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Abstract: A planetary thread roller bearing (PTRB) is a state-of-the-art component in electromechani-
cal actuators (EMA) due to its high load-bearing capacity and small volume. The study of the PTRB is
a leading task in the domain of EMA application. In this study, we propose a mathematical model of
PTRB friction torque on its working principle and causes. Specifically, the impact of basic properties
of the PTRB on friction torque, i.e., rotating speed and external load, are modeled and analyzed. To
verify the variation principle of friction torque, experiments are carried out on an actual PTRB. For the
test PTRB, the rotating speed ranges from 200 to 2000 rpm with a reverse load from 2000 to 30,000 N
at a constant temperature of 55 ◦C. Experimental results verify the effectiveness of the mathematical
model under conditions of 200–2000 rpm rotating speed and 2000–30,000 N external load, which
establish strong evidence for model accuracy and robustness.

Keywords: electromechanical actuator; planetary thread roller bearing; friction torque; rotating
speed; external load

1. Introduction

Electromechanical actuators (EMAs) have higher energy efficiency and better dynamic
characteristics that clearly outperform traditional counterparts and hydraulic pipelines
for electrical aircrafts [1,2]. In the context of power transmission, EMAs are capable of
precisely matching the torque and speed between the motor and the external load, which is
dependent on the planetary roller screw (PRS) [3]. Specifically, the planetary roller screw
can be regarded a mechanical device that converts rotary motion to linear motion; see
Figure 1 [4]. A PRS is mainly composed of a screw, nut, set of rollers, as well as the bearings.
The rotating screw causes the rolling of the rollers, and thus, the moving of the nut [5].
Meanwhile, the bearings support the rotating parts and reduce the friction coefficient,
effectively ensuring precise rotation [6].
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Figure 1. Planetary roller screw mechanism.

More recently, the structure optimization of the EMA is highlighted. In the context
of EMA applications, an improvement in load capacity and working efficiency is most
pronounced. Notably, the actuating systems must meet the demands of increasingly large
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axial and radial torques due to working conditions. Moreover, for the purpose of system
minimization and integration, researchers tend to perform more functions with even fewer
components. Reductions in system weight and space with better working performance have
also been proposed [7]. State-of-the-art initiatives, such as Long Beach Rocketry by NASA,
have identified their exploration of the advancement of transmission mechanisms [8].

Promisingly, a planetary thread roller bearing (PTRB) is devised, which could facilitate the
operation of the current planetary roller screw as well as in system optimization [9,10]. Instead
of focusing on material adoption and machining processing [11,12], the PTRB is developed by
integrating threaded coupling pairs into the bearing balls. Compared with classical bearings,
the PTRB is distinctive in its load-bearing capacity; see Table 1 [13]. Considering both the
radial and axial loads, there is a considerable gap between the PTRB and other categories of
bearings. That is, by substituting the rolling balls with the roller-nut pair, an even load-bearing
capacity is accessible. In addition, the installation of the PTRB saves a substantial amount of
volume and weight, because most widely-used bearings hold the external load in a single
direction and have to be mounted in pairs. As such, the application of the PTRB gives rise to
system integration and minimization. In contrast, the superiority in rotating speed is marginal.
A large external load inevitably results in a large friction torque, which causes severe heat
generation at high speeds and can even damage the structure.

Table 1. Specifications of different bearings.

Variety Model

Size (mm × mm × mm) Rated Radial Load
(kN)

Rated Axial Load
(kN)

Inner
Diameter

Outer
Diameter Thickness Static Dynamic Static Dynamic

Deep groove
ball bearing

6006 30 55 9 11.2 7.4 - -

16006 30 55 13 13.2 8.3 - -

Self-aligning
ball bearing

1206K 30 62 16 15.8 4.7 - -

2206KTN1 30 62 20 23.8 6.6 - -

Single-row angular
contact ball bearing 7006C 30 55 13 15.2 10.2 - -

Single-row angular
contact ball bearing

(pair mounting)
7006 30 55 26 24.5 20.5 - -

Double-row angular
contact ball bearing 3206 30 62 23.8 25.2 20 - -

Thrust ball bearing 51206 30 52 16 - - 28.0 54.2

Thrust angular contact
ball bearing 234406 30 55 32 - - 10.78 28.2

Spherical roller bearing NUP 30 55 13 13.0 12.8 - -

Double row cylindrical
roller bearing NN3306K 30 55 19 29.2 35.5 - -

Self-aligning
roller bearing 22206 30 62 20 30.5 38.2 - -

Needle bearing NA4906 30 47 17 25.2 35.5 - -

Tapered roller bearing 32006 30 55 17 - - 35.8 46.8

Needle-angular contact
ball combined bearing NKIB5906 30 47 23 25.0 35.5 4.75 6.3

PTRB - 30 55 18 30.2 19.3 33.2 38.3

Considering the significance of EMA and its applications, the PTRB is currently far
from being put to practical use [14]. System reliability and verification of working properties
is always taken as the redlines. For this reason, more effort is needed to define the PTRB
before it becomes widespread. Despiteits delicate design, ongoing research tends to analyze
the basic properties of the PTRB under different working conditions of EMA.

