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Abstract: In order to solve the problems of limited installation space and strict additional quality,
the effects of internal distributed nonlinear energy sinks (NES) considering optimal locations on
a composite truss core sandwich plate are investigated in this paper. Choose five NESs here and
inset them in the different places of the sandwich plate to suppress the vibration of the plate, which
is excited by a half-wave shock. The coupled dynamic equations of the system are derived by
the principle of conservation of energy. Then, the vibration-control performances of five NESs are
discussed by numerical simulation. The distributions of the five NESs are analyzed, and the optimal
position distributions are obtained. Based on the optimal location, the transient responses of the
system are studied. Moreover, the performances of five NESs and a single NES are compared in
different dimensions. Finally, it is found that the selection of parameters has a great impact on the
effectiveness of the five NESs. The new distribution way is introduced to improve the suppression
effects of the five NESs in the sandwich plate.

Keywords: composite truss core sandwich plate; nonlinear energy sinks; vibration reduction; distribution

1. Introduction

Sandwich structures are usually composed of two stiff face skins and a thicker core
material, such as Kagome, tetrahedral, and pyramidal cores. They have a broad application
prospect in the engineering field because of their excellent properties, such as high specific
strength, high specific stiffness, energy absorption, thermal conductivity, and so on [1–4].

In recent years, many scholars have done a lot on sandwich structures to grasp their
characteristics more. Zhang et al. [5] investigated the global and chaotic dynamics of
sandwich plates with truss core. Wang et al. [6] studied the acoustic transmission of
laminated composite sandwich structures with pyramidal truss cores. Zangana et al. [7]
analyzed the dynamic characteristics of composite corrugated core sandwich structures
subjected to low-velocity shocks. Lou et al. [8] theoretically and experimentally investigated
the natural frequencies and the vibration modes of pyramidal truss core sandwich structures
with local damage. Xiong et al. [9] analyzed the structural performance of composite
sandwich panels under direct shear and three-point bending loads. Wang et al. [10]
investigated the mechanical behaviors of composite sandwich plates with 2-D lattice truss
cores by out-of-plane compression, shear, and three-point bending tests. Huang et al. [11]
analyzed the dynamic responses and failures of composite lattice core sandwich beams
under impulsive loading. In addition, considering the special core layer of the sandwich
structures, some scholars, such as Yin et al. [12], investigated their internal space availability.
They analyzed the damping performance and energy absorption capacity of silicone rubber-
filled sandwich structures. Zhang et al. [13] studied the dynamic responses of pyramidal
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lattice core sandwich panels, improving the energy absorption and low-velocity shock
resistances by filling the polyurethane foams. Chen et al. [14] put forward the aerogel-filled
sandwich panels to provide both mechanical supports and thermal insulation.

Meanwhile, vibration control is another important research topic of sandwich struc-
tures, specifically in the condition of strong reliability and high vibration-suppression
requisition. Li et al. [15] analyzed the vibration-suppression effects of the active control
method on the vibration responses of lattice sandwich beams by the piezoelectric actua-
tor/sensor pairs. Song et al. [16] analyzed the flutter suppression of the lattice sandwich
beams by means of active vibration control. Chai et al. [17] investigated the nonlinear
dynamic responses and vibration control of sandwich plates with different cores.

