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Abstract: In this paper, a novel asymmetrical bistable short mover permanent magnet actuator is
presented. The comparisons between the presented machine and the asymmetrical structure bistable
permanent magnet actuator are introduced. The static and dynamic characteristics of the high-voltage
circuit breaker with the presented machine are calculated and discussed. The influences of the length
of the mover and the initial mover position in the presented machine are studied and researched. The
merits of the presented machine, such as less permanent magnet volume, low cost, small mover mass,
and high starting speed, are researched and discussed. The Genetic Algorithm is used to optimize
the presented machine. Finally, a conventional permanent magnet actuator prototype is created and
tested on account of the limited experimental conditions. The characteristic curves of position versus
retaining force are acquired to confirm the proposed design.

Keywords: high-voltage circuit breaker; permanent magnet actuator; operating mechanism; less
permanent magnetic volume; short mover

1. Introduction

A number of studies have shown that the troubles in high-voltage circuit breaker
(HVCB) are largely caused by the fault of the operating mechanism [1]. The operating
mechanism with the permanent magnet actuator (PMA) is widely adapted in a vacuum
circuit breaker. Hence, the reliability and security of the PMA is highly affecting the
reliability and security of the HVCB. The PMA has many virtues, such as small volume,
low maintenance cost, simple construction, and long life-cycle, which prompted many
interests in engineers and researchers [2]. The permanent magnet actuator can be classified
as monostable permanent magnet actuator, bistable permanent magnet actuator and multi-
magnetic circuit permanent magnet actuator [3].

The monostable permanent magnet actuator only has a closing coil, and has holding
force in closing state, as shown in Figure 1a. Thus, the opening force depends on the
external agency. The bistable permanent magnet actuator owns holding forces in closing
and opening states, as shown in Figure 1b. However, the holding force in two states is
same. The multi-magnetic circuit permanent magnet actuator has different magnetic circuit
for holding force magnetic circuit and electromagnetic force magnetic circuit, as shown in
Figure 1c.

First, two types have a lot of good points, such as the simple structure, high depend-
ability and steerability, long life-cycle, and low maintenance cost [4–11]. For example,
in [12,13], the authors were presented the E-core and C-core monostable permanent mag-
net actuator. However, these structures of the monostable permanent magnet actuator
also have some disadvantages, such as big retention in the close state and large opening
current. On other hand, in [14], the topology of symmetrical bistable permanent magnet
actuator is presented to solve the problem of big retention in the close state and to improve
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the efficiency. However, the starting time and wastage will increase for the symmetri-
cal structure bistable permanent magnet actuator, which is caused by the large retention
forces in the opening stage [15–26]. Thus, the asymmetrical structure bistable permanent
magnet actuator (ASBPMA) is presented in [27–32] to improve HVBC with symmetrical
bistable permanent magnet actuator. However, the ASBPMA is not faultless, e.g., lower
starting speed.

Actuators 2022, 11, x FOR PEER REVIEW 2 of 17 
 

 

magnet actuator is presented to solve the problem of big retention in the close state and 
to improve the efficiency. However, the starting time and wastage will increase for the 
symmetrical structure bistable permanent magnet actuator, which is caused by the large 
retention forces in the opening stage [15–26]. Thus, the asymmetrical structure bistable 
permanent magnet actuator (ASBPMA) is presented in [27–32] to improve HVBC with 
symmetrical bistable permanent magnet actuator. However, the ASBPMA is not faultless, 
e.g., lower starting speed.  

  
(a) (b) 

 

 

(c)  

Figure 1. The structure of permanent magnet actuator. (a) Monostable permanent magnet actuator. 
(b) Bistable permanent magnet actuator. (c) Multi-magnetic circuit permanent magnet actuator. 