The objective of this study is to study friction torque based on the devising of the PTRB.
As an essential characteristic, friction torque has certain effects on the working performance
of the PTRB [15,16]. Starting with analyzing its mechanical structure, the working model of
friction torque is set up based on its generating causes. In this way, the impacts of two basic
properties, i.e., rotating speed and external load, are thoroughly analyzed. The proposed friction
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torque model, together with theoretical values, is investigated under various working conditions.
Model performance is then verified through extensive experiments on actual PTRBs.

The contributions of this paper are threefold and summarized as follows:
Considering the PTRB structure and its working principle, the friction torque model is

established, paving a way for further analysis of PTRB friction during operation.
The effects on friction torque of basic working variables, i.e., external load and rotating

speed, are closely investigated. The variation rules of friction torque in line with these
parameters are obtained.

Experiments are performed to detect PTRB friction torque variation under practical
working conditions. Experimental results verify the effectiveness of the theoretical analysis
of the friction torque.

The rest of this paper is organized as follows: we describe the structure of the PTRB
and its contact property in Section 2. Section 3 is dedicated to presenting the friction
torque computing model of the PTRB. In Section 4, we explore the impacts of rotating
speed and external load on friction torque with an analysis of different working conditions.
Experiments are performed to measure the actual friction torque of working PTRB and
verify the effectiveness of the friction torque model in Section 5. Finally, concluding remarks
of this work are given in Section 6.

2. Prerequisite
2.1. Structure Description

The design of the PTRB is both creative and practical. Figure 2 presents the mechanical
structure of the PTRB. There are five major components: two retaining rings, two planetary
carriers, an inner ring, an outer ring, and a set of threaded rollers [17]. The teeth of the
threaded rollers can mesh with both the inner and outer ring. The multiple annular threads
(i.e., the lead equals zero) are within the aforementioned three parts and the clearance
between each annular thread is the same. Specifically, the thread profile of the threaded
rollers is a double circular arc whereas those of the inner and outer rings are trapezoid.
Holes to hold the threaded rollers are evenly distributed on the planetary carrier. The
retaining rings prevent the planetary carriers from falling off, as well as eliminate the
backlash between every two thread teeth.
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Figure 2. Structure of PTR: (a) exploded view and (b) three-dimensional structure.

Similar to the PRS, the PTRB aims to convert rotary into linear motion. During
operation, the outer ring is fixed, and the inner ring can rotate freely. The threaded rollers
roll inside the bearing when the screw rotates, which can be regarded as the planetary
rolling motion between the inner ring and the outer ring via meshing. As long as the
threaded rollers rotate, there is revolution around the screw as well.
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According to the thread shape, the contact between each threaded roller and the
bearing rings can be taken as that between a steel ball and plane. The effective ball within
the two contact pairs is shown in Figure 3. The diameter of the effective ball is larger than
that of a single threaded roller. For the same material, the larger the size, the greater the
load it can bear. We shall thus derive that the PTRB can handle an even higher load from
the axial and radial directions. In other words, the PTRB can be applied to the same loading
conditions by occupying smaller space.
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2.2. Contact Property

Hertzian contact theory is widely applied to deal with issues of elastomer con-
tact [18,19]. On this occasion, we employ Hertzian theory to resolve the contact between
threaded rollers and bearing rings.

Due to its multi-thread structure, the load distribution of the three components varies.
The threaded roller is in an equilibrium of forces during operation. In this way, force
is transmitted via the thread meshing processes. Seeing that there are two contact pairs
established for transmission, which are threaded roller to inner ring pair and roller to outer
ring pair, we tend to illustrate the load distribution based on the roller to inner ring contact
pair as an example. The meshing of the threaded roller with the inner ring is exhibited in
Figure 4. The elastic deformation amount caused by the contact is:

δti_i =
2K(e)

π(ma)ti

{[
1.5
(

1 − µi
2

Ei
+

1 − µt
2

Et

)]2

Ni
2 (∑ ρ)ti

8

}1/3

(1)

where δti_i stands for the elastic deformation of ith thread, K(e) is an elliptic integral of the
first kind, Ni is the load on that thread (Figure 4), and (ma)ti is a dimensionless parameter
related to the main curvature (∑ ρ)ti of the meshing pair. Further, Ei and µi are the elastic
modulus and the Poisson ratio of the inner ring, respectively, whereas Et and µt are those
of the threaded roller.
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We define the equivalent elastic modulus of the inner ring and the threaded roller as:

1
Eti

=
1 − µi

2

Ei
+

1 − µt
2

Et
(2)

As shown in Equation (1), the deformation amount is proportional to 2/3 of the force
on the thread tooth. Therefore, the elastic deformation can also be denoted by:

δti_i = Cti Ni
2/3 (3)

together with

Cti =
2K(e)

π(ma)ti

3

√
9Ers2(∑ ρ)ti

32
(4)

Specifically, the main curvature (∑ ρ)ti refers to the sum of meshing components at
the contact point. As mentioned above, the thread profile of both the inner and outer rings
are plane, whereas the contour of the threaded roller is curved. Hence, both contact pairs
can be regarded as arc-plane pairs [20].