As a passive vibration-control device, nonlinear energy sink (NES) has great advan-
tages in controlling the vibration of structures, such as a small additional mass, a wider
vibration-suppression frequency band, and targeted energy transfer [18–22]. In order to
make NES better serve the structures, many scholars have done a lot of research on it.
Moslemi et al. [23] analyzed the effects of NES on the dynamic responses for axially moving
beams. Liu et al. [24] investigated the vibration-suppression efficiency of NES with geo-
metrically nonlinear damping. Taghipour et al. [25] researched the steady-state dynamic
responses of a primary structure with cubic nonlinear stiffness connected with an NES
under harmonic excitations. Fang et al. [26] analyzed the vibration-suppression of bistable
NES on the transient responses of a Bernoulli–Euler beam and targeted energy transfer
of the system. Zang et al. [27] discussed the influence of lever-type NES on the dynamic
responses of structures subjected to harmonic excitation. Tian et al. [28] attached NES to a
hypersonic 3-D wing to reduce the aeroelastic responses of a wing. Li et al. [29] proposed a
symmetric single-sided vibro-impact NES to suppress the vibration of cantilever beams.
Zhang et al. [30] used an NES to rapidly suppress the transient vibration of an axially
moving beam. Yao et al. [31] discussed the effects of a grounded NES on the lateral vibra-
tion of rotor systems. Chen et al. [32] obtained better vibration reduction by comparing
parallel NESs with a single one. They also found that the parallel NES could eliminate the
higher branch responses of the system due to nonlinear terms. Wei et al. [33] improved
the targeted energy transfer efficiency of NES by paralleling two different types of NES.
Zhang et al. [34] studied the dynamic responses of the axially moving beam with parallel
NES. Ding et al. [35,36] realized the effective suppression of structural vibration through
boundary NES. In addition, Ding et al. [37,38] also studied the optimal design criteria of
NES to expand the application scope of NES.

With the increasingly complex service environment of the structures, the requirements
for vibration control are becoming stricter, and NES can be used as an effective device
to quickly suppress the vibration of composite truss core sandwich plates. In addition,
although many studies have been carried out on NES, the existing studies rarely consider
the optimal location distributions of multiple NESs on the continuum. This paper presents
the vibration-control performances of internal multiple NES absorbers, considering opti-
mal locations on a composite truss core sandwich plate with shock loading. Firstly, the
dynamical equations of motion for a composite truss core sandwich plate are built with
five inside-distributed NESs. These NESs are embedded in the core of the sandwich plate,
where one NES is in the center of the composite plate and the other four NESs are symmet-
rically placed on four sides of the plate. Then, the influences of the position distribution
of the NESs on the energy dissipation capacity are discussed. Based on the criteria of
the optimal energy dissipation position, the feasibility of the scheme and the difference
of the vibration reduction of the first three modes of the sandwich plate are analyzed by
the transient response. In addition, the vibration-control performances of the single NES
and the distributed five NESs are compared to show the suppression advantages of the
five NESs with the same structure. Finally, the effects of different parameters for the five
NESs on energy dissipation are investigated to improve the performance of the distributed
nonlinear absorbers.
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2. Equation of Motion

Consider a composite truss core sandwich plate subjected to a shock load F as in
Figure 1a. The sandwich plate is composed of three layers, where the upper and lower face
sheets are made of carbon fibers and the middle core is arranged by pyramidal truss core.
The five NESs are named as N1, N2, N3, N4, and N5, respectively, which are embedded
in five different truss core units. The pyramidal truss core unit with the NES is shown in
Figure 1b. The mechanical model of the NES is shown in Figure 1c. A Cartesian coordinate
system is built in the middle surface of the plate, and u, v, and w represent the displacements
of any point of the plate in the x, y, and z directions, respectively. The shock load F acts
on the position (P1, P2). Moreover, the symbolic representation of structural parameters is
shown in Table 1.

Figure 1. System model: (a) composite truss core sandwich plate excited by shock load; (b) the
pyramidal truss core unit with the NES; and (c) the mechanical model of the NES.

Table 1. The symbolic representation of structural parameters.

Structural Parameters Symbols

Plate length a
Plate width b
Plate height h

Height of core layer hc
Rod length l
Rod radius r

Inclination angle θ

Based on Allen’ s theory [39], the following assumptions are given as:

(1) The thickness of the truss core sandwich plate remains constant during deformation;
(2) Bending deformation only exists in the thin-face sheets, and shear one happens in the

thick truss core of the plate;
(3) The deflections of the whole plate are continuous.
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The thin-face sheets are made of carbon fiber composites, which are laid in five layers
as 0/90/0/90/0. The stress–strain relations for the composite material can be expressed
as follows: σxx

σyy

σxy

 =


Q

11
Q12 0

Q
21

Q22 0

0 0 Q66


εxx

εyy

γxy

 (1)

where the equivalent modulus Qij can be expressed as

Q11 = Q11 cos4 α + 2(Q12 + 2Q66) sin2 α cos2 α + Q22 sin4 α (2a)