Thus, the multi-magnetic circuit permanent magnet actuator is proposed to im-
prove starting speed, which commonly combines with two structures, such as monosta-
ble permanent magnet actuator, bistable permanent magnet actuator, and Thomson coil 
actuator [33–39]. The multi-magnetic circuit permanent magnet actuator currently inher-
its the merits of two structures. However, the disadvantages of two structures are also 
present. An asymmetrical bistable multimagnetic circuit permanent magnet actuator 
was present in [40]. This permanent magnet actuator improves its preferment by using 
novel magnetic circuit technology. In [41], bionic soft multimodal actuators were pre-
sented to solve the challenging problem of triggering strong and fast actuating perfor-
mances with an extremely weak magnetic field. This soft actuator was not researched in 
high-voltage circuit breaker application. 

In this paper, a novel asymmetrical bistable short mover permanent magnet actua-
tor (ABSMPMA) is proposed, which has little mover mass, higher starting speed, less 
permanent magnet, and low cost. The successful numerical finite element analysis 
methods (FEAM), such as Maxwell Circuit Editor and Ansoft Maxwell, are used to gain 
more accurate and correct results of the ABSMPMA. In this study, two-dimensional fi-
nite element analysis (2-DFEA) was used to confirm the validity and correctness of the 
calculated characteristics. A conventional permanent magnet actuator prototype was 
made and tested to confirm the proposed permanent magnet actuator. To certify the 

Figure 1. The structure of permanent magnet actuator. (a) Monostable permanent magnet actuator.
(b) Bistable permanent magnet actuator. (c) Multi-magnetic circuit permanent magnet actuator.

Thus, the multi-magnetic circuit permanent magnet actuator is proposed to improve
starting speed, which commonly combines with two structures, such as monostable per-
manent magnet actuator, bistable permanent magnet actuator, and Thomson coil actua-
tor [33–39]. The multi-magnetic circuit permanent magnet actuator currently inherits the
merits of two structures. However, the disadvantages of two structures are also present.
An asymmetrical bistable multimagnetic circuit permanent magnet actuator was present
in [40]. This permanent magnet actuator improves its preferment by using novel mag-
netic circuit technology. In [41], bionic soft multimodal actuators were presented to solve
the challenging problem of triggering strong and fast actuating performances with an
extremely weak magnetic field. This soft actuator was not researched in high-voltage circuit
breaker application.

In this paper, a novel asymmetrical bistable short mover permanent magnet actuator
(ABSMPMA) is proposed, which has little mover mass, higher starting speed, less per-
manent magnet, and low cost. The successful numerical finite element analysis methods
(FEAM), such as Maxwell Circuit Editor and Ansoft Maxwell, are used to gain more accu-
rate and correct results of the ABSMPMA. In this study, two-dimensional finite element
analysis (2-DFEA) was used to confirm the validity and correctness of the calculated char-
acteristics. A conventional permanent magnet actuator prototype was made and tested to
confirm the proposed permanent magnet actuator. To certify the contribution and credi-
bility in this paper, the closing and opening dynamic characteristics of the prototype are
tested in this paper.
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The structures of this paper are as follows. Section 2 describes the novel structure
of ABSMPMA, and Section 3 analyzes the working principle of ABSMPMA. Section 4
addresses the dynamic and static preferment, and the Section 5 optimize the ABSMPMA
using Genetic Algorithm (GA). Section 6 contrasts the experimental results and simulation
results. Finally, Section 7 outlines and discusses this paper.

2. Novel Structure of ABSMPMA

The conventional asymmetrical structure bistable permanent magnet actuator and
ABSMPMA are shown in Figure 2. From Figure 2, it is evident that the ASBPMA and the
proposed machine have two pieces PM in the middle of the stator. The red part and the blue
part are permanent magnet in Figure 2b,c. The purple parts are the differences between
ASBPMA and ABSMPMA, which have the same material with the stator. In the closing
state, the field of the ASBPMA enters the mover along radial vertical direction from the
middle of the stator and then moves back to the end of the stator along the axial axis of the
mover, which is same with ABSMPMA. However, the different between ABSMPMA and
ASBPMA are the length of the mover, and that the ABSMPMA has the stator embossing.
The mover length of the ABSMPMA is shorter than the tooth width plus the stroke. Under
the circumstances, the mover mass of the novel machine is lesser than the ASBPMA, which
will increase the speed of the ABSMPMA.
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Figure 2. The structures of the asymmetrical bistable permanent magnet actuator. (a) Three-
dimensional drawing of the ASBPMA [19]. (b) Two-dimensional drawing of the ASBPMA.
(c) Two-dimensional drawing of the ABSMPMA. [Note: the purple parts are the differences between
ASBPMA and ABSMPMA].
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The novel ABSMPMA offers many merits, such as low mover mass, high starting
speed, less permanent magnet, improving dynamic performance, and low cost. The reasons
for its merits are shown in the following.

