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Abstract: This paper presents the dynamic formulation of an artificial-muscle-driven and computed-
muscle–force control for the planar locomotion of a snake robot. The snake robot uses a series
of antagonistic pneumatic artificial muscles, assembled at the joints, to generate the locomotion.
Kinematics of the artificial-muscle-driven robot in the joint and Cartesian spaces was derived with
respect to the muscles’ motion. The Lagrangian mechanics was employed for the formulation of the
dynamic model of the robot and deriving the equations of motion. A model-based computed-muscle-
force control was designed to track the desired paths/trajectories in Cartesian space. The feedback
linearization method based on a change of coordinate was utilized to determine an equivalent linear
(input-to-state) system. Then, a full state feedback control law was designed, which satisfies the
stability and tracking problems. The performance of the dynamic model and the controller were
successfully demonstrated in simulation studies for tracking a circle-shape path and a square-shape
path with a constant linear velocity while generating the lateral undulation gait. The results indicate
a low magnitude of tracking errors where the controlled muscle force are bounded to the actual
pneumatic artificial muscle’s limitations.

Keywords: snake-like robot; pneumatic artificial muscle; soft actuator; artificial-muscle-driven
limbless locomotion; dynamics; control

1. Introduction

Since the pioneering work by Professor Shigeo Hirose [1], who developed the first
snake-like robot at Tokyo Institute of Technology, biological snakes and similar limbless
animals have fascinated roboticists over half a century due to their vast abundance in a
variety of environments (land, sea, and even gliding in the air [2]) as well as their versatile
locomotion that adapts easily to unstructured and unknown environments [3,4]. Snake-
like robots, in contrast to their biological counterparts, have shown limitations for agile
mobility, long range navigation, and surveying the field with a large area mainly due to
the low energy-consumption-efficiency and low power-to-weight ratio [2]. Most snake
robots that have been designed and developed thus far use motorized joints for generating
locomotion. The recent advancements in soft robotics help to enhance the capabilities
of robotic systems by designing and developing snake robots [5–10] with compliant and
structurally deformable bodies that generate more complex motion while reducing the cost,
weight, and complexity of the mechanical structures [11]. That leads to potential solutions
for addressing energy consumption while creating more complex motion.

An extensive body of research has been conducted on studying the dynamics, control,
motion planning, and design of snake robots [1,12–16]. Chirikjian and Burdick introduced
an integral form of continuous backbone curves for solving the inverse kinematics of
hyper-redundant robot locomotion with nonholonomic constraints following desired tra-
jectories [12]. Wright et al. designed a modular snake robot capable of climbing inside and
outside of pipes [13]. Ma [14] studied the creeping locomotion of the snake robot using
the Serpentine curve in a constant steady-state velocity. A mathematical framework was
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established in [15] for the modeling, analysis, and synthesis of serpentine locomotion with
a multi-link robotic snake without wheels that facilitates adapting to the environment at
the expense of power efficiency. Tanaka and Matsuno proposed a control of snake robot
that lift its parts of its body and dynamically switch lifting parts during locomotion which
facilitates rapid and efficient movement across a sandy surface [16]. For a comprehensive
review and list of research efforts on snake robots, the reader is referred to review papers
and books [2,17]. Different dynamic modeling approaches have been utilized for modeling
snake robots. Creep locomotion of snake robot on inclined surfaces without non-holonomic
constrains was modeled [14]. Kane’s dynamic formulation method [18–20] and the articu-
lated body algorithm [21–23] were employed for computationally efficient modeling. Guo
and Mahadaven [24] developed the governing equations for the planar lateral undulation
of a continuum model of a snake robot, modeled as a thin filament, integrated with internal
muscles that interacts with its surrounding environment. A geometric formulation was
developed for studying a kinematic connection that decouples the low-dimensional net lo-
comotion from the high-dimensional serpentine locomotion [25]. Modeling the transversal
link displacement was introduced to derive a simpler model for a snake robot locomotion
instead of the commonly used joint motion-based modeling approach [2,17].

From a control point of view, many research efforts were dedicated to the pattern gait
control of snake robots [2,12,17,26–29] with some work studied on the position/heading
direction while considering side-slip constraints (nonholonomic) [30]. Ma used the Ser-
penoid curve equations and the body shape change with respect to the time variation of
the Serpenoid curve for controlling the heading direction and the locomotion speed of
the snake robot [26]. Xiao et al., in [27], proposed a locomotive reduction approach based
on the average body framework, which reduces the complexity of controlling a redun-
dant snake robot to that of navigating a differential-drive vehicle. Hatton and Choset [28]
introduced two gate generator approaches, called Annealed chain fitting and Keyframe
wave extraction, that maps between the 3D shape of a snake robot’s backbone curve and
a set of joint angles and vice versa to address the gate design problems in snake robots.
Ostrowski and Burdick [29] used geometric mechanics to describe the net motion of the
snake robot as a function of variations in the body shape variables. Hicks and Ito [31] has
studied the determination of optimal gaits for the control of position/heading direction for
the locomotion of snake robots without side-slip constraints on a flat surface; however, the
velocity control was not considered. A kinematic-based controller was studied that exploits
the redundancy of a 3D snake robot for controlling its position and posture [32]. Sliding-
mode controller were developed to modulate the internal body motion and to generate the
required serpentine locomotion by attenuating the lateral slip at each link to follow desired
trajectories while compensate for uncertainties regarding the model and the environment
parameters such as mass and friction coefficients [18,19]. Moreover, maneuvering control of
land-based [33] and underwater [34] snake robots were investigated by enforcing a virtual
holonomic constraint to produce the undulatory locomotion. In related works, a combined
heading-velocity control based on undulatory gait parameters was studied for autonomous
navigation and obstacle avoidance of a planar snake robot [21,22]. Liljeback et al. [17]
introduced a combined control with three components, a body wave component (adjust
force propulsion), a shape adapt component (adjust the body shape to the environment for
obstacle-aided locomotion), and a heading direction control component for steering the
snake robot. Chang et al. [35] developed a combined optimal trajectory synthesis strategy
and a feedback controller for collision avoidance to adjust the snake robot’s body shape
for passing through narrow and confined spaces. A combined shape-velocity-heading
strategy based on a variation of the lateral undulation gait parameters was studied for the
maneuvering control of snake robot locomotion in navigating confined spaces with varying
widths [23].