Q12 = (Q11 + Q22 − 4Q66) sin2 α cos2 α + Q12(sin4 α + cos4 α) (2b)

Q22 = Q11 sin4 α + 2(Q12 + 2Q66) sin2 α cos2 α + Q22 cos4 α (2c)

Q66 = (Q11 + Q22 − 2Q12 − 2Q66) sin2 α cos2 α + Q66(sin4 α + cos4 α) (2d)

Here, Qij is the elastic constants and α is the stacking angle of the face sheet.
The first-order shear deformation theory is applied here to express the displacement

fields of the structure as
u(x, y, z, t) = zΨx(x, y, t) (3a)

v(x, y, z, t) = zΨy(x, y, t) (3b)

w(x, y, z, t) = w0(x, y, t) (3c)

where Ψx and Ψy are the rotations of the transverse normal about the y- and x-axes, respectively.
The strains associated with the displacement field can be expressed as

εxx = z
∂Ψx

∂x
, εyy = z

∂Ψy

∂y
, εzz = 0

γxy = z
(

∂Ψx

∂y
+

∂Ψy

∂x

)
, γxz =

∂w0

∂x
+ Ψx, γyz =

∂w0

∂y
+ Ψy (4)

Applying the Hamilton’s principle, the motion equations of the sandwich plate cou-
pled with five NESs can be derived as

D11
∂2Ψx

∂x2 +D12
∂2Ψy

∂x∂y
+D66

(
∂2Ψx

∂y2 +
∂2Ψy

∂x∂y

)
− κA55

(
∂w0

∂x
+ Ψx

)
= I2

..
Ψx (5a)

D22
∂2Ψy
∂y2 +D12

∂2Ψx
∂x∂y +D66

(
∂2Ψy
∂x2 + ∂2Ψx

∂x∂y

)
− κA44

(
∂w0
∂y + Ψy

)
= I2

..
Ψy

κA55

(
∂w2

0
∂x2 + ∂Ψx

∂x

)
+ κA44

(
∂w2

0
∂y2 +

∂Ψy
∂y

)
+ Fδ(x− P1, y− P2)− µ0

.
w0

(5b)

+
5

∑
i=1

[
Ki
(
wni − wpi

)3
+ µi

( .
wni −

.
wpi
)]

δ(x− Ai, y− Bi)= I0
..
w0 (5c)

mi
..
wni + Ki

(
wni − wpi

)3
+ µi

( .
wni −

.
wpi
)
= 0(i = 1, 2, 3, 4, 5) (5d)

where
Dij = Dij1 + Dij3(i, j = 1, 2, 6), Dij1 =

∫ − hc
2

− h
2

Qijz2dz, Dij3 =
∫ h

2
hc
2

Qijz2dz, A44 =∫ hc
2

− hc
2

G23cdz, A55 =
∫ hc

2

− hc
2

G13cdz, Ii =
N
∑

k=1

∫ zk+1
zk

ρ(k)(z)idz(i = 0, 2), wpi = w0(Ai, Bi, t)

(i = 1, 2, 3, 4, 5); here, (Ai, Bi) represent the locations of five NESs in the plate. mi, µi, Ki,
and wni are the mass, damping, stiffness, and displacements of the five NESs, respectively.
µ0 is the damping of the sandwich plate. κ is the shear correction coefficient. A44 and A55



Actuators 2022, 11, 225 5 of 20

are the extensional stiffness. Dij is the bending stiffness. The rotational inertia terms in
Equation (5) can be ignored for the small values.