3. Working Principle of ABSMPMA

For convenient to analyze, the following hypotheses are accepted:

1. The leakage flux of the end is negligible;
2. The magnetic circuit in the stator and mover are not saturated.

Assuming the flux density in work air gap is Bcair, effective area in the end of the
mover is Ac1, the force of the ABSMPMA and ASBPMA can be expressed as [42]

F =
B2

cair Ac1

2µ0
=

Φ2
gap

2µ0 Ac1
(1)

where µ0 is the space permeability; Φgap is the magnetic flux in work air gap; F is the force
of the conventional ASBPMA and ABSMPMA. The main magnetic circuits of the PMA are
shown in Figure 3. The field in the gap of the opening state position is negligible when the
mover starts in closing state position.
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Figure 3. The main magnetic circuit. (a) The ASBPMA [19]. (b). The ABSMPMA.

The magnetic resistance can be expressed as Equation (2) [43]

Rm =
l

µA
(2)

where µ is the permeability; l is the length of magnetic path; and A is the effective area in
the magnetic path.

The total magnetic resistance of the ASBPMA Rctot in the main magnetic circuit can be
expressed as Equation (3).

Rctot = Rδ1 + Rsy3 + Rmover1 + Rmover2 + Rslot//(Rδ2 + Rsy2 + Rsy1)
= R1 + R2//(R3 + R4)

(3)

where
R1 = Rδ1 + Rsy3 + Rmover1 + Rmover2;

R2 = Rslot; R3 = Rδ2; R4 = Rsy1 + Rsy2;
.
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In the work gap, the magnetic flow of ASBPMA Φc_gap can be expressed as Equation (4) [44].

Φc_gap = FPM
R1+R2//(R3+R4)

R2
R2+R3+R4

= FPM R2

(R2+R3+R4)[R1+
R2(R3+R4)
R2+R3+R4

]

= FPM R2
(R2+R3+R4)R1+R2(R3+R4)

= FPM R2
R1R2+R1R4+R2R3+R2R4+R1R3

= FPM R2
R6+R1R3

(4)

where R6 = R1R2 + R1R4 + R2R3 + R2R4.
In another situation, the mover covers the tooth in the closing state, as shown in

Figure 3b. The magnetic flow of the ABSMPMA in gap can be expressed as Equation (5).

Φn_gap = FPM
R1+R3+R4//R2

= FPM

R1+R3+
R4R2

R4+R2

= FPM(R4+R2)
(R1+R3)(R4+R2)+R4R2

= FPM(R4+R2)
R1R4+R1R2+R3R4+R3R2+R4R2

= FPM(R2+R4)
R6+R3R4

(5)

where R6 = R1R2 + R1R4 + R2R3 + R2R4.
The iron magnetic permeability is far higher than air magnetic permeability for rea-

sonable machine design. In this case, the magnetic resistance Rδ1 is bigger than the other
magnetic resistance R4 according to Equations (2) and (3). Therefore, R1 > R4 > 0, and
then Φn_gap > Φc_gap. Hence, in the closing state, the retaining force of the ASBPMA is
smaller than the ABSMPMA with the same sizes. In other words, the permanent magnet
volume of the ASBPMA needs more than that of the ABSMPMA with the same closing
retaining force. Then, the cost of the ABSMPMA is lower than that of the ASBPMA.