In recent years, there has been an increasing interest in studying bio-hybrid robots,
which integrate living cells (e.g., excised or cultured muscle) coupled to a robot’s structure to
generate enhanced motion and force [36,37]. This promising concept relies on this fact that
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biological muscles, seamlessly integrated with sensorimotor controls, are ideal actuators
with superior performance metrics. On the other hand, Pneumatic Artificial Muscles
(PAMs), also known as the McKibben muscle [38], have shown to be promising in improving
energy consumption efficiency compared to other actuators while generating a high power-
to-weight ratio, a force-to-volume ratio, and a moderate to high order of force [38–42].
Similarities between the biomechanics of artificial muscles and natural muscles have
made these actuators a feasible option for a variety of robotics applications including
biomimemtic robots [39,43], human–robot interaction [44], assistive and rehabilitation
robotic exoskeletons [41,45–48], and robotic manipulators [42]. However, most of these
applications are limited to immobile platforms [39,49]. The anatomy of natural snakes and
particularly their musculoskeletal structure, which is composed of 130 to 435 vertebrae
along with attached antagonist axial muscle configurations [14,50,51], can be considered as
a series of rigid links hinged together, whilst axial musculature can be regarded as a series of
elastic elements operating laterally to the hinges and between adjacent links. During lateral
undulation locomotion, snakes alternately activate these antagonistic muscles on either
side of their body to active flexural movement [24,52–54]. The use of similar antagonistic
mechanisms has been explored and studied for snake robots such as a tendon-driven
antagonist mechanism for snake locomotion [51] and a snake-like surgical robot [55]. An
“integrated joint actuator”, a set of pneumatic bellows attached to links between a serpentine
robot (OmniTread OT-4), which generate a 2 DOF motion, was introduced by Granosik
and Borenstien [56]. Parallel elastic actuators (PEA), which combine an actuator (e.g.,
an electrical motor at the joint) and spring element in a parallel configuration, has been
exploited for energy-efficient locomotion of snake robots [57,58].

In our previous work [59], an artificial-muscle-driven snake robot was introduced,
which uses a series of antagonistic PAMs, assembled lateral to the joints, where alternate
activation of the antagonistic muscles generate the internal body motion and consequently
the external locomotion due interaction with its surrounding environment. Based on
experimental and analytical studies and their characterizations, it was demonstrated that
the kinematic and dynamic performances of the snake robots are comparable to the current
state-of-the-art snake-like robots, and, in some aspects, even exceed them.

This work presents the mathematical formulation for the kinematics and dynamics of
a planar artificial-muscle-driven snake robot with respect to the muscles’ motion and force.
The Lagrangian mechanics was employed to derive the equations of motion with muscle
forces as inputs to the dynamical system. A model-based computed muscle–force–controller
was designed to facilitate the tracking of the desired paths with different geometrical and
topological features in Cartesian space while generating the lateral undulation gate in the
body joint space. Feedback linearization was utilized based on a change of coordinate
to derive an equivalent linear input-to-state system. Next, a full state-feedback control
law was designed, which satisfies the asymptotic stability of the snake robot in tracking
desired trajectories. Simulation studies were carried in MATLAB on a model of a six-link
snake robot.

The organization of this paper is as follows. Section 2 presents the kinematics of
the snake robot in terms of the muscle’s motion, and overall mapping between the joint
space and Cartesian space configurations will be discussed. Moreover, the dynamics of
a N-Link snake robot based on the Lagrangian mechanics is derived. Additionally, the
design of a computed-muscle–force controller is discussed where the model-based feedback
linearization and full state feedback control laws are formulated. Finally, Section 3 presents
and discusses the results obtained for two simulation case studies using a six-link snake
robot model for tracking a circle-shape path and a square-shape path.

2. Materials and Methods
2.1. Kinematics of Artificial-Muscle-Driven Snake Robot

The kinematics of robots is generally described through the mapping between three
configuration spaces, actuator, joint, and Cartesian/operational spaces. Herein, the in-
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terrelationship between these three spaces for the snake robot was discussed to develop
kinematic models, which will be used for the dynamic modeling and control of snake
robots in the future.