In order to obtain the dimensionless dynamic equation, the following transformations
are introduced:

w0 = w0
h , wni =

wni
h , Ψx = Ψx, Ψy = Ψy, x = x

a , y = y
b , F = a2b2

E1h4 F,

µ = ab
h2

(
1

ρE1

) 1
2
µ, t = h

ab

(
E1
ρ

) 1
2 t, Ω = ab

h

(
ρ

E1

) 1
2 Ω, Aij =

(ab)
1
2

E1h2 Aij,

Dij =
(ab)

1
2

E1h4 Dij, K = a2b2

E1h K, m = 1

(ab)
1
2 ρ

m, I0 = 1

(ab)
i+1

2 ρ
I0

(6)

For convenience, the “-” on the dimensionless symbols are ignored. Substituting
Equation (6) into Equation (5), the dimensionless dynamical equations of the system can be
written as

q11
∂2Ψx

∂x2 +q12
∂2Ψy

∂x∂y
+q13

∂2Ψx

∂y2 − q14
∂w0

∂x
− q15Ψx = 0 (7a)

q21
∂2Ψy

∂y2 +q22
∂2Ψx

∂x∂y
+q23

∂2Ψy

∂x2 − q24
∂w0

∂y
− q25Ψy = 0 (7b)

..
w0 + γ0

.
w0 − q31

∂w2
0

∂x2 − q32
∂Ψx
∂x − q33

∂w2
0

∂y2 − q34
∂Ψy
∂y

+
5
∑

i=1

[
ki
(
wpi − wni

)3
+ γi

( .
wpi −

.
wni
)]

δ(x− ai, y− bi) = Γδ(x− p1, y− p2)
(7c)

εi
..
wni + ki

(
wni − wpi

)3
+ γi

( .
wni −

.
wpi
)
= 0(i = 1, 2, 3, 4, 5) (7d)

where

q11 = h2

a2 D11, q12 = h2

ab (D12 + D66), q13 = h2

b2 D66, q14 = κh
a A55, q15 = κA55, q21 = h2

b2 D22,
q22 = h2

ab (D12 + D66), q23 = h2

a2 D66, q24 = κh
b A44, q25 = κA44, q31 = κbA55

aI0
, q32 = κbA55

hI0
, q33 = κaA44

bI0
,

q34 = κaA44
hI0

, γ0 = hµ0

(ab)
1
2 I0

, γi =
hµi

(ab)
1
2 I0

, ki =
hKi

(ab)
1
2 I0

, Γ = hF

(ab)
1
2 I0

, εi =
mi
I0

, p1 = P1
a ,

p2 = P2
b , ai =

Ai
a , bi =

Bi
b .

Based on the simply supported boundary conditions of the composite truss core
sandwich plate, Ψx, Ψy, and w0 can be expressed as

Ψx =
∞

∑
n=1

∞

∑
m=1

2xmn(t) cos mπx sin nπy (8a)

Ψy =
∞

∑
n=1

∞

∑
m=1

2ymn(t) sin mπx cos nπy (8b)

w0 =
∞

∑
n=1

∞

∑
m=1

2wmn(t) sin mπx sin nπy (8c)

Since the harmful vibration of low frequency is the main cause of structural damage,
here, we focus on the response absorption of the first three vibration modes for the plate.
Using the Galerkin method, the dimensionless dynamic equations of the motion for the
coupled system can be obtained as follows:

..
w1 + γ0

.
w1 + ω2

1w1 +
5
∑

i=1
ki[w1q1(ai, bi) + w2q2(ai, bi) + w3q3(ai, bi)− wni]

3q1(ai, bi)

+
5
∑

i=1
γi
[ .
w1q1(ai, bi) +

.
w2q2(ai, bi) +

.
w3q3(ai, bi)−

.
wni
]
q1(ai, bi) = Γq1(p1, p2)

(9a)
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..
w2 + γ0

.
w2 + ω2

2w2 +
5
∑

i=1
ki[w1q1(ai, bi) + w2q2(ai, bi) + w3q3(ai, bi)− wni]

3q2(ai, bi)

+
5
∑

i=1
γi
[ .
w1q1(ai, bi) +

.
w2q2(ai, bi) +

.
w3q3(ai, bi)−

.
wni
]
q2(ai, bi) = Γq2(p1, p2)

(9b)

..
w3 + γ0

.
w3 + ω2

3w3 +
5
∑

i=1
ki[w1q1(ai, bi) + w2q2(ai, bi) + w3q3(ai, bi)− wni]

3q3(ai, bi)

+
5
∑

i=1
γi
[ .
w1q1(ai, bi) +

.
w2q2(ai, bi) +

.
w3q3(ai, bi)−

.
wni
]
q3(ai, bi) = Γq3(p1, p2)

(9c)

εi
..
wni + ki[wni − w1q1(ai, bi)− w2q2(ai, bi)− w3q3(ai, bi)]

3

+γi
[ .
wni −

.
w1q1(ai, bi)−

.
w2q2(ai, bi)−

.
w3q3(ai, bi)

]
= 0(i = 1, 2, 3, 4, 5)

(9d)

where ω1, ω2, and ω3 are the first three natural frequencies of the sandwich plate. q1(x, y),
q2(x, y), and q3(x, y) are the components acting on the first three modes.