The speed of the HVCB with the PMA can be expressed as Equation (6).

v =
∫ t

0

F(x)

m(x)
dt (6)

where F(x) is the force of HVCB; m(x) is the motion part mass of the HVCB.
From Equation (6), it is obvious that the speed of the HVCB with ABSMPMA is faster

than the HVCB with ASBPMA, when the electromagnetic forces are same due to the mover
mass of the ASBPMA larger than the ABSMPMA.

4. Numerical Analysis and Simulation Results

The characteristics of the HVCB with the presented ABSMPMA are analyzed and
estimated using Ansoft Maxwell. In other words, all simulation results in this paper are de-
rived using the Ansoft Maxwell. In this paper, the voltage level of circuit breaker is 40.5 kV.
The specification of the 40.5 kV vacuum circuit breaker is given in the Table 1 [19,40]. The
parameters of the ASBPMA and ABSMPMA are shown in Table 2. Initial mover position
limp is defined as the length that the radial central axis of the mover diverges the radial
central axis of the PM. limp is the positive value near the opening state position.

Table 1. Specification of 40.5 kv vacuum circuit breaker.

Item Value

Stroke (mm) 20
Overrun (mm) 6

Holding force in closing state (N) 6000
Opeing driving time (ms) Less than 50
Closing driving time (ms) Less than 90

Opening speed (m/s) More than 2.5
Closing speed (m/s) More than 0.8
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Table 2. Parameters of machine.

Design Parameter ASBPMA [19] ABSMPMA

Length of the stator lcsl1 (mm) 203.5 203.5
Length half ends stator lcsl2 (mm) 180.5 180.5

Depth of the machine ld (mm) 102 102
Width of the stator yoke lcsw1 (mm) 24 24
Width end stator yoke lcsw2 (mm) 24 24

Width of tooth lcsw3 (mm) 50 50
Length of mover lcrl1 (mm) 124 73
Width of mover lcrw1 (mm) 55 55

Magnet thickness hPM (mm) 10 6.2
Magnet Length lPM (mm) 50 50
Width of slot lcwslot (mm) 40 40
Length of slot lclsolt (mm) 53 53
Number of per slot of coil 350 350

Length magnetic barriers llmb (mm) 5.5 5.5
Width magnetic barriers lwmb (mm) 56 56

Initial mover position limp (mm) - 0

4.1. The Static Characteristics

Based on Ansoft Maxwell, the characteristics of the retaining force and magnetic field
in the gap are shown in Figure 4. It is evident that the magnetic field in the ABSMPMA is
larger than the ASBPMA with the same sizes. In other words, the above analytical results
are right and correct for the ABSMPMA, such as large retaining force, less permanent
magnet volume, and low cost. It is also obvious that the retaining force in closing state is
decreasing with the initial mover position increasing, which is caused by the effect of the
leakage flux.
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Figure 4. The results of 2-D FE are shown. (a) The magnetic field in gap. (b) The characteristic of the
mover length vs. retaining force. (c) The influences of the initial mover position for retaining force.

The calculation of the retaining forces, in the ASBPMA and ABSMPMA, are analyzed
by 2-D FEA, as shown in Figure 5. The permanent magnet size of ABSMPMA was resized
to obtain same retaining force, as shown in Figure 5a. In Figure 5a, the retaining force in
closing state of ASBPMA is 5.9335 kN. The retaining forces in closing state of ABSMPMA
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are 5.941 kN, 5.899 kN, 5.996 kN, 5.906 kN, and 5.954 kN, for lengths of the mover: 50 mm,
54 mm, 60 mm, 70 mm, and 76 mm, respectively. Therefore, with same retaining force in
closing state, the permanent magnet volume ratios of ABSMPMA vs. ASBPMA are 40%, 40%,
45%, 53%, and 55%, for lengths of the mover: 50 mm, 54 mm, 60 mm, 70 mm, and 76 mm,
respectively. These results prove that the presented ABSMPMA needs less permanent magnet
volume and low cost. It is also distinct that the permanent magnet volumes of the ABSMPMA
have little difference with mover initial position increasing.
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Figure 5. The characteristics curve of the presented ABSMPMA. (a) The characteristic of the moving
position vs. retaining force. (b) The characteristic of the length of mover vs. PM volume. (c) The
characteristic of the initial mover position vs. PM volume.