2.1.1. Joint Position–Muscle Vector Relationship

The relationship between the muscle movement and joint position of a snake robot
was developed and studied. As illustrated in Figure 1a, the muscles are attached to the
links of the snake robot at two points on the right-side and two points on the left-side,
where the muscle can freely rotate about those two points which keeps it straight during
the rotation of the joint. To describe the motion of each muscle, the position vectors of the
connecting points, pR

2,i−1 and pR
1,i, on the right side, are defined with respect to the body

frame {i} at the joint {i− 1}, and are obtained as follows

i−1rp1,i =

[
h1 + h2 cos(φi) + w sin(φi)

h2 sin(φi)− w cos(φi)

]
(1)

i−1rp2,i−1 =

[
h1 − h2
−w

]
(2)

where h1, h2, w, and φi are the length of each link, distance from the joint to the attachment
point, half width of each link, and the joint angle, as shown in Figure 1a,b, respectively.
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Figure 1. Schematic of the artificial-muscle-driven snake robot kinematics, (a) geometry of the
mechanism and (b) kinematics of the muscle length and the joint angle, and (c) the free body diagram
of a module of the snake robot including the forces acting on the body of the snake robot

The vector di connecting these two points, corresponding to the muscle and called a
muscle vector, can be obtained as

di =
i−1rp1,i −

i−1rp2,i−1 =

[
h2(1 + cos(φi)) + w sin(φi)
h2 sin(φi) + w(1− cos(φi))

]
(3)

Equation (3) can be written in the following form,

di = (I + R̄(φi))g = D(φi)g (4)
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where I ∈ R2×2 is an identity matrix, R̄(φi) ∈ O(2) is an improper rotation matrix, i.e.,
det(R̄) = −1 in terms of the joint angle, and g is a constant vector, which includes geometric
information of the link given by

R̄(φi) =

[
cos(φi) sin(φi)
sin(φi) − cos(φi)

]
g =

[
h2
w

]
we define D : R2 → R2 as an operator that maps a geometric vector g to a muscle vector
d. Note that R̄(φi) is symmetric (i.e., R̄T = R̄) in addition to all other properties of special
orthogonal matrices O(2). Therefore, the operator D has the following multiplicative
properties

DTD = 2D (5)

Dn = 2n−1D (6)

which will be used through all kinematics’ and dynamics’ derivation. The length of the
muscle vector di can be obtained by

`2
i = 2gTD(φi)g (7)

where the relationship between the joint angle and the length of the PAMs is given by

`2
i = (2h2

2 − 2w2) cos(φi) + 4h2w sin(φi) + 2h2
2 + 2w2 (8)

Solving Equation (8) for the joint position, φi, yields

φi = Φi(`
2
i ) = tan−1(

h2
2 − w2

2h2w
)± tan−1(

2h2
2 + 2w2 − `2

i√
(2h2

2 − 2w2)2 + (4h2w)2 − (2h2
2 + 2w2 − `2

i )
2
). (9)

Although Equation (9) provides two solutions, based on the feasible range of mech-
anism motions and a given muscle length, a unique solution will be chosen. The linear
velocity and acceleration of the muscle vector di can be obtained by

ḋi = Ḋ(φi)g = (Di − I)Sgφ̇i (10)

d̈i = Sgφ̈i − Igφ̇2
i (11)

where S ∈ R2×2 is a skew-symmetric matrix of the following form,

S =

[
0 1
−1 0

]
, (12)

and φ̇ and φ̈ are the joint velocity and acceleration, respectively.
From Equation (10), it can be shown that

φ̇i =
1

λg
gTST(Di − I)ḋi (13)

where λg = gTg > 0. By defining the bundle d̃ ∈ R2(N−1) and its time-derivative ˙̃d,

d̃ =

 d1
...

dN−1

 (14)
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the vector of joint angle velocities φ̇ ∈ RN−1 can be obtained by,

φ̇ = J ˙̃d, (15)

where J (φ) ∈ R(N−1)×2(N−1) given by,

J =
1

λg


gTST(D1 − I) 0 . . . 0

0 gTST(D2 − I) . . . 0
...

...
...

...
0 0 . . . gTST(DN−1 − I)

.

2.1.2. Joint Space to Cartesian Space

To describe the position and orientation of the snake robot links in terms of the joint
space variables di, the forward kinematics of the planar snake robot, as shown in Figure 2,
can be derived by writing the velocities for the consecutive links of an open kinematic
chain. Note that the artificial-muscle-driven mechanism is not shown in Figure 2 for the
sake of clarity. The first joint is modeled as a floating planar joint (two translational and one
rotational DOF) and the rest of the joints are one rotational DOF. The snake robot motion in
a 2D space is described by the coordinates of the origin of the frame {1} (x and y) attached
to the first link of the snake robot and the absolute angle of the links θi with respect to the
reference frame {0}, as shown in Figure 2.

Figure 2. Overall kinematics of a snake robot modeled as an articulated body with N moving links
and N joints.

The position of the head of the snake robot is defined by p = [x, y]T ∈ R2 and the
orientation of the links is selected as θ = [θ1, θ2, . . . , θN ]

T ∈ RN , a vector of joint angles is
defined by φ = [φ1, φ2, . . . , φN−1]

T ∈ RN−1. The link angles are related to the joint angles
by the following relationship,

θ = 1θ1 + Hφ (16)

where

1 =


1
1
...
1

 ∈ RN

and

H =



0 0 . . . 0 0
1 0 . . . 0 0
1 1 . . . 0 0
...

...
. . .

...
...

1 1 . . . 1 0
1 1 . . . 1 1


∈ RN×N−1

The angular and linear velocities of each link are defined as follows,
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ω1 = θ̇1 (17)

ωi = θ̇i−1 + φ̇i−1 i = 2, . . . , N (18)

Using Equations (16)–(18), the vector of joint velocities ω ∈ RN−1 can be derived as,

ω = 1θ̇1 + Hφ̇ (19)

The linear velocities of the snake robot’s links and muscles are

0υ
j
0 = ṗ ω0 = 0 (20)

iυ
j
i = i

i−1R
(

i−1υ
j
i−1 + ĝωi−1

)
i = 1, . . . , N (21)

iυm
i = iυ

j
i + gωi i = 1, . . . , N (22)

iυC
i = iυ

j
i +

1
2

ĝωi i = 1, . . . , N (23)

where,

ĝ =

[
h1
0

]
.