Based on Hertzian contact theory, we can get two mutually perpendicular planes
through the contact point of the contact pair, which are also perpendicular to the common
tangent plane. The geometric relation of the two parts is shown in Figure 5. In spite of the
basic radius of the contact components, i.e., the threaded roller and inner ring, there also
exists an equivalent curvature radius in the two mutually perpendicular planes. For the
threaded roller, we can get its curvature radii, namely rt1 and rt2, in both planes, by:

rt1 = rtr (5)

rt2 =
dtr

2cosα
(6)

where rtr, dtr, and α represent the elemental radius, the thread diameter, and the contact
angle of threaded roller, respectively.
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Likewise, when the thread of the inner ring is simplified into a plane, the curvature
radii (ri1 and ri2) of the inner ring are given as:

ri1 = ∞ (7)

ri2 =
dir

2cosα
(8)

where dir is the thread diameter of inner ring.
As the curvature can be taken as the reciprocal of the curvature radius, we have

ρt1 =
1

rt1
=

1
rtr

(9)

ρt2 =
1

rt2
=

2cosα

dtr
(10)

together with

ρi1 =
1

ri1
= 0 (11)

ρi2 =
1

ri2
=

2cosα

dir
(12)

The main curvature (∑ ρ)ti of this meshing pair is expressed as

(
∑ ρ

)
ti = ρt1 + ρt2 + ρi1 + ρi2 =

1
rtr

+
2cosα

dtr
+

2cosα

dir
(13)

According to Equation (13), the main curvature of a contact pair is merely involved in
the structural parameters of the PTRB rather than in the specific working conditions.

Correspondingly, the main curvature (∑ ρ)to of the threaded roller-outer ring contact pair is:

(
∑ ρ

)
to =

1
rtr

+
2cosα

dtr
− 2cosα

dor
(14)
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In line with the material mechanics principle, the axial tension (compression) can be
calculated. The tension (compression) amount of the inner ring and the outer ring are
denoted by µir and µor.

µir =
F·p

2Eir·Air
(15)

µor =
F·p

2Eor·Aor
(16)

where p stands for the thread pitch and F for the load force. Air and Aor are the effective
cross-sectional areas of the inner and outer ring. In combination with Figure 5, the force F
can be delivered as:

F = Nsinαcosβ ∑N
i Ni (17)

where N stands for the number of the threads and β is the helix angle.
Theoretically, the tension (compression) is kept consistent for a fixed external load.

Therefore, the deformation of the threaded roller-inner ring pair, which is derived by both
the Hertzian contact theory and the materials mechanics principle equals

(δti_i−1 − δti_i)/cosβ·sinα = µir (18)

For the threaded roller-outer ring pair, the deformation can be

(δto_i−1 − δto_i)/cosβ·sinα = µor (19)

where δto_i−1 and δto_i refer to (i − 1)th and ith deformation of the thread.
By taking the left parts from Equations(18) and (19), we have:

δti_i−1 − δti_i + δto_i−1 − δto_i = (δti_i−1 + δto_i−1)− (δti_i + δto_i)

=
(

Cti Ni−1
2/3 + Cto Ni−1

2/3
)
−
(

Cti Ni
2/3 + Cto Ni

2/3
)

= (Cti + Cto)
(

Ni−1
2/3 − Ni

2/3
)

(20)
which further converts to

(Cti + Cto)
(

Ni−1
2/3 − Ni

2/3
)
/cosβ·sinα =

F·p
2

(
1

Eir·Air
+

1
Eor·Aor

)
(21)

The load force is derived from Equation (17). Hence, substituting (17) into (21), the
relation of different threads can be rewritten as:

Ni−1
2/3 = Ni

2/3 +

(
1

Eir·Air
+

1
Eor·Aor

)
· N·p
2(Cti + Cto)

cos2β·sin2α ∑N
1 Ni (22)

For each Ni, it can be decomposed into the axial component Nai, the radial component
Nri, and the tangential component Nti (Figure 6), which can result in friction torque on each
threaded tooth during operation.
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3. Friction Torque Model

In line with the structure of the PTRB, the external load is carried by dozens of small
thread contacts between the threaded rollers and the bearing rings, which inevitably pro-
duces large amounts of friction torque [21]. In this section, we will define frictional torques
based on their causes. To the best of our knowledge, each frictional torque component is
described and derived in detail for the first time, enabling new options for further analysis.

Seeing that the PTRB is devised on the foundation of the PRS mechanism, the friction
torque of the PTRB can be resolved in the same manner [22–24].The total friction torque of
the PTRB is expressed as:

MPTRB = Mes + Mss + Mds + Mp + Mv (23)

where Mes, Mss, Mds, Mp, and Mv stand for the friction torques caused by material elastic
hysteresis, roller spin-sliding, contact surface differential sliding, planetary-roller sliding,
and viscous resistance, respectively. Further, each friction torque is generated from both
the threaded roller-inner ring pair and the threaded roller-outer ring pair. The generation
of the five different types of friction torques are analyzed below.