The calculation of the electromagnetic force, in the ASBPMA and ABSMPMA, are
analyzed by 2-D FEA, as shown in Figure 6.

In Figure 6, the electromagnetic force of the ASBPMA is larger than that of the AB-
SMPMA with the same sizes and current. However, the mover mass of the ABSMPMA is
also lesser than the ASBPMA, which is the key improving the dynamic characteristic of the
ABSMPMA. This is a Game problem between reducing mass and reducing electromagnetic
force with the same sizes and current in ABSMPMA. However, the simulation shows
that short mover can speed up actuator’s action, as shown follow. With 50 A opening
current, the electromagnetic force of the ABSMPMA increases with mover initial position
increasing near closing state position, while it decreases near opening state position. How-
ever, with 50 A closing current, the electromagnetic force of the ABSMPMA is increasing
with increasing initial mover position near opening state position. This will improve the
closing performance.
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Figure 6. The characteristics curve of the presented ABSMPMA. (a) The characteristic of the elec-
tromagnetic force vs. moving position with 50 A opening current. (b) The characteristic of the
electromagnetic force vs. moving position with 50 A closing current for ABSMPMA with different
initial mover position. (c) The characteristic of the electromagnetic force vs. moving position with
50 A opening current for ABSMPMA with different initial mover position.

4.2. The Dynamic Characteristic

The opening performances of the ASBPMA and ABSMPMA are shown in Figure 7
according to the results of the FEAM.
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Figure 7. The opening characteristics are shown. (a) The characteristic of length of mover vs. opening
speed. (b) The characteristic of length of mover vs. maximum opening current.

In the simulation model, there is a fixed voltage for the ASBPMA and ABSMPMA
(150 V). At instant contact separating, the opening speed of the ASBPMA is 2.385 m/s.
However, at instant contact separating, the opening speeds of the ABSMPMA are approx-
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imately 3.361 m/s, 3.329 m/s, 3.157 m/s, 2.931 m/s, and 2.848 m/s for lengths of the
mover: 50 mm, 54 mm, 60 mm, 70 mm, and 76 mm, respectively. At scope of the two-thirds
distance after the instant of contact separating, the average opening speed of the ASBPMA
is 3.089 m/s. At scope of two-thirds distance after the instant of contact separating, the
average opening speeds of the ABSMPMA are 4.377 m/s, 4.346 m/s, 4.025 m/s, 3.769 m/s,
and 3.657 m/s, for lengths of the mover: 50 mm, 54 mm, 60 mm, 70 mm, and 76 mm,
respectively. It is obvious that the opening dynamic characteristic of HVCB with the AB-
SMPMA is better than the HVCB with ASBPMA. The opening speed of the 40.5 kV vacuum
circuit breaker needs more than 2.5 m/s. It is seeing that the average opening speeds of the
ABSMPMA are more than 2.5 m/s, which meet the potential applications.

The closing characteristics of the ABSMPMA and ASBPMA are shown in Figure 8.
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Figure 8. The closing characteristics are shown. (a) The characteristics of the length of mover vs.
closing speed. (b) The characteristics of the length of mover vs. maximum closing current.