3. Overall Performances for the Five NESs

Numerical simulation methods are applied here to analyze the overall performances
of the five NESs absorber. To be clear, the units of the sandwich plate are numbered
sequentially as shown in Figure 2. The locations of the five NESs are circled in red in
Figure 2, where N1 corresponds to the coordinate point (0.5, 0.5), and N2, N3, N4 and N5 are
symmetrically distributed around. In the following study, let N2, N3, N4, and N5 change
synchronously to keep their symmetry of the center, and the position of the four NESs can
be adjusted by changing the position of the N2 coordinate (a2, b2).

Figure 2. Units in two-dimensional coordinate system.

The geometry and material property parameters of the sandwich plate used in this
paper are shown in Table 2. In addition, the thickness of each lamina is 0.12 mm.
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Table 2. Geometry and material property parameters of the sandwich plate.

Items Values

Density ρ = 1570 kg/m3

Poisson’s ratios
ν12 = 0.25
ν13 = 0.25
ν23 = 0.38

Elastic moduli
E1 = 1.32× 105 MPa
E2 = 1.03× 104 MPa
E3 = 1.03× 104 MPa

Shear moduli
G12 = 6.5× 103 MPa G13 = 6.5× 103 MPa

G23 = 3.91× 103 MPa

Plate length a =1 m

Plate width b =1 m

Rod length l =0.04 m

Inclination angle θ = π/4

Rod radius r =1× 10−3 m

The shock load Γ is in the form of a half-sine pulse as

Γ =

{
f sin(2πt/T) 0 ≤ t ≤ T/2

0 t > T/2
(T =0.4/π) (10)

The equivalent density of the truss core [39,40] is expressed as

ρc =
2πρ

cos2 θ sin θ

( r
l

)2
(11)

The shear modulus of the truss core [39,40] are written as

G13c = G23c = π sin θ
( r

l

)2
E1 (12)

3.1. Determination of the Optimal Positions of Five NESs

The optimal positions of vibration suppression for the five NESs are discussed firstly.
Let the parameters of the five NESs be equal, which include stiffness, damping, and mass.
Moreover, the arbitrary dimensionless parameters are set to εi = 0.02, γi = 0.05, and
ki = 800. The following study is done in three steps. In the first one, suppose the shock
force acts on the point (p1 = 0.35, p2 = 0.35) and its amplitudes are f = 1, f = 3, and f = 5,
respectively. Based on the numbering sequence in Figure 2, N2 is placed in the different
number units in sequence from small to large.

The energy dissipation ratio is introduced, and dynamic equations of the system are solved
by the Runge Kutta method to analyze the overall efficiency of the five NESs with different
distributions [32]. The energy dissipation ratio is calculated using the following expression:

η =

5
∑

i=1
γi
∫ t

0

[ .
w1q1(ai, bi) +

.
w2q2(ai, bi) +

.
w3q3(ai, bi)−

.
wni
]2dτ∫ T

0 Γ
[ .
w1q1(p1, p2) +

.
w2q2(p1, p2) +

.
w3q3(p1, p2)

]
dt

(13)

Figure 3 shows the energy dissipation ratios of five NESs at different positions, where
different colors indicate the energy dissipation ratios of the NESs. It can be found that there
are optimal energy dissipation areas for the five NESs. No matter how big the amplitudes of
the shock force, the optimal area distributions for vibration-suppression are similar to each
other. Therefore, the optimal vibration-suppression area of the five NESs can be selected as
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a rough range, which is surrounded by the black boxes in Figure 3. The corner coordinates
of these black boxes are marked as S1, S2, S3, and S4, which are

S1 = {(0.2, 0.2), (0.4, 0.2), (0.2, 0.4), (0.4, 0.4)},

S2 = {(0.6, 0.2), (0.8, 0.2), (0.6, 0.4), (0.8, 0.4)},

S3 = {(0.2, 0.6), (0.4, 0.6), (0.2, 0.8), (0.4, 0.8)},

S4 = {(0.6, 0.6), (0.8, 0.6), (0.6, 0.8), (0.8, 0.8)}.