Substituting Equations (20) and (21) into Equation (23) yields,

iυC
i = i

0R ṗ +
i−1

∑
j=1

i
jRĝωj +

1
2

ĝωi i = 1, . . . , N (24)

presently, by defining a bundle of velocity vectors as υ̃C ∈ R2N×1,

υ̃C =


1υC

1
...

NυC
N

 (25)

the collection of the vectors, given in Equation (24), can be written in the following com-
pact form,

υ̃C = Aṗ + Bω (26)

where A ∈ R2N×2 and B ∈ R2N×N are given by,

A =


1
0R
...

N
0 R


and,

B =



1
2 ĝ 0 0 . . . 0
2
1Rĝ 1

2 ĝ 0 . . . 0
3
1Rĝ 3

2Rĝ 1
2 ĝ . . . 0

...
...

...
...

...
N
1 Rĝ N

2 Rĝ N
3 Rĝ . . . 1

2 ĝ

.

By comparing Equation (22) to (23), a similar relationship can be derived for υ̃m,
as follows,

υ̃m = Aṗ + Gω (27)

where G is given as,



Actuators 2022, 11, 194 8 of 23

G =


g 0 0 . . . 0

2
1Rĝ g 0 . . . 0
3
1Rĝ 3

2Rĝ g . . . 0
...

...
...

...
...

N
1 Rĝ N

2 Rĝ N
3 Rĝ . . . g

.

2.2. Dynamics

The dynamic model of a planar model of the snake robot, as shown in Figure 2, with
N links connecting N − 1, revolute joints along with the antagonist artificial-muscle-driven
mechanism at each joint, was derived. The dynamic model considers the snake robot
without the common side-slip constraints (non-holonomic constraints). We assumed that
anisotropic friction applied to each link of the snake robot with a friction larger in the
normal direction than in the tangential direction along each link. Therefore, the robot
has N + 2 degrees-of-freedom (DOF) and is an under-actuated dynamic system where the
internal shape motion is no longer directly related to the overall displacement of the snake
robot. The forward dynamics of the snake-robot, shown in Figure 2, were derived using
the Lagrangian mechanics.

2.2.1. Lagrangian of the Artificial-Muscle-Driven Snake Robot

The generalized coordinates q = [q1, q2, . . . , qN ]
T ∈ RN are selected where q1, q2,

and q3 are the position (i.e., x and y components) and orientation of the first link (θ1),
respectively, with respect to the fixed reference frame {0}. The rest of the generalized
coordinates are defined as the function of the muscle vector as follows,

qk+3 = 2gTdk k = 1, 2, . . . , N − 1

the time-derivative of qk+3 can be related to joint velocities by substituting

q̇k+3 = 2gTḋk = λiφ̇i (28)

where
λi = 2gT(Di − I)Sg

presently, for the vector of ˙̃q = [q̇4, q̇5, . . . , q̇N+2]
T we have,

˙̃q = Λφ̇ (29)

where Λ = diag{λ1, λ1, . . . , λN−1} is a diagonal square matrix of RN−1×N−1 with non-zero
entries on the main diagonal, thus it is invertible and Λ−1 exists.

The Lagrangian of the dynamical system can be written as follows [60],

L(q, q̇) =
1
2

υ̃T
C M̃υ̃C +

1
2

ωT ICω (30)

where M̃ ∈ RN×N and ĨC ∈ RN×N are given by,

M̃ =


m 0 0 . . . 0
0 m 0 . . . 0
0 0 m . . . 0
...

...
...

. . .
...

0 0 . . . 0 m

,
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ĨC =


Izz 0 0 . . . 0
0 Izz 0 . . . 0
0 0 Izz . . . 0
...

...
...

. . .
...

0 0 . . . 0 Izz

,

and m and Izz are the mass and moment of inertia of each link about the global z-axis at the
center of the mass.

Substituting Equations (19), (26), and (29) into (30) yields,

L(q, q̇) =
1
2

ṗTMpṗ +
1
2

mθ1 θ̇2
1 +

1
2

˙̃qTMd ˙̃q (31)

whereMp ∈ R2×2 andMd ∈ RN−2×N−2 are symmetric and positive-definite matrices
given by,

Mp = AT M̃A =

[
m 0
0 m

]
Md = Λ−T HT

(
BT M̃B + IC

)
HΛ−1,

the diagonal and off-diagonal terms ofMd are given as follows,

Md(i, i) =
m
λ2

i

N

∑
t=i+1

(
(N − t) +

1
4

)
ĝT ĝ +

2m
λ2

i

N

∑
j=t

N−1

∑
k=j+1

(2(N − k) + 1)ĝT j
kRĝ +

N − i
λ2

i
Izz

Md(i, j) =
m
λ2

i

N

∑
t=i+j

(
(N − t) +

1
4

)
ĝT ĝ +

2m
λ2

i

N

∑
s=t

N−1

∑
k=s+1

(2(N − k) + 1)ĝT s
kRĝ +

N − j
λ2

i
Izz

and mθ1 ∈ R+,

mθ1 = 1T
(
BT M̃B + IC

)
1

=
N

∑
i=1

m
(
(N − i) +

1
4

)
ĝT ĝ +

N

∑
j=1

N−1

∑
k=j+1

m(2(N − k) + 1)ĝT j
kRĝ + NIzz.