At instant of contact touching, the closing speed of the traditional ASBPMA is
−4.066 m/s. However, at instant of contact touching, the closing speeds of the ABSMPMA
are approximately −4.758 m/s, −5.161 m/s, −5.077 m/s, −5.388 m/s, and −5.358 m/s for
lengths of the mover: 50 mm, 54 mm, 60 mm, 70 mm, and 76 mm, respectively. At the scope
of two-thirds distance before instant of contact touching, the average closing speed of the
ASBPMA is −2.934 m/s. At the scope of two-thirds distance before instant of contact touch-
ing, the average closing speeds of the ABSMPMA are −2.738 m/s, −3.021 m/s, −2.946 m/s,
−3.235 m/s, and −3.313 m/s for lengths of the mover: 50 mm, 54 mm, 60 mm, 70 mm, and
76 mm, respectively. It is obvious that the closing dynamic characteristic of the HVCB with
the ABSMPMA is also better than the HVCB with ASBPMA in some cases. However, the
maximum closing current for ABSMPMA is larger than the ASBPMA, which is undesirable.
Hence, this problem is addressed in the following. The closing speed of the 40.5 kV vacuum
circuit breaker needs more than 0.8 m/s. It is seeing that the average closing speeds of the
ABSMPMA are more than 0.8 m/s, which meet the potential applications.

The opening and closing characteristics of the HVCB with the ABSMPMA, in different
initial mover positions, are shown in Figure 9.

In Figure 9, the opening speed of the ABSMPMA increases with mover initial position
increasing. However, the characteristics of the maximum opening current and opening
starting time are worse. The closing maximum current of the ABSMPMA decreases with
initial mover position increasing, which is a good way to solve large maximum closing
current for ABSMPMA. It is obvious that the dynamic closing characteristics and dynamic
opening characteristics of ABSMPMA are a pair of contradictory factors with different
initial mover position. Based on the adjustment of the initial mover position, the maximum
closing current can be limited to reasonable rage.
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Figure 9. The opening and closing characteristics are shown when the length of the mover are 60 mm
and 70 mm. (a) The characteristic of the initial mover position vs. closing speed. (b) The characteristic
of the initial mover position vs. opening speed. (c) The characteristic of the initial mover position vs.
maximum current.

5. Optimization by Genetic Algorithm

In this paper, the Genetic Algorithm (GA) is used to optimize the ABSMPMA [45].
In this paper, we use the GA Toolbox of MATLAB, which is successful business software.
The convergence of optimization is verified by some researcher [46]. The objective in the
optimization is the average opening speed within constraint conditions. The value ranges
of parameters can be expressed as

3.8 mm ≤ hPM ≤ 10 mm
38 mm ≤ 50 mm − lPM2 = lPM ≤ 50 mm
21 mm ≤ 40 mm + lba1 = lse1 ≤ 59 mm

50 mm ≤ lmover = lcrw1 ≤ 76 mm

(7)

To ensure that the mover is not intersecting in the stator in simulation model, the
constraint condition can be expressed as

84 mm − lba1 − lmover ≥ 0 (8)

To ensure that the bottom side of the mover is lower than the bottom side of the
permanent magnets at closing state, the constraint condition can be expressed as

77 mm+0.5lPM2 ≥ 64.05 mm + lba1 (9)
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To ensure that the upper side of the mover is higher than the upper side of the
permanent magnet at closing state, the constraint condition needs to meet

lba1 + lmover+64.1 mm ≥ 127 mm−0.5lPM2 (10)

Therefore, constraint functions of parameters can be expressed as
84 − lba1 − lmover ≥ 0

12.95 + 0.5lPM2 − lba1 ≥ 0
0.5lPM2 + lba1 + lmover−62.9 ≥ 0

(11)

The constraint functions of the closing retaining force Fretain_force and maximum current
Imax can be expressed as {

5800 N ≤ Fretain_force ≤ 6200 N
Imax ≤ 60 A

(12)

The object function can be expressed as

f (lba1, lmover, lPM2, hPM) = min(vaos) (13)

where vaos is the average opening speed.
The optimized results are shown in Figure 10. The average opening speed would

converge on 4 m/s. It is obvious that the dynamic opening speed and dynamic closing
speed of the ABSMPMA is a pair of contradictory factors. In the design process, the two
factors need to balance.
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Figure 10. The optimized results. (a) The optimal average opening speed per generation and
the average value of the average opening speed per generation. (b) The average opening speed
characteristics within constraint conditions. (c) The average closing speed characteristics within
constraint conditions.