3.1. Friction Torque Caused by Material Elastic Hysteresis

The meshing between the threaded roller-ring pair results in the movement of the
thread teeth. As stated in Hertzian contact theory, this contact shape can be simplified as an
ellipse, which is presented in Figure 7. Elastic deformation occurs on the meshing thread
tooth as the contact position of the two parts changes. Then, we deliver the major axis and
the minor axis of the ellipse as: a = na

(
3ηQ
2 ∑ ρ

)1/3

b = nb

(
3ηQ
2 ∑ ρ

)1/3 (24)

where Q is the normal contact load; ∑ ρ is the principal curvature summation of the contact
point; na and nb are parameters related to the principal curvature difference function.Actuators 2022, 11, x FOR PEER REVIEW 10 of 25 
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The computation of contact elastic deformation is given as:

δ = nδ

(
9

32
η2Q2 ∑ ρ

)1/3
(25)

where nδ also involves the principal curvature difference function and η is the equivalent
elastic modulus of the contact pair, in line with Equation (2).

Hence, the central maximum compressive stress on the ellipse can be computed as:

P0 =
1

πnanb

(
3
2

(
∑ ρ

η

)2
Q

)1/3

=
3Q

2πab
(26)

together with the compressive stress of any point on the contact surface as:

P(x, y) = P0

√
1 −

( x
a

)2
−
(y

b

)2
(27)

where (x, y) represents the coordinates within the ellipse.
The contact torque to the roller is derived via the integration of the elliptical contact

surface, which is:

MR =
∫ a

−a

∫ b
√

1−( x
a )

2

0
2P0

√
1 −

( x
a

)2
−
(y

b

)2
ydydx =

3
8

Qb (28)

On account of the elastic hysteresis, the pressure distribution on the front- and rear-
halves of the ellipse remains uneven. With the moving of the roller, the frictional torque
working on the front half is greater than that of the rear half, and this difference is the
energy loss caused by elastic hysteresis. On this occasion, we define an elastic hysteresis
energy loss coefficient, ae, to characterize this energy loss. In this way, the friction torque
on every single contact point caused by elastic hysteresis is:

Me =
3
16

aeQb (29)

Notably, on account of the actual direction and intensity of the load, the number of
effective contact points varies. The total friction torque caused by material elastic hysteresis
can be obtained by:

Mes =
3
16

aeQbz (30)

where z stands for the effective contact point number of all meshing pairs.

3.2. Friction Torque Caused by Roller Spin-Sliding

In consideration of the working principle of the PTRB, a relative angular velocity exists
within every meshing pair at all times. The relative angular velocity will inevitably lead to
a spin-sliding, creating frictional torque. Supposing that the sliding friction coefficient is
constant, the spin-sliding friction torque on the elliptical contact surface can be calculated
based on the Jones raceway control theory [25], which is:

Ms =
3asQ
2πab

∫ a

−a

∫ b
√

1−( x
a )

2

−b
√

1−( x
a )

2

√
x2 + y2·

√
1 −

( x
a

)2
−
(y

b

)2
dydx =

3
8

asQaL(k) (31)

with L(k) representing the elliptic integral of the second kind:

L(k) =
∫ π

2

0

√
1 − (1 − K2)sin2φdφ (32)
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where K = b
a is the elliptical eccentricity.

Likewise, the roller spin-sliding friction torque on all threaded teeth of the threaded
roller-inner/outer ring pairs are given by:

Mss =
3
8

asQaL(k)z (33)

3.3. Friction Torque Caused by Differential Sliding

Similar to roller spin-sliding, contact surface differential sliding is generated due to
the distinct rotating speeds of different working components. During operation, the outer
ring of the PTRB is fixed whereas the inner ring rotates, driven by the shaft. We start with
analyzing the differential sliding friction of the roller-inner ring pair. Let us assume that the
inner ring angular speed is ωi, roller spinning speed is ωr, and the relative rotating speed
is ωri. For each contact point on the inner sliding raceway, its linear velocity is proportional
to its distance to the inner ring axis z1. Similarly, the linear velocity of the contact point
from the roller is proportional to the distance to threaded roller axis z2. When the linear
velocities of the contact pair are equal, we have:{

ωrz2 = ωiz1

z1 + z2 = dm
2

(34)

where dm stands for the pitch diameter of the PTRB.
Let c1c2 be the intersection of the instantaneous axis and contact surface with equivalent

linear velocities; see Figure 8. For the area above c1c2, the linear velocity of the contact point
on the inner ring is larger than that of the contact point on the roller, and vice versa. As a
result, we divide the relative sliding area into two parts, i.e., above c1c2 and beneath c1c2.
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According to Equation (31), given the contact stress of a point in c1c2, the shear stress
at this point is delivered as:

τ = asP(x, y) =
3asQ
2πab

√
1 −

( x
a

)2
−
(y

b

)2
(35)
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Thus, the friction torque of the area above c1c2 is:

Md1i =
3asQ
2πab

∫ a

c

∫ b
√

1−( x
a )

2

−b
√

1−( x
a )

2
Ri

√
1 −

( x
a

)2
−
(y

b

)2
dydx (36)

and the friction torque of the area beneath c1c2 is:

Md2i =
3asQ
2πab

∫ c

−a

∫ b
√

1−( x
a )

2

−b
√

1−( x
a )

2
Ri

√
1 −

( x
a

)2
−
(y

b

)2
dydx (37)

with Ri being the arm of shear stress [26–28]:

Ri =
ri + rr

4rirr
x2 (38)

where ri and rr refer to the raceway radius of the inner ring and circular radius of the
threaded roller, respectively.

From Equations (36) and (37), we have the friction torque of the roller-inner-ring pair as:

Mdi =
3asQ
2πab

∫ a

−a

∫ b
√

1−( x
a )

2

−b
√

1−( x
a )

2
Ri

√
1 −

( x
a

)2
−
(y

b

)2
dydx (39)

In the same manner, the friction torque of the roller-outer ring pair can also be com-
puted, which is:

Mdo =
3asQ
2πab

∫ a

−a

∫ b
√

1−( x
a )

2

−b
√

1−( x
a )

2
Ro

√
1 −

( x
a

)2
−
(y

b

)2
dydx (40)

where
Ri =

ro + rr

4rorr
x2 (41)

with ro representing the raceway radius of the outer ring.
The total friction torque caused by the differential sliding is:

Mds = z(Mdi + Mdo) (42)

3.4. Friction Torque Caused by Planetary-Roller Sliding

The pocket holes of both the rollers and planet carrier are circular. Sliding friction
is thus generated during the self-spinning process. During dynamic equilibrium, the
planetary-roller sliding friction is given by:

Fp =
ηπBpsCxdp

(
ωp − ωx

)
1 − d1/d2

(43)

where η is the lubricant kinematic viscosity; Bps is both the width of the planetary carrier

guide surface and depth of the pocket hole; Cx =

{
−1, x = i, inner ring
1, x = o, outer ring

; dp is the diameter

of the planetary carrier guide surface; ωp and ωx are the speeds of the planetary carrier and
inner/outer ring, respectively; and d1 represents the smaller diameter between the planetary
carrier guide surface and rib guide surface, whereas d2 refers to the larger diameter.

Then, the friction torques caused by planetary-roller sliding can be derived as:

Mp = ηπBpZCxdpdm
(
ωp − ωx

)
(44)
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3.5. Friction Torque Caused by Viscous Resistance

In a working PRS, the flow and viscosity of lubricating grease can also cause friction
torque. The larger the amount of grease applied, the greater the generation of power
consumption, which accelerates PTRB failure. In line with the Palmgren formula [29], the
friction torque caused by viscous resistance for a PTRB is:

Mv =

{
10−7 f0(vn)

2
3 dm

3, vn ≥ 2000
160 × 10−7 f0dm

3, vn < 2000
(45)

where f0 stands for the coefficient related to bearing category and lubrication mode, v is the
lubricant kinematic viscosity, and n is the rotating speed. The rotating speed is consistent for
both contact pairs because of the threaded roller directly meshing with the inner/outer ring.

4. Analysis of Factors Affecting Friction Torque

To analyze the characteristics of PTRB friction torque, the optimal number of rollers
isinvestigated, followed by studying the impacts of two major variables, i.e., external load
and rotating speed. The mechanical structural parameters of the PTRB are collected from
an in-service EMA and presented in Table 2.

Table 2. PTRB configuration.

Parameter Value Parameter Value

Index circle diameter of inner
ring (mm) 36.5 Pocket diameter of planetary carrier (mm) 3.5

Index circle diameter of outer
ring (mm) 48.5 Pocket depth of planetary carrier (mm) 2

Index circle diameter of threaded
roller (mm) 6 Poisson ratio 0.29

PTRB inner diameter (mm) 30 PTRB pitch diameter (mm) 42.5
PTRB outer diameter (mm) 55 Rolling radius within inner ring (mm) ∞
Thread pitch of roller (mm) 1.2 Rolling radius within outer ring (mm) ∞

Contact angle (◦) 45 Arc radius of threaded roller (mm) 5.1
Elastic modulus (E/MPa) 210,000 Thread number of threaded roller 10

Outer diameter of threaded
roller (mm) 6.4 Number of rollers 11

4.1. Effect of Roller Number on Friction Torque

The theoretical analysis reveals that the friction torque of the PTRB relates to the
number of contact points, which are directly determined by the number of threaded rollers
and the shape of thread teeth pairs. Seeing that the shape of thread teeth is fixed to hold a
large external load, the thread teeth shape is fixed. Thus, only the roller number will be
discussed in optimizing effectiveness.