Figure 3. Energy dissipation ratios of five NESs at different positions under different excitation
amplitudes: (a) f = 1; (b) f = 3; and (c) f = 5.

In the second step, chose two different locations of the five NESs as an example, where
one is in the optimal position range as (a2 = 0.3, b2 = 0.3) and the other is out of this range
as (a2 = 0.18, b2 = 0.18). Meanwhile, keep the dimensionless shock amplitude f as 1, and
then the transient responses of the sandwich plate without and with the five NESs in two
different positions are shown in Figure 4, in which the vertical coordinate w is the sum
amplitudes of the first three modes. In order to facilitate comparison, the time required
for the system to return to the static state after being shocked is defined as the effective
suppression time. It is easy to see that the effective suppression time of (a2 = 0.3, b2 = 0.3)
is obviously less than that of (a2 = 0.18, b2 = 0.18). Therefore, the layout for the five NESs
in Figure 4a is much better than that in Figure 4b, and the optimal position can make the
five NESs work efficiently.
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Figure 4. Comparison of vibration-reduction performance of five NESs under different locations:
(a) the responses when (a2 = 0.3, b2 = 0.3); (b) the responses when (a2 = 0.18, b2 = 0.18).

In the third step, keep the shock amplitude f = 5 and change the location of the
shock. Figure 5 shows the energy dissipation ratios of the five NESs with the shock
force on (p1 = 0.5, p2 = 0.5) and (p1 = 0.5, p2 = 0.3). From Figure 5a,b and Figure 3c, it is
found that the optimal position distribution of the five NESs will change with the loading
position. Thus, set the shock force at the position (p1 = 0.35, p2 = 0.35) and the five NESs
at (a2 = 0.3, b2 = 0.38) for the following research.

Figure 5. The energy dissipation ratios of five NESs at different positions when f = 5:
(a) (p1 = 0.5, p2 = 0.5); (b) (p1 = 0.5, p2 = 0.3).

3.2. Research on Transient Responses Based on the Optimal Position

The five NESs are placed inside the sandwich plate, and the relative motion between
each substructure and the mid-plane of the sandwich plate should also be taken into
account. wri(i = 1, 2, 3, 4, 5) are the relative displacements between the center of the mass
block and the mid-plane of the sandwich plate, which are used to study whether the five
NESs will collide with the sandwich plate. In the case that the volumes of the internal five
NESs are all ignored, by the position of the coordinate system and the parameters of the
structure, the effective relative motion range in which the five NESs will not collide with the
face sheets of sandwich plate is −hc/2h < wri < hc/2h. Here, two different amplitudes of
the load are considered, including f = 5 and f = 10. The relative displacements between the
NESs and the sandwich plate are shown in Figures 6 and 7, respectively. With the increase
of force, the duration of relative motion between the sandwich plate and the NESs is longer.
Obviously, due to different positions, the maximum relative displacement between each
substructure and the sandwich plate is different, but they are all within a reasonable range.
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Figure 6. The relative motion between the plate and each substructure of five NESs when f = 5:
(a) the relative motion between the plate and the N1; (b) the relative motion between the plate and
the N2; (c) the relative motion between the plate and the N3; (d) the relative motion between the plate
and the N4; and (e) the relative motion between the plate and the N5.
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Figure 7. The relative motion between the plate and each substructure of five NESs when f = 10:
(a) the relative motion between the plate and the N1; (b) the relative motion between the plate and
the N2; (c) the relative motion between the plate and the N3; (d) the relative motion between the plate
and the N4; and (e) the relative motion between the plate and the N5.

w1, w2, and w3, respectively, represent the response amplitudes of the first three
modes of the sandwich plate. Figures 8–10, respectively, show the waveforms of the
first three transient responses for the sandwich plate without and with five NESs under
different excitation amplitudes. It can be clearly found that no matter how large the
excitation amplitude is, the five NESs in the optimal position always has a good vibration-
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reduction effect on the first three modes of the plate. Furthermore, under the same excitation
amplitude, the five NESs in the optimal position have different vibration-reduction effects
on the first three modes.