Given Lagrangian L(q, q̇) of the robot, the equations of motion can be obtained by
the Lagrange–Euler equation [60],

d
dt

(
∂L
∂q̇

)
− ∂L

∂q
= Q (32)

where Q ∈ RN+2 is a vector of the generalized forces acting on the snake-robot defined in
Section 2.2.2.

2.2.2. Generalized Forces

The free body diagram of two-adjacent links of the snake robot is shown in Figure 1c.
The forces and moments acting on each body can be categorized into three groups of:
(1) joint reaction forces, (2) friction forces, and (3) muscle actuation forces (on the left and
right sides of each body). A vector of friction forces acting at the center of mass of each link
can be written as follows,

f f
i = f f ,1

i e f
1 + f f ,2

i e f
2 (33)

where the friction between the snake robot and the ground was modeled as the Coulomb
friction with anisotropic properties, µ1 � µ2.
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f f ,1
i = − 1

‖υC
i ‖

µ1mig υC
i · e

f
1 (34)

f f ,2
i = − 1

‖υC
i ‖

µ2mig υC
i · e

f
2 (35)

where mi and g are the mass of the ith link and the gravitational acceleration, respectively.
υC

i and e f
k , k = {1, 2} are the linear velocity of the center of mass of each link and the unit

vectors of the body frame {i}.
As shown in Figure 2c, the muscle actuation forces act on four distinct points of each

link (except the tail and head links, which only have two points) and, for example, we can
determine the muscle on the right bottom of the link {i} in a spatial force form, as follows

fm
i = f m

i em
i (36)

em
i =

1
`i

di (37)

where em
i ∈ R3 is the unit vector along the muscle direction. In Equation (36), f m

i is the
magnitude of the actuation force of the muscle on the right side of the link {i}, which
can be determined based on a predictive model that is developed and discussed in [59].
Note that the formula for only one of out four muscle forces acting on the given body is
presented here. The other forces can be determined with a similar structure, as presented
in Equations (36) and (37).

The generalized forces Qj ∈ Q can be obtained by

Qj =
N

∑
i=1

(
∂υC

i
∂q̇j

)T

f f
i +

N−1

∑
i=1

(
∂υm

i
∂q̇j

)T

fm
i j = 1, 2, . . . , N + 2 (38)

where the partial velocity terms for ṗ = [q̇1, q̇2]
T are defined,

(
∂υC

i
∂ṗ

)T = (
∂υm

i
∂ṗ

)T = 0
iR

and for q̇3 = θ̇1
∂υC

i
∂θ̇1

= Bi1 =
i−1

∑
j=1

i
jRĝ +

1
2

ĝ

∂υm
i

∂θ̇1
= Gi1 =

i−1

∑
j=1

i
jRĝ + g

and finally, for the generalized muscle vector velocities q̇k+3 = 2gTḋk we have,

(
∂υC

i
∂q̇k+3

)T = (Bi HΛ−1
k )T

(
∂υm

i
∂q̇k+3

)T = (Gi HΛ−1
k )T

where Λ−1
k is the kth column of Λ−1.

2.2.3. Equations of Motion

Plugging Equation (31) into (32) gives ∂L
∂q = 0 and,

d
dt
(
Mpṗ + mθ1 θ̇1 +Md ˙̃q

)
=Mpp̈ + mθ1 θ̈1 +Md ¨̃q +

d
dt

(mθ1)θ̇1 +
d
dt

(Md) ˙̃q = Q. (39)
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Note thatMp is a constant matrix. The time-derivative of mθ1 andMd can be derived
as follows,

d
dt

(mθ1) =
N

∑
j=1

N−1

∑
k=j+1

m(2(N − k) + 1)ĝTS j
kRĝ(Hj − HK)Λ−1 ˙̃q (40)

and,

d
dt

(Md(i, i)) =
2m
λ2

i

N

∑
j=i+1

N−1

∑
k=j+1

(2(N − k) + 1)ĝTS j
kRĝ(Hj − HK)Λ−1 ˙̃q (41)

d
dt

(Md(i, j)) =
2m
λ2

i

N

∑
s=t

N−1

∑
k=s+1

(2(N − k) + 1)ĝTS j
kRĝ(Hj − HK)Λ−1 ˙̃q (42)

where S ∈ R2×2 is a unit skew-symmetric matrix, Hj and Hk are the jth and kth rows of H,
respectively.

Rearranging Equation (39) and substituting the generalized force from Equation (38)
and the derivative terms expressed in Equations (40)–(42), the equations of motion can be
written in the general form of a multibody dynamics

M(q)q̈ + c(q, q̇) = D(q)f̃m + JT(q)f̃ f (43)

where M(q) is a symmetric and positive-definite mass matrix, c(q, q̇) is the nonlinear
acceleration terms including centrifugal and Coriolis terms, D(q) is the muscle force
matrix, and J(q)T is an equivalent Jacobian matrix for the external forces acting on the
snake robot given by,

M(q) =

Mp 0 0
0 mθ1 0
0 0 Md



D(q) =



0
1R

0
2R

0
3R . . . 0

NR
gT (ĝ + g)T ( 2

1Rĝ + ĝ + g)T . . . (∑N−1
j=1

N
j Rĝ + 1

2 ĝ)T

(G1HΛ−1
1 )T (G2HΛ−1

1 )T (G3HΛ−1
1 )T . . . (GN HΛ−1

1 )T

...
...