Assuming that the rotating speed is 600 rpm and external load is 5000 N, the friction
torques of different roller numbers are obtained; see Table 3.

Table 3. Friction torque of different roller numbers.

Rotating Speed (rpm) 600

External Load (N) 5000

Roller Number 7 8 9 10 11 12 13

Mes 0.0029 0.0028 0.0027 0.0026 0.0025 0.0024 0.0023
Mss 0.128 0.123 0.118 0.114 0.110 0.107 0.102
Mds 0.00072 0.00066 0.00061 0.00057 0.00053 0.00050 0.00048
Mp 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Mv 0.0353 0.0353 0.0353 0.0353 0.0353 0.0353 0.0353
M 0.167 0.162 0.157 0.153 0.148 0.145 0.140
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As pointed out in Section 3, the friction torque components Mp and Mv are constant
under constant speed conditions. On this occasion, Mes, Mss, and Mds relate to both the
external load and number of contact points. In contrast, for a fixed load applied to the PTRB,
Mes, Mss, and Mds all decrease as roller numbers increase. This is the same for total friction
torque. That is, the increase in PTRB roller numbers can result in a smaller friction torque and
better working properties. Considering the assembly space and machining complexity, the
number of threaded rollers is set to 11, which is the maximum value for the PTRB structure.

4.2. Effect of Load on Friction Torque

According to the control variable method, the rotating speed is set to 600 rpm. The
external loads are set to 5000, 10,000, 15,000, 20,000, 25,000, and 30,000 N. The speed-related
friction torque components, i.e., Mp and Mv, together with their summation, are fixed
values. We concentrate now on Mes, Mss, Mds, as well as M, varying with the external
load. As presented in Figure 9, the relation between the total friction torque of the PTRB
and load is generally nonlinear. Both the friction torque and its growth rate increase with
higher external loads. The change in growth rate, also refers to as friction torque growth
acceleration, tends to gradually stabilize. When the load reaches a certain value (15,000 N),
the friction torque stays almost proportional to the load.
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Figure 9. Friction torque in relation to external load.

The proportion of distinguishing friction torque as load increases is shown in Figure 10.
Obviously, Mss consistently accounts for the largest amount, which rises dramatically with
increases in load. The proportion of Mss reaches 90% and approaches 100%, with the
external load increasing over 14,000 N. In comparison, the contribution of Mes and Mds are
minor. Despite growing with the load, the maximum percentages of Mes and Mds are only
2.2 and 0.9%, respectively.
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Figure 10. Proportion of friction torque under distinguishing load.

Considering the working conditions of the PTRB, we also carried out an analysis on
friction torque of variable loads, with rotating speeds of 1000, 2000, and 3000 rpm; see
Table 4. Similar to the findings with 600 rpm speed, total friction torque M had a positive
increase in accordance with increasing external load. Specifically, Mss steadily took up the
highest proportion. Moreover, increases in speed among different evaluation settings also
caused an overall decline in Mes, Mss, and Mds.

Table 4. Friction torque of variable loads and constant rotating speed.

(a) Friction torque with 1000 rpm rotating speed.

Rotating Speed (rpm) 1000

External Load (N) 5000 10,000 15,000 20,000 25,000 30,000

Mes
Value (Nm) 0.002 0.006 0.011 0.016 0.021 0.027

Proportion (%) 1.23 1.79 2.04 2.08 2.06 2.09

Mss
Value (Nm) 0.110 0.277 0.476 0.699 0.941 1.199

Proportion (%) 67.48 82.69 88.15 90.78 92.25 93.16

Mds
Value (Nm) 0.001 0.002 0.003 0.005 0.008 0.011

Proportion (%) 0.61 0.59 0.56 0.65 0.78 0.85
M Value (Nm) 0.163 0.335 0.540 0.770 1.020 1.287

(b) Friction torque with 2000 rpm rotating speed.

Rotating Speed (rpm) 2000

External Load (N) 5000 10,000 15,000 20,000 25,000 30,000

Mes
Value (Nm) 0.002 0.006 0.011 0.016 0.021 0.027

Proportion (%) 1.04 1.65 1.93 2.00 2.00 2.05

Mss
Value (Nm) 0.110 0.277 0.476 0.699 0.941 1.199

Proportion (%) 57.29 76.10 83.66 87.48 89.70 91.04

Mds
Value (Nm) 0.001 0.002 0.003 0.005 0.008 0.011

Proportion (%) 0.52 0.55 0.53 0.63 0.76 0.84
M Value (Nm) 0.192 0.364 0.569 0.799 1.049 1.317
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Table 4. Cont.

(c) Friction torque with 3000 rpm rotating speed.