Figure 8. The first-order transient response of sandwich plate under different excitation amplitudes:
(a) f = 1; (b) f = 5; and (c) f = 10.

Figure 9. The second-order transient response of sandwich plate under different excitation ampli-
tudes: (a) f = 1; (b) f = 5; and (c) f = 10.
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Figure 10. The third-order transient response of sandwich plate under different excitation. Ampli-
tudes: (a) f = 1; (b) f = 5; and (c) f = 10.

3.3. Comparison of Single NES and Five NESs

In this part, the performances of the five NESs in the optimal vibration-suppression
area are compared with that of a single NES. Firstly, the optimal suppression positions
for the single NES are obtained by successively locating it in the different units of the
sandwich plate, and the energy dissipation ratios of the single NES are obtained with
different excitation amplitudes in Figure 11.

Unlike the five NESs, some optimal positions of a single NES will change with the
excitation amplitude, but some optimal positions that do not change with the excitation
amplitude can still be identified, such as the ones surrounded by black boxes in Figure 11,
which are located in

S′1 = {(0.28, 0.28), (0.40, 0.28), (0.28, 0.40), (0.40, 0.40)};

S′2 = {(0.60, 0.60), (0.72, 0.60), (0.60, 0.72), (0.72, 0.72)}.

For a better comparison, choose a position within the optimal position range of a
single NES for the following analysis, which is selected here as (0.34, 0.34).

Assuming that the nonlinear absorbers are all in the optimal position, Figure 12 gives
the energy dissipation ratios of the single and five NESs with the same shock. εt is the
sum of the mass coefficients of the five substructures, and the total mass of the absorber
can be changed by εt. Through the trajectories of different color curves, it can see that
the same trend of vibration reduction exists for the five NESs, that is, no matter how the
total mass changes, the efficiency of the five NESs gradually decreases when the excitation
amplitude increases to a certain threshold. The efficiency of the five NESs can be improved
a lot by increasing the total mass of the five NESs until εt equals 0.06. Moreover, the
vibration-absorption effect of five NESs is better than that of single NES at the same mass.
It still can dominate in the most of the amplitude range when εt reduces to 0.04. Even the
εt decreases to 0.02, there also exists an small advantage area for the five NESs from f = 0.1
to f = 1.3.
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Figure 11. The energy dissipation ratios of single NES at different positions under different excitation
amplitudes: (a) f = 1; (b) f = 3; and (c) f = 5.

Figure 12. The energy dissipation ratios of single NES and five NESs with shock amplitude (the solid
line represents the five NESs, the dashed line represents the single NES).

3.4. The Effect of Five NESs Parameters

Through the previous analysis, it can be found that the five NESs considering the
optimal positions have great advantages in vibration reduction. In this part, the influence
of relevant parameters on the vibration-reduction performance of the five NESs is analyzed.
εt is chosen as 0.04 for the following parameter optimization based on Figure 12. The
amplitude of the shock force is set as f =5, and the other parameters of the five NESs keep
the same as in Figure 3. Figure 13 shows the effect of the nonlinear stiffness of the NESs
on the vibration absorption, which indicts that with the increase of nonlinear stiffness, the
efficiency of the five NESs increases firstly and decreases later. The effect of the damping of
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the five NESs on the vibration absorption is consistent with that of the stiffness, as shown
in Figure 14.

Figure 13. The variation of efficiency of the five NESs with nonlinear stiffness.

Figure 14. The variation of efficiency of the five NESs with damping.