... . . .
...

(G1HΛ−1
N−1)

T (G2HΛ−1
N−1)

T (G3HΛ−1
N−1)

T . . . (GN HΛ−1
N−1)

T



JT(q) =



0
1R

0
2R

0
3R . . . 0

NR
1
2 ĝT 3

2 ĝT ( 2
1Rĝ + 3

2 ĝ)T . . . (∑N−1
j=1

N
j Rĝ + 1

2 ĝ)T

(B1HΛ−1
1 )T (B2HΛ−1

1 )T (B3HΛ−1
1 )T . . . (BN HΛ−1

1 )T

...
...

... . . .
...

(B1HΛ−1
N−1)

T (B2HΛ−1
N−1)

T (B3HΛ−1
N−1)

T . . . (BN HΛ−1
N−1)

T



f̃m =


fm

1
fm

2
...

fm
N−1


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f̃ f =


f f

1
f f

2
...

f f
N

.

2.3. Computed Muscle–Force Control

Now that the equations of motion of the snake robot is achieved, the goal here is to find
a diffeomorphism coordinate transformation z = T(q) ∈ RN+2 and a feedback linearizing
control law f̃m = Q(z, ż) +R(z, ż)u such that it transforms the nonlinear equations of
motion in Equation (43) into a input-to-state linearized system expressed by,

z̈ = u. (44)

Should this goal be achieved, a linear full state feedback control law, u, can be designed
to facilitate the stability and tracking capability of the snake robot.

Given z = T(q), the first and second time-derivatives of z are obtained by,

ż = F q̇ (45)

z̈ = F q̈ + Ḟ q̇ (46)

where,

F =
∂T(q)

∂q
.

Solving Equation (46) for q̈ and substituting into Equation (43) gives,(
FMF †

)
z̈−

(
FMF †

)
Ḟ q̇ +Fc(q, q̇) = FDf̃m +F JT f̃ f (47)

where F † is a generalized inverse of F . Based on Equation (47), Q(z, ż) andR(z, ż) in the
proposed feedback linearizable control law can be derived as,

Q(z, ż) = (FD)−1
(
Fc(q, q̇)−

(
FMF †

)
Ḟ q̇−F JT(q)f̃ f

)
(48)

and,
R(z, ż) = (FD)−1

(
FMF †

)
(49)

which transform Equation (47) into Equation (44). A linear state feedback control law is
designed as follows,

u = z̈d +Kd(żd − ż) +Kp(zd − z) (50)

where zd, żd, and z̈d are the desired values of the new state variables z and its first two
time-derivatives. The control gain matrices Kd and Kp are chosen in a way to exponentially
guarantee the asymptotic stability of the linearized system, Equation (44), as well as the
desired dynamical behaviors of the snake robot such as tracking the desired Cartesian path.
The control objectives are set as follows:

• Follow the desired path in Cartesian space based on the line-of-sight concept, which
adjust the heading direction of the overall movement of the snake robot;

• Generate the lateral undulation gate, which means the joints’ motion of the snake
robot must follow the desired sinusoidal function φi = α sin(ωjt + (i− 1)β) + γ [1];

• Achieve the desired average linear velocity in the direction of the movement while
keeping the velocity zero in the perpendicular direction (virtually generating the
non-holonomic constraints).

Based on these control objectives, the new coordinate z is defined in terms of the
generalized coordinates q, as follows;
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
[z1, z2]

T = p̄
z3 = θ̄
z4 = q4

...
zN+2 = qN+2

 (51)

where p̄ is the geometric center and θ̄ is the overall heading direction of the snake robot,
defined as,

p̄ = p

θ̄ = θ1 +
1
N

HrΦ(q̃),

Φ(q̃) = [Φ1, Φ2, . . . , ΦN−1]
T are given in Equation (9) and Hr is a row vector given as,

Hr = [N−1 N−2 . . . 1] ∈ RN−1.

The geometric center and the average link angle are employed to control the linear
velocity and heading direction of the snake robot, respectively, in following the desired
Cartesian paths, while the rest of the state variables are responsible to generate the lateral
undulation gate (i.e., the Serpenoid curve [1]) at the joint space.

3. Results and Discussion

To examine the dynamic formulation and the performance of the designed controller,
a series of simulation studies were conducted using a model of a six-link artificial-muscle-
driven snake robot, (N = 6) with five pairs of antagonistic muscles, as shown in Figure 2.
Two case studies were considered, tracking a circle-shape and a square-shape path with
constant forward velocity while following the lateral undulatory gate pattern. The simula-
tion was developed in the MATLAB environment, which ode23 was used for simulation
run. The mass, length, and width of each link are set to m = 0.09 kg, h1 = 0.1 m, h2 = 0.05
m, and 2w = 0.05 m, respectively. The normal and tangential friction coefficients are
µ2 = 0.5 and µ1 = 0.05, respectively. The joint parameters and control gains are set as
α = 30◦, ω0 = 2π rad/s, β = 72◦, the control gains are kp = 1.25, and kd = 0.1. The initial
joint angles and velocities are set to zero. The control goal is to show that the heading
direction and forward velocity tracking errors are oscillating bounded around zero, since
we expect the heading and forward velocity of the robot to display oscillating behavior
during undulatory locomotion [2]. On the other hand, the joint angles φi can follow the
desired sinusoidal pattern with errors exponentially approaching zero.