Rotating Speed (rpm) 3000

External Load (N) 5000 10,000 15,000 20,000 25,000 30,000

Mes
Value (Nm) 0.002 0.006 0.010 0.016 0.021 0.027

Proportion (%) 0.92 1.54 1.85 1.94 1.96 2.01

Mss
Value (Nm) 0.110 0.277 0.476 0.699 0.941 1.199

Proportion (%) 50.69 71.21 80.13 84.83 87.62 89.41

Mds
Value (Nm) 0.001 0.002 0.003 0.005 0.008 0.011

Proportion (%) 0.46 0.51 0.51 0.61 0.74 0.82
M Value (Nm) 0.217 0.389 0.594 0.824 1.074 1.341

4.3. Effect of Rotating Speed on Friction Torque

Likewise, to evaluate the impact of rotating speed on friction torque, the rotating
speeds ranged from 200 to 2000 rpm, with an interval of 200, whilst the load is 5000 N.
Because Mp and Mv are speed-related variables, the friction torque with respect to different
rotating speeds are given in Figure 11.
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Figure 11. Friction torque in relation to rotating speed.

In general, the total friction torque M increases almost linearly with increasing rotating
speed, whereas its growth rate decreases. In contrast, Mp has a linear relationship with
rotating speed, which has little variation. Furthermore, the proportion of Mp and Mv in M
is presented in Figure 12. Clearly, the proportion of Mv far exceeds that of Mp. According to
Figures 11 and 12, one can easily see that both the amount and proportion of Mv rapidly in-
crease to conform to the rotating speed. The proportion of Mv exceeds 40% of total friction
torque whilst rotating speed is 1800 rpm. Nevertheless, the friction torque caused by
planetary-roller sliding Mp makes a marginal contribution, with its maximum proportion
being less than 0.17%. Speed-related friction torque components with a given external
load are also presented. According to Table 5, for a set of rotating speeds, an increase in
load inevitably results in an increase in total friction while both Mp and Mv have identical
values. Thus, the proportion of speed-related friction torques drops, which is the same case
as that shown in Table 4.
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Figure 12. Friction torque in relation to rotating speed.

Table 5. Friction torque of variable rotating speeds and constant load.

(a) Friction torque with 10 kN external load

External Load (N) 10,000

Rotating Speed (rpm) 400 800 1200 1600 2000

Mp
Value (Nm) 0.00006 0.00012 0.0019 0.00025 0.00032

Proportion (%) 0.02 0.04 0.56 0.07 0.09

Mv
Value (Nm) 0.027 0.043 0.056 0.068 0.079

Proportion (%) 8.65 13.11 16.42 19.26 21.70
M Value (Nm) 0.312 0.328 0.341 0.353 0.364

(b) Friction torque with 20 kN external load

External Load (N) 20,000

Rotating Speed (rpm) 400 800 1200 1600 2000

Mp
Value (Nm) 0.00006 0.00012 0.0019 0.00025 0.00032

Proportion (%) 0.01 0.02 0.24 0.03 0.04

Mv
Value (Nm) 0.027 0.043 0.056 0.068 0.079

Proportion (%) 3.61 5.64 7.22 8.63 9.89
M Value (Nm) 0.747 0.763 0.776 0.788 0.799

(c) Friction torque with 30 kN external load

External load (N) 30,000

Rotating speed (rpm) 400 800 1200 1600 2000

Mp
Value (Nm) 0.00006 0.00012 0.0019 0.00025 0.00032

Proportion (%) 0.00 0.01 0.15 0.02 0.02

Mv
Value (Nm) 0.027 0.043 0.056 0.068 0.079

Proportion (%) 2.14 3.36 4.33 5.21 6.00
M Value (Nm) 1.264 1.280 1.294 1.306 1.317

5. Experiments
5.1. Experimental Setup

Experiments on PTRB friction torque in real working conditions are conducted on
the verification platform. A photograph of the experimental setup is shown in Figure 13.
To test friction torque, a prototype of the PTRB is manufactured and installed on the test
rig. According to Figure 13, a hydraulic pressure stand supplies oil to the loading process.
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Specifically, as pointed out in Section 3, the PTRB is lubricated with grease during operation,
and the rise in temperature considerably affects the generation of friction torque. An air
cooler is thus employed to moderate the temperature of the PTRB. Both the control and data
acquisition modules are integrated into a host computer. The former controls workflow
and the latter records signals from sensing elements.
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A schematic of the PTRB test rig is exhibited in Figure 14. The test PTRB is embedded
into a support base to keep location constant. The variations in rotating speed is delivered
to the PTRB via a servo motor and transmission rod. The external load is applied by using
loading cylinders. In this experiment, the external load is generally divided into axial and
radial load. With respect to the EMA working principle, the axial load is referred to as the
aiding load.Accordingly, an axial and radial loading cylinder, together with two tension-
compression sensors detecting the outputs, are utilized. Both the motor and cylinders are
controlled by the control module. Moreover, two more PTRBs of the same type are taken as
accompanying bearings to support the shaft. These three PTRBs are established so closely
that the forces of the three bearings could be considered identical. The friction torque of the
working PTRB is detected using a torque sensor and sent to the data acquisition module.
Theoretically, the sensing signals of the torque sensors involved only the friction torques of
the three PTRBs. However, additional parasitic friction torque can be generated by moment
of inertia and grease. In this experiment, all friction torques are measured if the rotation
speed is constant. Furthermore, a running-in test is also performed before experiments to
prevent the instability of grease at a low temperature. Forced refrigeration measures are
adopted to retain the temperature of the bearing around 55 ◦C. Major components, as well
as their parameters, are listed in Table 6.