The discrepancies of the center one and the other four NESs are also considered. First,
change the mass of the five substructures. Let the mass coefficient of N1 be ε1; the mass
coefficients of the other four NESs (Nn, n = 2, 3, 4, 5) are the same as (εt − ε1)/4. Choose
the εt as 0.02, 0.04, 0.06, 0.08 and 0.1, respectively. The effects of mass distribution on the
efficiency of the NESs system are shown in Figure 15. It can be found that the overall
efficiency of the five NESs is better with smaller N1 and larger Nn (n = 2, 3, 4, and 5).

Figure 15. The variation of efficiency of the five NESs with the mass coefficient of N1.
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Moreover, the influences of the damping and stiffness of N1 on the efficiency of the
five NESs are also discussed. kt and γt are the sum of stiffness and sum of damping of
the five substructures, respectively. The stiffness and damping of N1 are expressed as k1
and γ1, and the same parameters of the other four NESs are written as (kt − k1)/4 and
(γt − γ1)/4, respectively. The total stiffness and damping of the five NESs are chosen as
300, 600, 900, 1200, and 1500, and 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. It is found that the
effects of stiffness and damping of N1 on the overall efficiency are similar; they increase at
first and then decrease with the increased ratios of damping and stiffness of N1, which are
shown in Figures 16 and 17, respectively.

Figure 16. The variation of efficiency of the five NESs with the stiffness of N1.

Figure 17. The variation of efficiency of the five NESs with the damping of N1.

Finally, the distribution methods of the five NESs are also analyzed. Name the aforemen-
tioned layout way (N1 in the center and the other four around) as case 1. Then, place N1 in
the optimal position of a single NES (0.34, 0.34), and the other four are laid out like case 2 in
Figure 18. By changing the coordinate (a2, b2) as before, the five NESs are distributed at all
positions in the sandwich plate. The energy dissipation ratios of the five NESs in case 2 are
obtained in Figure 19a–c, respectively, when f = 1, f = 3, and f = 5. Obviously, the coordinate
(0.3, 0.38) in the black box is also in the range of the best vibration-suppression position, as
in case 1. Therefore, keep N2 in (0.3, 0.38) in both two cases; then, the vibration-absorption
effect of the five NESs with excitation amplitude is shown in Figure 20, which indicates that
the varied position of N1 can improve the performance of the five NESs, such as f = 0.1~5.9.
In addition, the reasonable design of the parameters (mass, stiffness, and damping) of the
absorbers in case 2 can effectively improve the overall vibration-reduction efficiency of the
five NESs, which is the same as that of case 1, so it will not be described here.
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Figure 18. The layout case 2 of the five NESs.

Figure 19. The energy dissipation ratios of the five NESs at different positions under different
excitation amplitudes (case 2): (a) f = 1; (b) f = 3; and (c) f = 5.

Figure 20. Comparison of two layout cases under different excitation amplitudes.
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4. Conclusions

In this paper, the vibration-absorption effects of the internal five NESs, considering
the optimal locations on the composite truss core sandwich plate, are investigated with
shock excitations. The nonlinear dynamical equations of motion for the coupled system are
built by the first-order shear deformation theory and the Galerkin method, and then the
vibration-control performances of the five NESs are analyzed by numerical methods.

Firstly, the results find that the position distribution of both the five NESs and shock
excitation have a great influence on the vibration suppression, but the excitation amplitude
has little effect on the optimal area for the five NESs. Then, based on the optimal energy
absorption area, the feasibility of the scheme and the action of five NESs on the first
three modes of the sandwich plate are discussed. The performances of the single and the
five NESs in the optimal position are compared, and the five NESs present much better
suppression than the single one. It is found that for a larger range of excitation amplitudes,
the best suppression mass of the five NESs can decrease 60% compared with the single
NES. The smaller the excitation amplitude, the more obvious the quality advantage of the
five NESs. Therefore, the reasonable distribution of multi NESs in multi-dimensional space
has high values of small total mass and high efficiency in vibration-control fields.

In addition, the influence of the parameters on the efficiency of the five NESs is also
studied to further improve the vibration suppression. Finally, two different layout ways are
selected to discuss the effects of the position N1 on the characters of the five NESs, which
show that the varied position of N1 can improve the performance of the five NESs.
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