The closing and opening characteristics of the optimal ASBPMA are shown in Figure 11.
It is obvious that the dynamic speed characteristics of the ABSMPMA are better than the
ASBPMA. The maximum closing and opening current are limited in reasonable rage. In
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Figure 11, we can find the dynamic characteristics of the ASBPMA in this paper using FEA
simulations agree with the experimental and simulation results of the ASBPMA in [19].
The difference between the dynamic characteristics of the ASBPMA in this paper and
experimental and simulation results in [19] is mainly caused by different voltage. In this
paper, we use the DC voltage source, while capacitance is used as the voltage source in [19].
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Figure 11. The closing and opening characteristics of the ASBPMA and optimal ABSMPMA are
shown. (a) The closing and opening moving position characteristics. (b) The closing and opening
speed characteristics. (c) The closing and opening armature current characteristics.

6. Experimental Results

To further research and certify the above results, a prototype of the traditional perma-
nent magnet actuator is created and tested in our research work on account of the limited
experimental conditions, which is shown in Figure 12.

Actuators 2022, 11, x FOR PEER REVIEW 13 of 17 
 

 

Figure 11. The closing and opening characteristics of the ASBPMA and optimal ABSMPMA are 
shown. (a) The closing and opening moving position characteristics. (b) The closing and opening 
speed characteristics. (c) The closing and opening armature current characteristics. 

6. Experimental Results 
To further research and certify the above results, a prototype of the traditional 

permanent magnet actuator is created and tested in our research work on account of the 
limited experimental conditions, which is shown in Figure 12. 

 
Figure 12. The measurement results and simulation results are shown. 

For example, testing stroke of the testing platform is 180 mm, maximum load force is 
1000 N, and level of sensitivity is ±1%. However, the parameters used in FEM simula-
tions have 6000 N retaining force. That is why the parameters of prototype and the pa-
rameters in Table 1 are different. The simulation result in Figure 12 is derived using the 
Ansoft Maxwell, which is finite element method software. The principal sizes of the 
prototype are shown in Table 3. The prototype parameters listed in Table 3 are very dif-
ferent from the simulation model parameters, because our experimental conditions very 
limit. For example, testing stroke of the testing platform is 180 mm; maximum load force 
is 1000 N; and level of sensitivity is ±1%. 

Table 3. Parameters of prototype. 

Design Parameter Prototype 
Length of the stator 1csll  (mm) 105 
Length ends stator 2csll  (mm) 132 

Depth of the machine dl  (mm) 40 
Width of the stator yoke 1cswl  (mm) 20 
Width end stator yoke 2cswl  (mm) 20 

Length of mover 1crll  (mm) 42 
Width of mover 1crwl  (mm) 42 

Magnet thickness PMh  (mm) 5 
Magnet Length PMl  (mm) 20 
Width of slot cwslotl  (mm)  20 
Length of slot clsoltl (mm) 19 

Length magnetic barriers lmbl  (mm)  2 
Width magnetic barriers wmbl  (mm)  42 

The difference between the test results and simulation results is mainly caused by 
the processing technology and the magnetic flux leakage in the stator end. It can be seen 

0 1 2 3 4 5 6 7 8 9 10 11 12 13
-300
-270
-240
-210
-180
-150
-120

-90
-60
-30

0
30
60
90

120
150
180

Fo
rc

e(
 N

 )

Moving Position ( mm )

 experiment
 simulation

Figure 12. The measurement results and simulation results are shown.

For example, testing stroke of the testing platform is 180 mm, maximum load force is
1000 N, and level of sensitivity is ±1%. However, the parameters used in FEM simulations
have 6000 N retaining force. That is why the parameters of prototype and the parameters
in Table 1 are different. The simulation result in Figure 12 is derived using the Ansoft
Maxwell, which is finite element method software. The principal sizes of the prototype
are shown in Table 3. The prototype parameters listed in Table 3 are very different from
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the simulation model parameters, because our experimental conditions very limit. For
example, testing stroke of the testing platform is 180 mm; maximum load force is 1000 N;
and level of sensitivity is ±1%.

