.L. PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for
Time Series Data. Mathematics 2022, 10, 610. [CrossRef]

38. Berenguer, A.D.; Alioscha-Perez, M.; Oveneke, M.C.; Sahli, H. Context-aware human trajectories prediction via latent variational
model. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 1876–1889. [CrossRef]

39. Gupta, A.; Johnson, J.; Li, F.F.; Savarese, S.; Alahi, A. Social GAN: Socially Acceptable Trajectories with Generative Adversarial
Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City,
UT, USA, 18–23 June 2018.

40. Duives, D.; Wang, G.; Kim, J. Forecasting Pedestrian Movements Using Recurrent Neural Networks: An Application of Crowd
Monitoring Data. Sensors 2019, 19, 382. [CrossRef]

41. Adege, A.B.; Lin, H.P.; Wang, L.C. Mobility Predictions for IoT Devices Using Gated Recurrent Unit Network. IEEE Internet
Things J. 2019, 7, 505–517. [CrossRef]

42. Lawrence, S.; Giles, C.; Tsoi, A.C.; Back, A. Face recognition: A convolutional neural-network approach. IEEE Trans. Neural Netw.
1997, 8, 98–113. [CrossRef] [PubMed]

43. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

http://dx.doi.org/10.1109/ITSC48978.2021.9564607
http://dx.doi.org/10.1109/ACCESS.2021.3075677
http://dx.doi.org/10.1016/j.oceaneng.2019.04.024
http://dx.doi.org/10.1007/s10514-015-9455-y
http://dx.doi.org/10.1109/TITS.2014.2331758
http://dx.doi.org/10.1109/JIOT.2017.2788848
http://dx.doi.org/10.1109/TVT.2019.2933232
http://dx.doi.org/10.3390/math10040610
http://dx.doi.org/10.1109/TCSVT.2020.3014869
http://dx.doi.org/10.3390/s19020382
http://dx.doi.org/10.1109/JIOT.2019.2948075
http://dx.doi.org/10.1109/72.554195
http://www.ncbi.nlm.nih.gov/pubmed/18255614
http://dx.doi.org/10.1162/neco.1997.9.8.1735

	Introduction
	Related Work
	Statistical Method-Based Trajectory Prediction
	Deep Learning-Based Trajectory Prediction

	Methodology
	Problem Formulation
	CNN Network
	LSTM Network
	Forget
	Remember
	Update
	Output

	Hybrid CNN–LSTM Model

	Experiment and Discussions
	Datasets
	Evaluation Metrics
	Evaluation Setup
	Comparative Analysis of Experimental Results

	Conclusions
	References