3.1. Circle Path

A circle-shape path with a radius of 4.2 m and a center at (1, 4.5) m was chosen in the
first case. The snake robot’s head is initially located at (0, 0) with the joint angles are set to
zero (i.e., a straight posture) and all linear and angular velocities are zeros. Here, we use the
line-of-sight (LoS) guidance law [2] to define the heading reference angle θ̄d = tan−1( p̄

∆ ),
which will be used by the controller to adjust the snake robot’s orientation (i.e., the heading
direction). The look ahead distance ∆ is selected as 1.5 m, which is 2.5 times of the overall
length of a snake of 0.6 m, as recommended in [61]. Figure 3 shows the snapshots fo
the locomotion of the snake robot following the circle path in the counterclockwise (ccw)
direction. Note that the robot was initially off the path and in a stationary condition. After
reaching to the desired circular path, the snake robot’s controller managed to stay on the
path while finishing a full circle. The simulation time was adjusted to 100 s to ensure a full
cycle of rotation, as shown in Figure 3.
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Figure 3. Snapshots of locomotion of the snake robot following a circle path.

The linear forward velocity of the snake robot for the first 40 seconds of the simulated-
time is shown in Figure 4. The results for the full length of simulation time are shown in
Figure A1. The desired value is set to a constant value of 0.275 m/s. The result demonstrate
that the controller was able to approach the desire velocity in a transition time (10–90%
rise-time) of about 5 s and oscillating bounded around the desired velocity with maximum
and minimum velocities of 0.29 m/s and 0.264 m/s, respectively, and an amplitude of 0.013
m/s with an average velocity of approximately 0.277 m/s.

Figure 4. Forward velocity of the snake robot following a circle path.
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The variation of the muscle’s length over the period of 40 s of the simulated-time are
illustrated in Figure 5. The relax length of each muscle is 100 mm. The PAMs are alternately
activated, which contracts due to applying pressurized air, in a cyclic pattern according to
the lateral undulatory gait pattern tracking the desired path in Cartesian space. The full
length of simulation results are shown in Figure A1.

Figure 5. Time evolution of muscles’ length of the snake robot following a circle path. The blue and
red colors are the length of the left and right muscles at each joint, respectively.

The range of variation of the muscles’ length are presented in the Table 1. The overall
results are in the feasible range of contraction length of the PAMs.

Table 1. Maximum and minimum values of each artificial muscle length (in mm) during the simulation.

m1
Right

m1
Left

m2
Right

m2
Left

m3
Right

m3
Left

m4
Right

m4
Left

m5
Right

m5
Left

82 81 82.2 81.6 85 83.8 85.4 84.5 83.6 82.7
110.3 110 110.1 109.9 109.5 109.1 109.3 109.0 109.8 109.6

The computed-muscle–force controller determined the required force to be generated
by the PAMs, which then was transformed into the controlled pressure based on the force–
length–pressure predictive model developed in our previous study [59]. The control inputs
(i.e., the muscle forces) for the first 40 s of the simulated-time are shown in Figure 6. The
results demonstrate a low level of force required overall to follow the circle-shape path.
There is an extra effort at the beginning of the simulation due to move the snake robot
from a stationary position and off the desired path. The full length of simulation results are
shown in Figure A3.
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Figure 6. Muscles’ force of the snake robot following a circle path.

3.2. Square Path

Performance of the controller is examined following a square-shape path with a
constant forward velocity (0.275 m/s). The expectation was that the right-angle corners of
the path would be a good challenging examination for the controller and locomotion of
the snake robot. The square was considered with a side size of 8.8 m located as shown in
Figure 7. The snapshots of locomotion of the muscle-driven snake robot following the path
are demonstrated in Figure 7.

Figure 7. Snapshots of the snake robot’s locomotion following a square path.

Similar LoS guidance law with the same look ahead distance of 1.5 m was employed
in this case and the controller was able to keep the snake robot on track for most part of
the path. There is a deviation with a maximum error of about 0.9 m around the corner
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due to the gradual adjustment of the reference heading direction θ̄d determined by the LoS
and the constant desired velocity. The error could be reduced by adjusting the look ahead
distance in the LoS guidance law and using a variable/adaptive linear velocity reference
input rather than a constant value. The simulation time was adjusted in order for the snake
robot to complete a full cycle in the CCW direction.

The results of the actual linear forward velocity of the snake robot against the desired
constant velocity are shown in Figure 8. Although the overall response of the system
demonstrate that the controller was able to control the snake robot’s forward velocity to
exponentially approach the desired value in about 5 s in transition time and after then it
stays bounded, oscillating around the desired value (with maximum and minimum values
of 0.292 m/s and 0.268 m/s, respectively, due to an amplitude of 0.014 m/s with an average
of approximately 0.28 m/s), but there are some small deviations (i.e., the average of the
oscillating velocity is decreasing with the maximum error of 0.003 m/s) and rebounding
behaviors corresponding to the turning motion of the snake robot passing through the
corners. Similar to the circle-shape path, the actual forward velocity is oscillating bounded
about the desired value.

Figure 8. Forward velocity of the snake robot following a square-shape path.

The variation of the muscle’s length over the period of simulation time are illustrated
in Figure 9. The relax length of each muscle is 100 mm. The PAMs are alternately acti-
vated, contracts due to applying pressurized air, in a cyclic pattern according to the lateral
undulatory gait pattern and tracking the desired path in Cartesian space.



Actuators 2022, 11, 194 18 of 23

Figure 9. Muscles’ length of the snake robot following a square path.