Table 3. Parameters of prototype.

Design Parameter Prototype

Length of the stator lcsl1 (mm) 105
Length ends stator lcsl2 (mm) 132
Depth of the machine ld (mm) 40

Width of the stator yoke lcsw1 (mm) 20
Width end stator yoke lcsw2 (mm) 20

Length of mover lcrl1 (mm) 42
Width of mover lcrw1 (mm) 42

Magnet thickness hPM (mm) 5
Magnet Length lPM (mm) 20
Width of slot lcwslot (mm) 20
Length of slot lclsolt (mm) 19

Length magnetic barriers llmb (mm) 2
Width magnetic barriers lwmb (mm) 42

The difference between the test results and simulation results is mainly caused by the
processing technology and the magnetic flux leakage in the stator end. It can be seen that,
from Figure 12, the measuring results agree with the simulation results, which confirms the
accuracy of the Ansoft Maxwell and the above analysis.

As a transient actuator, dynamic performance is very important. The dynamic charac-
teristics testing platform are shown in Figure 13.
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Figure 13. The dynamic characteristics testing platform.

To certify the contribution and credibility in this paper, the closing and opening
dynamic characteristics of the prototype are shown in Figures 14 and 15.

In dynamic characteristics, the closing and opening coil is connected to 70 v DC voltage
source. In Figure 14a, the mover spent 14 ms from opening position to closing position.
The closing current lasts a long time due to limited experimental conditions. We can’t turn
off the power right away. However, the closing current does not affect the closing dynamic
characteristics of the prototype. The rubber band has added in prototype to obtain the
opening dynamic characteristics.
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Figure 15. The opening dynamic characteristics of the prototype. (a) The mover position in opening
process. (b) The current in opening coil.

The position sensor output voltage range is from 0 v to 20 v, measuring range is from
0 mm to 75 mm. According to the position sensor output signal in Figure 14a, the mover
position can be calculated as dropout voltage. Comparing with Figures 12, 14 and 15,
the measuring static performance results agree with the simulation results and dynamic
experiments successfully complete the opening and closing process, which confirm the
accuracy of dynamic simulation and the above analysis. Therefore, the performances of
proposed permanent magnet actuator are sufficient for potential applications. However,
the dynamic characteristics of the full-scale ABSMPMA will be studied in the near future
owing to limited experimental conditions.

moverposition =
Dropoutvoltage

Outputvoltagerange
× measuringrange (14)

7. Conclusions and Discussion

In this paper, a novel asymmetrical bistable short mover permanent magnet actuator
(ABSMPMA) is presented. The operating principle and mathematics models of the pro-
posed ABSMPMA are researched and analyzed. The influences of the mover length for the
characteristics of the ABSMPMA are studied. The over maximum closing current problem
is researched. A technology, adjusting the initial mover position, is presented to solve this
problem. The Genetic Algorithm (GA) is used to optimize the ABSMPMA. To certify the
contribution and credibility in this paper, the closing and opening dynamic characteristics
of the prototype are tested. The conclusions about the ABSMPMA are drawn as follows.
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1. The ABSMPMA has a small mover, which is shorter than the width of the tooth plus
the stroke. Hence, the mover mass is lesser than that of the ASBPMA, which improves
the opening and closing dynamic characteristics of the HVCB with the ABSMPMA;

2. The retaining force of the ASBPMA is smaller than the ABSMPMA with the same
sizes of permanent magnet;

3. The ABSMPMA, with same retaining force, needs approximately half the magnet
volumes of the ASBPMA, which is the key to decreasing cost;

4. The technology of adjusting the initial mover position can be used to balance max-
imum closing current and maximum opening current as well as the opening and
closing dynamic characteristics.

In short, the results show that the proposed ABSMPMA has some advantages, such
as less permanent magnet volume, low cost, small mover mass, and high starting speed.
However, the HVCB with the proposed ABSMPMA also has some problems, which will be
researched in follow-up work.
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