The friction torque dynamics of the PTRB is presented in Figure 15. During the initial
stage, an overshoot is caused by both the arising inertia and load application. With the
system adjustment, friction torque is measured within the stable actuation process. Then,
the test PTRB is switched to the next working mode, and so on. Notably, the rotating speed
is set to 200–2000 rpm whilst the external load is set to 2000–30,000 N. The following results
are discussed in the context of this working condition.
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Figure 14. Test rig.

Table 6. Major components of experiment.

Element Type/Configuration Quantity

Control module EL4034, 4CH AO, Range: (−10~10)V,
12-bit, Conversion time: 250 µs 1

Data acquisition module EL3104, 4CH AI, Range: (−10~10)V,
16-bit, Conversion time: 100 µs 1

Host computer C6400-0050, CPU Intel Core i5, 8 GB
RAM, 512 GB Disk 1

Servo motor Z18, 15 kW, 15,000 rpm 1
Torque sensor Measuring range: ±5 Nm, Accuracy: 2% 1

Tension-compression sensor Measuring range: 3 T, Accuracy: 2% 2
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Figure 15. Dynamics of friction torque.

5.2. Main Results

In this experiment, the external loads and rotating speeds of the PTRB are set corre-
sponding to the analyses of friction torque. The theoretical friction torques, based on the
friction torque model, are computed in advance. The friction torques of both radial-and
axial-directional loads are recorded based on an identical theoretical value under different
working conditions. Notably, the measuring range of the torque sensor is5 Nm and its accu-
racy is 1% full scale. Measurement error is restricted within 0.005 Nm, which is negligible
to the measured results.
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Figure 16 shows the results of measured friction torques in comparison with the
theoretical friction torque, as well as the deviations. With a given rotating speed of 600 rpm,
actual friction torques showed the same trends as the theoretical values. Notably, the
friction torque of radial load fit the computation model better than that of axial load. The
maximum deviation ratio of radial-load-friction-torque is only 12.7%, which gradually
declines with the increase of load. In comparison, there is a considerable gap between the
axial-load-friction-torque and its theoretical value, and its maximal proportion reached
42.6%. A possible explanation is that the actual external load applied to the PTRB is uneven
in the axial direction. More concretely, the axes of the axial loading cylinder and PTRB
could not be aligned during system assembly.
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Figure 16. Measured friction torque of variable external loads and constant rotating speed: (a) friction torque
of radial external load; (b) friction torque of axial friction torque; (c) absolute deviation of friction torque.

On the other hand, given a constant load of 5000 N, the friction torques varying with
rotating speeds are also obtained; see Figure 17. Likewise, the external loads of radial and
axial directions are separately applied. With an increase in rotating speed, the measured
friction torques under both radial and axial load showed a similar growth trend with
the theoretical values. The deviations of both conditions are comparable, with maximum
proportions against the theoretical friction torque being 12 and 13%, respectively.
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Figure 17. Measured friction torque of variable rotating speeds and constant external load: (a) friction torque
of radial external load; (b) friction torque of axial external load; (c) absolute deviation of friction torque.

Under the working condition of having a 200–2000 rpm rotating speed and 2000–30,000 N
reverse load, measured friction torque fits the theoretical friction torque model to a great
extent. That is, the computed curve of the friction torque generally covered the actual values
under both variable-speed-constant-load and variable-load-constant-speed conditions. The
average relative errors of the four distinctive working conditions are given in Figure 18. It
is evident that the outcome of radial load outperforms that of axial load in both evaluation
settings. This issue can be further resolved by improving coaxiality between the axial loading
cylinder and PTRB. Because measured friction torque considerably conforms with theoretical
friction torque, it is reasonable to expect greater robustness and higher precision using the
friction torque computation model, which is validated by our findings.
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6. Conclusions

In this work, the friction torque of the PTRB is comprehensively studied for EMA
applications. To start, the structure of the PTRB and its working principle are depicted. A
theoretical model of friction torque is established by combining Hertzian contact theory and
structural characteristics. The total friction torque is subdivided into five categories. These
formulas are derived from the different causes of friction torque. Further, our analysis
of friction torque could identify the impacts of external loads and rotating speeds. We
observe the variation in each component of friction torque, as well as their proportions
under different conditions. Experiments are conducted according to the friction torque
analysis results. Experimental results reveal the working performance of our friction torque
model and the analysis.We set rotating speeds between 200 and 2000 rpm and reverse
external loads from 5000 to 30,000 N. In this way, a precise mathematical model of friction
torque with speeds of 200–2000 rpm, reverse loads of 2000–30,000 N, and a temperature
restricted to 55 ◦C is now accessible.

In comparison to theoretical values, the measured friction torques fit well with the
friction torque computation model. The deviations between theoretical and measured
friction torque validate the technical efficacy of the friction torque model.
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