The range of variation of the muscles’ length are presented in the Table 2. However,
the range of the length variation is slightly larger than the circle-shape path but the results
are still in the feasible range of contraction length of the PAMs. A part of the results are
magnified for better readability of the results.

Table 2. Maximum and minimum values of each artificial muscle length (in mm).

m1
Right

m1
Left

m2
Right

m2
Left

m3
Right

m3
Left

m4
Right

m4
Left

m5
Right

m5
Left

80.6 76 81.8 75.2 85.4 79.1 86.4 80.4 83.2 77.4
11.2 110.4 111.3 110.1 110.7 109.0 110.4 108.6 111 109.7

The control inputs (i.e., the muscle forces) are shown in Figure 10 determined by the
computed-muscle–force controller. The results demonstrated a low level of force (0.2 N to
0.6 N) required overall to follow the square-shape path. There are instances corresponding
to the robot’s motion around the corners that require forces in the order of magnitude of 10 N.

Figure 10. Muscles’ force of the snake robot following a square-shape path with a zoom-in box for a
part of the result.
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4. Conclusions

This work presents the mathematical formulation for the kinematics and dynamics of
a planar artificial-muscle-driven snake robot with respect to the muscles’ motion and force.
The Lagrangian mechanics was employed to derive the equations of motion with muscle
forces as inputs to the dynamical system. A model-based computed muscle–force–controller
was designed to facilitate the tracking of the desired paths with different geometrical and
topological features in the Cartesian space while generating a lateral undulation gate in
the body joint space. Feedback linearization was utilized based on a change of coordinate
to derive an equivalent linear input-to-state system. Next, a full state-feedback control
law was designed, which satisfies the asymptotic stability of the snake robot in tracking
desired trajectories. Simulation studies were carried in MATLAB on a model of a six-link
snake robot. The performance of the dynamic model and the controller were successfully
demonstrated in simulation studies for tracking a circle-shape path and a square-shape
path with a constant linear velocity, while generating the lateral undulation gait. The
results indicate a low magnitude of tracking errors, where the controlled muscle force
are bounded to the actual pneumatic artificial muscles’ limitations. In future work, we
will experimentally test and validate the computed muscle–force control implemented in
our prototype.
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Abbreviations
The following abbreviations are used in this manuscript:

CCW Counterclockwise
DOF Degrees of freedom
LoS Line of sight
PAMs Pneumatic artificial muscles
PEA Parallel elastic actuators
2D Two dimensional
3D Three dimensional

Appendix A

The linear forward velocity of the snake robot is shown in Figure A1. The desired
value is set to a constant value of 0.275 m/s. The results demonstrate that the controller
was able to approach the desire velocity in a transition time of about 5 sec and oscillating
bounded around the desired velocity.
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Figure A1. Forward velocity of the snake robot following a circle path.

The variation of the muscle’s length over the period of simulation time are illustrated
in Figure A2. The relax length of each muscle is 100 mm. The PAMs are alternately
activated, contracts due to applying pressurized air, in a cyclic pattern according to the
lateral undulatory gait pattern and tracking the desired path in Cartesian space.

Figure A2. Time evolution of muscles’ length of a snake robot following a circle path.

The computed-muscle–force controller determined the required force to be generated
by the PAMs which then was transformed into the controlled pressure based on the force–
length–pressure predictive model developed in our previous study [59]. The control inputs
(i.e., the muscle forces) are shown in Figure A3. The results demonstrate a low level of force
required overall to follow the circle-shape path. There is an extra effort at the beginning
of the simulation due to move the snake robot from a stationary position and off the
desired path.
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Figure A3. Time evolution of muscles’ force of the snake robot following a circle path.

References
1. Hirose, S. Biologically Inspired Robots: Snake-like Locomotors and Manipulators; Oxford Science Publications; Oxford University Press:

Oxford, UK, 1993; Volume 1093.
2. Pettersen, K.Y. Snake robots. Annu. Rev. Control 2017, 44, 19–44. [CrossRef]
3. Dowling, K. Limbless locomotion: Learning to crawl. In Proceedings of the 1999 IEEE International Conference on Robotics

and Automation (Cat. No. 99CH36288C), Detroit, MI, USA, 10–15 May 1999; IEEE: Piscataway, NJ, USA, 1999; Volume 4,
pp. 3001–3006.

4. Liljeback, P.; Pettersen, K.Y.; Stavdahl, Ø.; Gravdahl, J.T. Experimental Investigation of Obstacle-Aided Locomotion With a Snake
Robot. IEEE Trans. Robot. 2011, 27, 792–800. [CrossRef]

5. Onal, C.D.; Rus, D. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspir.
Biomim. 2013, 8, 026003. [CrossRef] [PubMed]

6. Luo, M.; Agheli, M.; Onal, C.D. Theoretical modeling and experimental analysis of a pressure-operated soft robotic snake. Soft
Robot. 2014, 1, 136–146. [CrossRef]

7. Luo, M.; Pan, Y.; Skorina, E.H.; Tao, W.; Chen, F.; Ozel, S.; Onal, C.D. Slithering towards autonomy: A self-contained soft robotic
snake platform with integrated curvature sensing. Bioinspir. Biomim. 2015, 10, 055001. [CrossRef] [PubMed]

8. Branyan, C.; Fleming, C.; Remaley, J.; Kothari, A.; Tumer, K.; Hatton, R.L.; Mengüç, Y. Soft snake robots: Mechanical design and
geometric gait implementation. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO),
Macau, China, 5–8 December 2017; pp. 282–289. [CrossRef]
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